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Some	astrophysical	motivations
for	the	microscopic	description	of	
large	amplitude	collective	motion



Interest	of	the	lecture	from	an	astrophysics	perpsective
Observation	of	today’s	abundancy

Solar	abundancy

ppI chain
91	%	sun	energy

Light	nuclei	formation

…

Problem:
How	to	have	heavier	systems?



Interest	of	the	lecture	from	an	astrophysics	perpsective
Observation	of	today’s	abundancy

Solar	abundancy

Alpha	burning ↵+ ↵+ ↵ !12 C

Ternary	Fusion



Interest	of	the	lecture	from	an	astrophysics	perpsective
Observation	of	today’s	abundancy

Solar	abundancy

2 %	sun	energy

CNO	cycle

Schematic	view



Interest	of	the	lecture	from	an	astrophysics	perpsective
Observation	of	today’s	abundancy

Solar	abundancy

Light	Ion	fusion
or	incomplete	
fusion



Solar	abundancy

Interest	of	the	lecture	from	an	astrophysics	perpsective
Observation	of	today’s	abundancy

s-process:	competition	between	neutron	capture
and	beta	decay

Example



Interest	of	the	lecture	from	an	astrophysics	perpsective
Observation	of	today’s	abundancy

The	s-process	compete	with	the	r-process	(rapid	neutron	capture)
If	neutron	density	is	high

s-process	limit



Scope	of	the	lecture	:	
large	amplitude	collective	motion	described	with	microscopic	theory	

Time	dependent	mean-field	theory	in	nuclear	physics	

Illustration	on	collective	motion,	fusion,	deep	inelastic	collisions

The	dynamics	of	superfluid	nuclei

Basic	aspects	of	quantum	dynamics	(Schroedinger,	Liouville,	Ehrenfest picture)

Information	theory	and	selection	of	relevant	degrees	of	freedom	

Illustration	on	simple	quantum	mechanics	models	and	many-body	theory

Limitation	of	mean-field	theory	(complexity	in	nuclei)

Stochastic	methods	(phase-space	approach,	Stochastic	TDHF,	Auxiliary	field,	…)	

Illustrations



Lecture	Outline	

two-body

three-body

one-body

Nuclei	are	complex
quantum
many-body	systems

Goal:	 Be	able	to	describe	in	a	unified	way	static	and	
dynamical	properties	of	these	systems



Dynamics	of	quantum	systems
Schrödinger	picture	

po
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nt
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l

x

Given	a	Hamiltonian: H

and	an	initial	condition:	| (t0)i

The	Goal	is	to	know	the	state	of
The	system	for	 t > t0

i~ d

dt
| i = H| i

Schrödinger	equation

| (tf )i

| (t0)i

| (t)i = e
1
i~ (t�t0)H | (t0)i

Formal	
solution



Dynamics	of	quantum	systems
Schrödinger	picture	

When	is	the	formal	solution	useful?	

| (t0)i = |�ii.

H|�ii = Ei|�ii
| (t)i = e

1
i~ (t�t0)H | ii = e

1
i~ (t�t0)Ei |�ii

For	eigenstates of	the	Hamiltonian

| (t)i =
X

i

cie
1
i~ (t�t0)Ei |�ii.| (t0)i =

X

i

ci|�ii.

If	the	initial	state	can	be	decomposed	on	eigenstates

Difficulty

In	complex	systems	this	method	can	rarely	be	used

Numerical	methods	for	direct	Schrödinger	Eq.	integration		

Approximation	should	be	made.	



Numerical	Method	for	quantum	dynamics

po
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i~ @

@t

| i =
n

p̂

2

2m

+ V (x̂)
o

| i

Simple	Example:	One	Dimensional	case	

Partial	Differential	Equation	(PDE)	in	x representation:

hx| (t)i =  (x, t)

hx|p̂| (t)i = �i~ @

@x

 (x, t)

hx|V (x̂)| (t)i = V (x) (x, t)

Step	1
Representation

Step	2
Discretization

Step	3
Integration

i~ @

@t

 (x, t) =
n

� ~2

2m

@

2

@

2
x

+ V (x)
o

 (x, t)



Numerical	Method	for	quantum	dynamics
Quantum	mechanics	on	a	mesh

po
te
nt
ia
l

i~ @

@t

 (x, t) =
n

� ~2

2m

@

2

@

2
x

+ V (x)
o

 (x, t)

i~ @

@t

 (xi, t) = � ~2

2m

 (xi+1, t) + (xi�1, t)� 2 (xi, t)
2(�x)2

+ V (xi) (xi, t)

Discretization:

x-space: {xi} x-step: �x

xi xi+1

xNx0 … …

�x

i~Ḟ(t) = H⇥ F(t)

Fi(t) =  (xi, t)

H

Hii =
~2

2m(�x)2
+ V (xi)

Hii+1 = Hi�1i = � ~2

4m(�x)2

tridiagonal



Numerical	Method	for	quantum	dynamics
Methods	for	time	integration

time: time-step:{ti} �t

i~Ḟ(t) = H⇥ F(t)

F(t + �t) = exp

✓
�t

i~ H
◆
⇥ F(t)

| (tf )i

| (t0)i

�t

Time	discretization

Time	integration:

exp

✓
��t

i~ H
◆
' 1 +

�t

i~ H +

1

2!

✓
�t

i~ H
◆2

+ · · ·

Direct

(Dt)n,	non-unitary,	any	dim.	

F(t + �t) =
1� �t

2i~H

1 + �t
2i~H

F(t)

Crank-Nicholson

(Dt)2,	unitary,	1D	only	

F(t + �t) ' e�i�t P2
4~m e�

i
~ �tVe�i�t P2

4~m ⇥ F(t)

Split-Operator

(Dt)2,	unitary,	any	dim.



Numerical	Method	for	quantum	dynamics
Simple	1D	Illustration	

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

t0 = 0 fm/c

t1 = 50 fm/c

t2 = 100 fm/c

Potential	at	initial	time
Potential	at	t>0

Initial	state	(Coherent	state)

�(x) =

⇣
⌘

⇡

⌘1/4
exp

⇣
�⌘

2

(x� q0)
2

+ i

p0x

~ � i

p0q0

2~

⌘

At	t>0

p0 = 0with

Numerical	method:

-Split	operator

- �x = 0.15 fm - �t = 0.05 fm/c
⇢(x) = |�(x, t)|2

Density	profile

H =
p2

2m
+

1
2
ax2 +

1
3
bx3 +

1
4
cx4



Numerical	Method	for	quantum	dynamics
Numerical	issues

-same �x = 0.15 fm

Same	initial	condition	and	Hamiltonian

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

Dt =	0.05Dt =	0.5

How	to	know	the	correct	values	
of	parameters?

Simple	estimate

�t.�E ' 2⇡~�x.�p ' 2⇡~

E
max

' p2

max

/2m

�t

(�r)2
' m

⇡~

�x.p

max

' 2⇡~ �t.E
max

' 2⇡~

Here:

�x = 0.15 fm

�t

(�r)2
' 1000

3⇥ 200
= 1.7

�t ' 0.04 fm/c

-different �t ' 0.04 fm/c



 

Backward

Forward

Quantum	nuclear	dynamics
Example	of	realistic	3D	application	

Two-step	process

1s1/2
1p1/2
1p3/2
1d5/2
2s1/2
2p3/2x
1f7/2

Forward

Backward

J.A.Scarpaci et	al., Phys.	Lett.	B428	(1998)	241

Einit

Efin
Etarget

Enucleon

Experimental motivation

Backward

Forward

1s1/2
1p1/2
1p3/2
1d5/2
2s1/2
2p3/2x
1f7/2

Direct	process



2p3/2
1f7/2

58Ni	break-up	@44	MeV/A

Quantum	nuclear	dynamics
Illustration:	time-dependent	Schrödinger	Eq.	for	nuclear	break-up	

i~@t|�↵(t)i =
⇢

p2

2m
+ VP (~r, t) + VT (~r, t)

�
|�↵(t)i

VP/T (~r, t) =

V0

1 + exp{|~r�~rT/P (t)|/a}

Wood-Saxon	potentials

+	3D	Split-operator



2p3/2
1f7/2

First	example:	
58Ni	break-up	@44	MeV/A

DL,	Scarpaci,	Chomaz,	NPA658	(1999)	

Angular	distribution:	

Kinetic	Energy	distribution:	

With
detector

acceptance

Quantum	nuclear	dynamics
Illustration:	time-dependent	Schrödinger	Eq.	for	nuclear	break-up	



Observables,	Densities	
and	

information/complexity	reduction	



Quantum	dynamics	from	a	simple	perspective
Observable	evolution	

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

t0 = 0 fm/c

t1 = 50 fm/c

t2 = 100 fm/c

| (t)i hÔ(t)i = h (t)|Ô| (t)i

x
(f

m
)

time (fm/c)

∆
x

(f
m

2
)

time (fm/c)

�x = hx2i � hxi2

D(t) = | (t)ih (t)| hO(t)i = Tr(OD(t))
Density	definition



Reminder:	Ehrenfest,	Liouville von-Neumann	evolution

i~ d

dt
| i = H| i�i~ d

dt
h | = h |H

From	the	Schrödinger	Equation

and

i~ d

dt
hOi = Tr

✓
O

dD

dt

◆
= Tr (O[H,D])

i~ d

dt
hOi = Tr ([O,H]D) = h[O,H]i

Ehrenfest Theorem

i~ d

dt
D =

⇣
i~ d

dt
| i

⌘
h | + | i

⇣
i~ d

dt
h |

⌘
= H| ih | � | ih |H

i~ d

dt
D = [H,D]

Liouville von-Neumann	Equation

Schrödinger Liouville-
von	Neumann Ehrenfest

Dimension
N N2 N2



When	is	Densities	should	be	preferred	to	wave-functions?

Densities	can	describe	systems	that	could	not	easily	be	described	by	a	single	wave-packet.	

Example	2:	Non-equilibrium	quantum	dynamics	with	dissipation/irreversible	process

Example	1:	Quantum	statistical	Mechanics

D =
X

| iiPih i|

D2 � D =
X

| ii(P2
i � Pi)h i|

D2 = DN.B.: pure	state	case

d

dt
D =

1
i~ [H,D(t)]

� 1
2~2

X

k

�k (2AkD(t)Ak �AkAkD(t)�D(t)AkAk)

Lindblad equation

Non-Hamiltonian	evolution



Selection	of	degrees	of	freedom	(DOF)/information	reduction

Why	we	need	to	select	specific	degrees	of	freedom?

-In	most	realistic	situations,	the	number	of	DOF	is	very	large	

-All	DOF	cannot	be	followed	in	time	simultaneously

-Some	DOF	are	irrelevant	for	the	considered	process.

-The	idea	is	to	focus	on	the	relevant	DOF.

Information	reduction

-Dilemma:	 lots	of	interesting	aspects	come	from	the	coupling	
between	relevant	and	irrelevant	DOF.

Use	of	variational	principles.

Necessity	to	account	for	this	coupling



Introduction	to	variational	principle	in	quantum	mechanics

Minimize	the	action

S =
Z t1

t0

ds h (t)| i~@t � H | (t)i

|� (t0)i = 0 h� (t1)| = 0

under	the	constraint

and
| (t0)i

| (t1)i

How	does	it	works?

S =
Z t1

t0

ds
X

i

n

i~ ⇤
i (t)@t i(t)�

X

j

 ⇤
i (t)Hij j(t)

o

 i(t) = hi| (t)iUsing	the	component

H [ , ⇤]
Variation	with	respect	to:

� ⇤
i

i~@t i = @H/@ ⇤
i

=
X

j

Hij j = �
X

j

Hij ⇤
j

i~@t ⇤
i = �@H/@ i

� i (after	integration	by	part)

�i~@th | = h |Hi~@t| i = H| i



Variational	principle	in	quantum	mechanics
Selection	of	degrees	of	freedom

Wave-function	
variation

Variation	of

parameters
(q1, · · · , qN )

Selection	of	trial	states	with	specific	rules	of	variation:

| (Q)i ⌘ |Qi = R(Q)| (0)i = eQ.A| (0)ioften
| i

| + � i = e
P

↵ �q↵A↵ | i

wave-packet
space

{A↵} :	generator	of	the	transformation

| + � i = (1 +
X

↵

�q↵A↵ + · · · )| i = e
P

↵ �q↵A↵ | i

|�Qi =
X

↵

�q↵A↵|Qi

h�Q| = hQ|
X

↵

�q⇤↵(t)A↵

Interest

S =
Z t1

t0

ds hQ| i~@t � H |Qi

i~hQ|A↵|Q̇i = hQ|A↵H|Qi

i~hQ̇|A↵|Qi = �hQ|HA↵|Qi
i~dhA↵i

dt
= h[A↵, H]i

Ehrenfest theorem



Variational	principle	in	quantum	mechanics
Selection	of	degrees	of	freedom

Exact	evolution

hA1i

hA2i

hB↵i

The	use	of	variational	principle
with	specific	class	of	trial	states
insure	optimal	dynamics	of	the	
variables for	short	time						hA↵i

Examples

Coherent	states |↵ + �↵i / e�↵a†��↵⇤a|↵i
optimal	for	hxi, hpi

Independent	part.
states | (Z + �Z)i / e

P
ij �Zija†i aj | (Z)i

ha†iajioptimal	for	
two-body

three-body



ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

t0 = 0 fm/c

t1 = 50 fm/c

t2 = 100 fm/c

Example	of	Information	reduction
Gaussian	coherent	state

Goal:	Find	an	approximation	of	the	dynamics	imposing	that	the	state	remains	Gaussian	

x =
1p
2⌘

�
a + a

†� p = i~
r

⌘

2
�
a† � a

�

a =
r

⌘

2
x +

i

~
p

2⌘

p

(x, p) (a, a†)

Coherent	states	might	be	defined	as
eigenstates of					with	complex	eigenvaluesa

hx|a|↵i =
n 1p

2⌘

@

@x

+
r

⌘

2
x

o

�↵(x) = ↵�↵(x)

�↵(x) =

⇣
⌘

⇡

⌘1/4
exp

⇣
�⌘

2

(x� q0)
2

+ i

p0x

~ � i

p0q0

2~

⌘



Example	of	Information	reduction
Gaussian	coherent	state

�↵(x) =

⇣
⌘

⇡

⌘1/4
exp

⇣
�⌘

2

(x� q0)
2

+ i

p0x

~ � i

p0q0

2~

⌘
Information	reduction	with	coherent	state

= �(p0,q0)(x)

All	the	information	on	the	system	is	contained	in	(p0, q0)

hOi = O(p0, q0)For	any	observable

with hxi = q0 hpi = p0

Example: �x = hx2i � hxi2 =
1
2⌘

(↵2 + (↵⇤)2 + 2↵↵

⇤ + 1 � {↵ + ↵

⇤}2) =
1
2⌘

hx2i = q

2
0 +

1
2⌘

Similarly hp2i = p2
0 + ~2⌘/2 ,

hx3i = q

3
0 +

3
2⌘

q0 , ...hx4i = q

4
0 +

3
⌘

q

2
0 +

3
4⌘

2
,

hpi = p0

hxi = q0



Variational	principle

h↵|i~@t|↵i =
1
2
(p0q̇0 � q0ṗ0)

h↵|H|↵i =
hp2i
2m

+
a

2
hx2i +

b

3
hx3i +

c

4
hx4i = H(p0, q0)

Example	of	Information	reduction
Gaussian	coherent	state

dp0

dt
= �@H

@q0

dq0

dt
=

@H
@p0

Like	classical	Hamilton	Eq.

dq0

dt
=

p0

m

Explicit	Equation	of	motion

dp0

dt
= �aq0 � b

✓
q2
0 +

1
2⌘

◆
� c

✓
q3
0 +

3
2⌘

q0

◆

Comparison	with	direct	Ehrenfest Theorem	application
d

dt
hxi = � i

~ h[x,H]i =
hpi
m

=
p0

m
d

dt
hpi = � i

~ h[p, H]i = �ahxi � bhx2i � chx3i

with

hxi = q0 hx3i = q

3
0 +

3
2⌘

q0hx2i = q

2
0 +

1
2⌘

The	equivalence	
only	holds	for	relevant	
degrees	of	freedom!



Example	of	Information	reduction
Gaussian	state	in	harmonic	potential

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

Initial	pot

Coherent
state

b = c = 0

d

dt

hxi =
hpi
m

d

dt

hpi = �ahxi

Case	1

Evolution	of	x and	p is	exact

x
(f

m
)

time (fm/c)
∆

x
(f

m
2
)

time (fm/c)

domain
of	

validity

H =
p2

2m
+

1
2
ax2 +

1
3
bx3 +

1
4
cx4

Selected	DOF	

hxi, hpi

Other	DOF	

hx2i, hp2i= f(hxi, hpi)



Example	of	Information	reduction
Gaussian	state	in	slightly	anharmonic potential

ρ
(f

m
−

1
)

ρ
(f
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1
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ρ
(f

m
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1
)

x(fm)

Initial	pot

Coherent
state

x
(f

m
)

time (fm/c)

∆
x

(f
m

2
)

time (fm/c)

H =
p2

2m
+

1
2
ax2 +

1
3
bx3 +

1
4
cx4

Due	to	the	coupling	to	irrelevant	DOF
Damping	might	occur	

Case	2 b 6= 0
c 6= 0

b, c⌧ a



Example	of	Information	reduction
Gaussian	state	in	strongly	potential

ρ
(f

m
−

1
)

ρ
(f

m
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1
)

ρ
(f

m
−

1
)

x(fm)

Initial	pot

Coherent
state

x
(f

m
)

time (fm/c)

∆
x

(f
m

2
)

time (fm/c)

H =
p2

2m
+

1
2
ax2 +

1
3
bx3 +

1
4
cx4 Case	3: b 6= 0

c 6= 0
b, c ⇠ a

Strongly	anharmonic potential	induces	a	strong	coupling	between	relevant	and	
irrelevant	space				(and	the	approximation	fails)



TO	GO	MESSAGE
from	the	first	lecture

two-body

three-body

one-body

Nuclei	are	complex
quantum
many-body	systems

i~ @

@t

 (x, t) =
n

� ~2

2m

@

2

@

2
x

+ V (x)
o

 (x, t)

quantum

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

hA↵i
Optimal	dyn.
for	the

Complexity	reduction

| (t0)i

| (t1)i
| + � i = e

P
↵ �q↵A↵ | i

 i {qi}

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

ρ
(f

m
−

1
)

x(fm)

{qi} = {x, p}

Wave

| (t)i D(t) = | (t)ih (t)| hO(t)i = Tr(OD(t))
Density	Matrix Observable	space



Application	to	the	nuclear
Many-Body	problem



The	Nuclear	Energy	Density	Functional:	Goal

two-body

three-body

one-body

Mean-field:	
(DFT/EDF)	

“Simple”	Trial	state:

Self-consistent
Mean-field

Goal:	Map	the	nuclear	many-body	problem	into	an	“independent”	particle	problem

In	the	EDF,	particles	behaves	as	
Independent	particles	interacting	

through	an	effective	average	potential
Strategy

Identify	relevant	degrees	of	freedom (one-body	DOF)

Use	appropriate	trial	states	in	the	variational	principle (Slater	Det.	wave-function)

H =
X

i

T (i) +
X

i<j

V (2)(i, j) +
X

i<j<k

V (3)(i, j, k)Starting	point:



Reminder:	second	quantization

|�i

ai|�i = 0|�i Vacuum	 By	definition:

Single-particle	creation:	 a†i |�i = |ii|ii

a†ia
†
j |�i = |ijiTwo-body	states:	

|ji

Single-particle	annihilation:	 ai|ji = |�ihi|ji

(a†i )
2|�i = 0 (fermions)

Fermionic anti-commutation	rules:	

[ a†i , a
†
j ]+ = a†ia

†
j + a†ja

†
i = 0

[ ai, aj ]+ = aiaj + ajai = 0

[ ai, a
†
j ]+ = aia

†
j + a†iai = hi|ji



Observables	and	densities	in	second	quantization

O(1) =
X

ij

hi|O1|jia†jai

O(2) =
1
4

X

ij,kl

hij|Õ12|klia†ia
†
jalak

O(3) =
1
6

X

ijk,lmn

hijk|Õ123|lmnia†ia
†
ja

†
kalaman

Observable	expressions

one-body

two-body

three-body

hkl|⇢(2)|iji = ha†ia
†
jalaki hO(2)i =

1
4
Tr(Õ(2)⇢(2)) [⌦(⌦� 1)/2]2

hklm|⇢(3)|ijni = ha†ia
†
ja

†
namalaki hO(3)i =

1
6
Tr(Õ(3)⇢(3)) [⌦(⌦� 1)(⌦� 2)/3!]2

[⌦]:	size	of	the	single-particle	space

hi|⇢(1)|ji = ha†jaii hO(1)i = Tr(O(1)⇢(1)) [⌦]2

Density	matrices

Definition Information	content Size

one-body

two-body

three-body



Independent	particle	states:	Slater	determinants
Reduction	of	information	to	one-body	DOF	

The	two-particles	case |i, ji = a†ia
†
j |�i

�ij(r1, r2) = hr2r1|i, ji = h�|ar2ar1a
†
ia

†
j |�i

= hr1|iihr2|ji � hr2|iihr1|ji = �i(r1)�j(r2) � �i(r2)�j(r1)

�ij(r1, r2) =
1p
2!

����
�i(r1) �i(r2)
�j(r1) �j(r2)

�����ij(r1, r2) =
1p
2!
A(�i(r1), �i(r2))

The	N-particles	case |i1, · · · , iN i =
1p
N !

a†i1 · · · a†iN
|�i

Associated	density	matrices

hr|⇢(1)|r0i = hr|
⇣ X

i

|iihi|
⌘

|r0i ⇢1 =
X

|iihi|one-body

⇢12 = ⇢1⇢2(1� P12) P12|iji = |jii(with																											)								two-body

⇢123 = ⇢1⇢2⇢3(1� P12)(1� P13 � P23)three-body



Local	rules	of	transformation	between	Slater	determinants	

| i

| + � i = e
P

↵ �q↵A↵ | i

wave-packet
space | + � i = (1 +

X

↵

�q↵A↵ + · · · )| i = e
P

↵ �q↵A↵ | i

| i /
NY

↵=1

c†↵|�iHere

Single-particle
space

|↵i, c†↵

|↵̄i, c†↵̄

(hole)

(particle)

X

↵

|↵ih↵| +
X

↵̄

|↵̄ih↵̄| = 1We	complete	occupied	states

Proof: eẐ| i = eẐc†↵1
e�ẐeẐc†↵2

e�Ẑ · · · eẐc†↵N
e�Ẑ|�i

[Ẑ, c†↵i
] =

X

�

Z↵i�̄c†
�̄

eẐc†↵i
e�Ẑ = c†↵0

i
= c†↵i

+
X

�

Z↵i�̄c†
�̄

The	new	state | + � i = e
P

��̄ �Z��̄a†
�̄

a� | i = eẐ| i

Is	a	Slater	determinant | + � i =
NY

↵0=1

c†↵0 |�i

|↵0i, c†↵0

|↵̄0i, c†↵̄0

eẐc†↵i
e�Ẑ = c†↵i

+ [Ẑ, c†↵i
] +

1
2!

[Ẑ, [Ẑ, c†↵i
]] + · · ·



Hartree-Fock (HF)	and	time-dependent	Hartree-Fock (TDHF)	theory

S =
Z t1

t0

ds h (t)| i~@t � H | (t)i

From	variational	principle

S =
Z t1

t0

dt
X

↵

Z

r
d3r

n

i~�⇤
↵(i)@t�

⇤
↵(i)�H(�↵, �⇤

↵)
o

H =
X

ij↵

tij�
⇤
↵(i)�↵(j) +

1
2

X

ijkl↵�

ṽij,kl�
⇤
↵(i)�⇤

�(j)�↵(k)��(l)

For	two-body	hamiltonian

Mean-field	equation	of	motion	(in	r-space)

UH(r) =
Z

dr0v(r� r0)⇢(r0, r0)

U
ex

(r, r0) = �v(r� r0)⇢(r, r0)

i~@t�↵(r) = � ~2

2m
��↵(r) + UH(r)�↵(r) +

Z
dr0Uex(r, r0)�↵(r0)

Direct	term

Exchange	termFrom	Ehrenfest.

i~dhA↵i
dt

= h[A↵, H]i i~ d

dt
ha†iaji = h[a†iaj , H]i i~@t⇢ = [hMF[⇢], ⇢]



Calculation	from	bare	soft	NN	interaction

Application	of	Hartree-Fock (HF)	theory	to	nuclei
Nuclear	matter	properties	

Bogner,	Schwenk,	Furnstahl,	Nogga,	 NPA	763	(2005)	.

Hartree-Fock
only

Hartree-Fock
+	perturbation

theory

So,	why	is	mean-field	theory	so	
important	in	nuclear	physics?



Nuclear	Equation	of	state

Bare	soft	NN	interaction

Hartree Fock+3body
+pert.	theory

Ab-initio

Result	of	the	fit

Mapping	the	nuclear	many-body	problem	into	a	functional	theory			

Energy	Density	Functional

with

| i /
NY

↵=1

c†↵|�i ⇢ =
X

|↵ih↵|



Nuclear	Energy	Density	Functional	based	on	effective	interaction
Illustration	with	the	Skyrme Functional

Vautherin,	Brink,	PRC	(1972)

Functional	of		 ⇢, ⇢n, ⇢p, ⌧, ⌧n, ⌧p,J, ...

Around	10-14	parameters	to	be	adjusted



Nuclei	at	equilibrium

"1

"2

"i"F

ni

ni = 0

ni = 1

"i

{'↵} =) ⇢ =) hMF[⇢] =) {'↵} =) · · ·

In	practice

Sly4-Bender,Bertsch,Heenen, PRL (2005)

E
 ex

p
–

E
th

 (M
eV

)

Energy	scale!
300 1000 1600

20 40 60 10080 120 140 160
Neutron number N

Ground	state	Energy

Ground	state	density



Time-Dependent	Mean-Field
For	collective	motion	



First	step	towards	non	equilibrium
Constrained		calculations

�h |H � �Q � E| i = 0Nuclei	at	various	shapes	

Thermodynamics	of	nuclei S = �Tr(D lnD)�h |H � TS � µN | i = 0 with

S[ni] = �
X

i

[ni log(ni) + (1� ni) log(1� ni)]Here ⇢ =
X

|iinihi|

ni = 1/(1 + exp{("i � µ)/T})

T=cte

Monopole	vibration
Q = r2Constraint



Collective	motion
Constrained	mean-field	versus	dynamics

T=cte

0 2 4 6 8
r(fm)

Time	evolution

From	DL,	Ph.	Chomaz,	Nucl.	Phys.	A636	(1998)

T =
2⇡

!

~!



Collective	motion
Microscopic	insight	

Dipole	Mode	

p n

En
er
gy

Def.	parameter

~!⌫ |⌫i

Nature	of	the	collective	states

~!⌫

"1

"2

"i"F

ni

ni = 0

ni = 1

"i

|↵i, c†↵

|↵̄i, c†↵̄

|⌫i /
X

↵↵̄

X⌫
↵̄↵a†↵̄a↵| 0i

Particle-hole	decomposition

The	RPA	is	also	a	way	to	re-quantize
TDHF

Note:	small	amplitude
limit	of	TDHF	is	RPA



Difficulties	

(a)

(b)

1

2

3

4
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6

E
2
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]

1

10

102

103

104

B
(E

2
↑)

[e
2

fm
4
]

0 50 100 150 200

A

TDHF+BCS
Exp

QRPA(Bertsch,
Terasaki,	Engel)

Low	lying	2+ states	

Collective motion
Mean-field

Collective	
sector

Low-lying		
sector



Time-Dependent	Mean-Field
for	low	energy	collisions



Reactions	with	Nuclei
Generalities

b

grazing

Adapted from:	W.	Nörenberg and	H.A.	Weidenmüller,	
Introduction	to	Heavy-Ion theory,	Springer-Verlag 1981.

-Direct	reactions
-Elastic	reactions	

-Deep	inelastic	collisions
-Fusion
-Large	amplitude	motion

Inelastic	collisions
transfer	reactions

Po
te
nt
ia
l

Relative	distance	

Onset	of	
nuclear	field

Coulomb	
repulsion

Ec.m.

-Qvalue

E*

C.
	N
.	f
or
m
at
io
n

Capture
region

Fusion
Barrier

En
er
gy
	

Ba
la
nc
eMacroscopic	aspects:



Important	parameters

(NP , ZP )

(NT , ZT )

Mass/Charge:

Projectile

Target

b

L = r ^ p = bpini

Impact	parameter:

Beam	Energy: EB/A

EFus
B ' 5 MeV.A

Reactions	with	Nuclei	on	a	mesh

Initialize	both	nuclei
separately	

Step	1 Step	2

Put	both	in	a	3D
Mesh	(in	the	c.m.)

Step	4

Perform
evolution

Step	3

Boost	wave-packets
|�T/P

↵ i ! e�ipT/P r/~|�T/P
↵ i

b



Some	illustration	of	mean-field	evolution

16O+208Pb	@	74.44	MeV

16O+208Pb	@	74.45	MeV



Reactions	with	Nuclei
Example	of	application:	reaction	time

Re-separation

Fusion

di-nuclear

mono-nuclear

Re-separation
16O+208Pb

time	(fm/c)

di
st
an
ce
	b
et
w
ee
n	
fra

gm
en
ts
	(f
m
)

Simenel,	Avez, DL,	(2008)	arXiv:0806.2614.

time

74.5
74.4

VB



S.E.	Koonin,	Prog.	Nucl.	Part.	Phys.	4	(79)	283.	
K.T.R.	Davies	et	al,	Treat.	Heavy Ion	Sciences,	4	(85)	1.	

Reactions	with	Nuclei
Example	of	application:	fusion	cross-sections

po
te
nt
ia
l

Relative	distance

L = 0
L 6= 0

L = l
max

H =
p2

2µ
+

~2l(l + 1)
2µr2

+ V (r)L = r ^ p = bpini

�Fus(E) ' ⇡~2

2µE
(l

max

(E) + 1)2.

For	a	given	energy	



Reactions	with	Nuclei
Example	of	application:	nucleus-nucleus	potential/effect	of	dynamics

Potential

Kinetic

Dissipation

From	microscopic	to	macroscopic	world

R

Washiyama,	DL,	PRC78	(2008).
Washiyama,	DL,	Ayik,	PRC79	(2009).

Nucleus-nucleus	potential

Very	good	
agreement	

with	
experiment

Comparison	with	experiments



Coupling	to	collective	excitations	(Rotation	and	vibration)

Interplay	between	fusion	and	deformation	is	included	in	a	semi-classical	way:
Different	orientation	lead	to	different	barriers	

Barrier	deduced	
From	TDHF

From	Simenel,	EPJA	48	(2012)	

Vibrations	can	be	excited	during	the	approaching	phase	leading	
to	barrier	fluctuations

Important	:	the	excited	collective	
degrees	of	freedom	are	not	pre-selected	

However,	collective	space	is	not	quantized	
Missing	quantum	fluctuations



Reactions	with	Nuclei
Example	of	application:	dissipation

Potential

Kinetic

Dissipation

From	microscopic	to	macroscopic	world

R

R

one-body origin	of	dissipation

-transfer	of	particle

-reflection	of	particles	



Fusion	reactions
Dissipative	aspects

Potential

Kinetic

Dissipation

From	microscopic	to	macroscopic	world

R

Adamian et al., 

PRC56(1997)

Washiyama,	DL,	PRC78	(2008).
Washiyama,	DL,	Ayik,	PRC79	(2009).

Link	with	internal	excitation

ρ1 ρ2

ni ni
diagonalize

ρ

E⇤ ' Ediss

E⇤ '
X

"i(ni � n0
i )



Large	Amplitude	Collective	Motion
and	dissipative	aspects

(multi-nucleon	transfer,	quasi-fission)

Oberacker et	al,	Phys.	Rev.	C90	(2014)



Quasi-fission	reactions
Microscopic	simulation

Reaction	time

l = 60~

l = 70~

Reaction	time

Reaction	time

l = 80~

Co
lli
sio

n	
Ce

nt
ra
lit
y

Nuclei	trajectory

From	Simenel,	EPJA	48	(2012)	

Gives	access	to	time-scales



Effect	of	superfluidity
On	nuclear	reactions



Generalities
Pairing	effect	on	nuclear	dynamic

2n-transfer	reactions2n-break-up	reactions

Assié and	Lacroix,	PRL102	(2009) Scamps,	Lacroix,	PRC	87		(2013)

Scamps,	Lacroix,	PRC	(2014)

Goal	

Systematic	study	of	the	pairing
Influence	on	nuclear	dynamics	



EDF:	Pairing	correlations	in	nuclei

+
1
2

X
v⇢⇢

ijij⇢ii⇢jj +
1
4

X
v

iı̄j|̄
⇤
iı̄j|̄ESR [⇢, ,⇤] =

X
tii⇢ii

�0 ! {⇢, }! ESR

EDF:

Pairing	channel

EDF	(with	Pairing)|�0i = ⇧�†
↵|�i |�0i = ⇧i(ui + via

†
ia

†
ī
)|�i|�0i = ⇧ia

†
i |�i or

�
n
(M

eV
)

Neutron number

Pairing	interaction

v = v0

 
1� ↵


⇢

⇢0

��
!

�(r1 � r2)

⇢(r) ⇢0

Surface	PairingMixed	Pairing

Particle	number	non-conservation

= �̄

hN2i � hNi2

No	breaking
(Slater	det.)

Breaking
(quasi-particle)E

(order	parameter)

|cn|2 |�0i =
X

n

cn| ni

N N + 1N � 1 ......



Tretment of	superfluidity in	time-dependent	approaches

Nuclear	reaction	on	a	mesh
TDHF	is	a	standard	tool |�ii :	Slater

i~d⇢

dt
= [h(⇢), ⇢] Single-particle	evolution

Simenel,	Lacroix,	Avez,	arXiv:0806.2714v2

BCS	limit	of	TDHFB	(also	called	Canonical	basis	TDHFB)

|�(t)i =
Y

k>0

⇣
uk(t) + vk(t)a†k(t)a†

k̄
(t)

⌘
|�i.

Neglect �ij

Introduction	of	pairing:	TDHFB

i~ d

dt
R = [H(R),R] R =

✓
⇢ 
�⇤ 1� ⇢

◆

Quasi-particle	evolution
(Active	Groups:	France,	US,	Japan…)

TDHFB	=	1000	*	(TDHF)

Less	demanding	than	TDHFB

Reasonable	results	for	collective	motion

Sometimes	more	predictive	than	TDHFB

Ebata,	Nakatsukasa et	al,	PRC82	(2010)

Scamps,	Lacroix,	Bertsch,	Washiyama,	PRC85	(2012)

Avez,	Simenel,	and	Chomaz,	PRC78,	(2008)



Transfer	reaction	below	the	Coulomb	barrier
48Ca 40Ca 48Ca 40Ca

tim
e

Scamps,	Lacroix,	PRC	87		(2013).

P1n, P2n, ...

Extract	one,	two,	…	
nucleons	transfer	probabilities	 P1n

P2n no	pairing
with	pairing



Fission	process
Macroscopic	picture	

The	many-body	facets	of	fission

Direct	contact	with	exp.	Interest:

Exotic	nuclei	production

Nuclear	reactors

Fission	life-time



Fission	process
Microscopic	description

Experimental	kinetic	energy	of	the	fissioning fragments
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Q2 (b)
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258Fm

An	additional	remark	on	fission	time	scale:
Very	sensitive	to	pairing	type	and	much	longer	than	anticipated

110

1000

2000

3000

4000

5000

6000

ti
m
e
(f
m
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)

100 110 120 130 140 150 160 170 180

Q2 (barn)

Fission	time	with	
TDHF+BCS

Time	(fm/c)	

5300 550020001000 3000 4000 5000

Fast	fission

Coulomb	boost
Extremely	slow	pairing/dissipation	dominated	motion

5600

Bulgac,	Magierski,	Roche,	and	Stetcu
Phys.	Rev.	Lett.	116,	122504	(2016)	

Confirms	the	finding	of:



Reactions	of	astrophysical	interest
Microscopic	description

↵+ ↵+ ↵ !12 C



Beyond	mean-field
Approaches

(deterministic	and	stochastic	methods)



Microscopic	theory
Intrinsic	limitations	of	mean-field	theory

E H
F
/(

εN
)

α

No	spontaneous	symmetry	breaking

Mean-field	is	almost	a	classical	theory	in	collective	space	



Microscopic	theory
Intrinsic	limitations	of	mean-field	theory

Absence	of	quantum	effects

Cr
os
s	s
ec
tio

n

Center	of	mass	En.

Simenel, Avez, (2008).

No	tunneling	in	fusion	cross-section

Absence	of	quantum	interferences	
Undistinguishable	trajectories	

Interfering	trajectories
can	be	constructive	
or	destructive.

b

b0

Lab.

intrinsic

+ +
Target



Microscopic	theory
Challenges	beyond	mean-field	Beam

Energy

5	MeV/A

10	MeV/A

50	MeV/A

100	MeV/A

Fusion

Transfer	

Break-up
(Nuclear,	Coulomb)

Knock-out	

Spectroscopic	tools

Direct	NN	collisions

+Enhanced	effect	of	the	continuum	
In	exotic	nuclei



<A1>

<A2>

<B>
Exact evolution

Mean-field

Y. Abe et al, Phys. Rep. 275 (1996)
DL, Ayik, Chomaz , Progress in Part. and Nucl. Phys. 52 (2004)

Short time evolution

Approximate long time evolution+Projection (Nakajima-Zwanzig)

Correlation

with

Propagated initial 
correlation 

Dissipation and fluctuation

Random initial 
condition

Dissipation (Extended TDHF)

projected two-body 
effect

Dynamics	beyond	mean-field
Projection	technique



Dynamics	beyond	mean-field
Non-Markovian effects

with

Non-Markovian master equation

Av
er

ag
e 

po
si

tio
n

Occupation number evolution

O
cc

up
at

io
n 

nu
m

be
rs

DL,	Chomaz,	Ayik,	Nucl.	Phys.	A	(1999).

1D

Example: two interacting fermions            
in 1dimension



First	application	:	Nuclear	break-up	of	correlated	systems
Physical	Intuition

di-neutron cigare

di-neutron

cigare

correlated anti-correlated

correlated

anti-correlated



Nuclear	break-up	of	correlated	systems
Assié,	Lacroix,	PRL	(2009),	arXiv:0901.0848

Attractive 
interaction

Repulsive interaction

Different	initial
correlations

attractive int. répulsive int.

cigare

di-neutron

6He	nuclear	break-up

Assié,	Scarpaci	et	al,	EPJA	(2009)



GQR in lead

DL, Ayik, Chomaz, Prog. Part and Nucl. Phys. (2004)  

Giant Quadrupole resonances

Mean energy is OK

Damping (dissipation)
and fragmentation 
is missed

Non-Markovian dynamics	beyond	mean-field
application	to	collective	motion

Q
ua

dr
up

ol
e 

m
om

en
t

time (fm/c)



mean-fieldmean-field
+fluctuation
+dissipation

Incorporate dissipation
in many-body system

Not so easy to use in 
Large amplitude 
Collective motion

C
ol

le
ct

iv
e 

en
er

gi
es

Mean-field Coupling 
to ph-phonon

Coupling 
to 2p2h states 

2p
-2

h 
de

ca
y 

ch
an

ne
ls

Non-Markovian dynamics beyond	mean-field
application	to	collective	motion

System

Environment



Stochastic methods

To treat quantum fluctuations (stochastic mean-field) 

To treat direct two-body collisions (stochastic TDHF) 

To treat all correlations (Auxiliary field quantum Monte-Carlo) 



Strategy	of	stochastic	methods	tackling	the	N-body	problem

Question:	 Is	it possible	to	recover some of	the	quantum	mechanics aspects	
by	considering an	ensemble	of	independent mean-field trajectories?

Quantum	Monte-Carlo

Stochastic	TDHF

Stochastic	Mean-Field

⇢ij(t0) ⇢ij(t)

Correlations	that	built	up	in	time	
Direct	NN	collisions

Initial	fluctuations	

All	Correlations

D.	Lacroix	and	S.	Ayik EPJA	Review (2016)



Including	quantum	fluctuations
(Phase-space	methods)



Strategy	to	construct	a	stochastic	mean-field	theory

Ayik,	Phys.	Lett.	B	658,	(2008).	

MF

Collective	phase-space Quantum	fluctuations

The	dynamics	is	described	
by	a	set	of	mean-field	
evolutions	with	random	

initial	conditions

Mean-Field	theory dhA↵i
dt

= F ({hA�i}) at all	time	 �2
Q = hA2i � hAi2

⌃2
C = A(n)A(n) �A(n)

2

dA(n)
↵

dt
= F

⇣
{A(n)

� }
⌘

Stochastic	Mean-Field

{A(n)
↵ }

at all	time	

Constraint:	 ⌃2
C(t = 0) = �2

Q(t = 0)



The	stochastic	mean-field	(SMF)	concept	applied	to	many-body	problem

Ayik,	Phys.	Lett.	B	658,	(2008).	

MF

Collective	phase-space Quantum	fluctuations

The	dynamics	is	described	
by	a	set	of	mean-field	
evolutions	with	random	

initial	conditions

The	average	properties	of	initial	sampling	should	identify	with	properties	of	the	mean-field.

SMF	in	density	matrix	space

⇢(r, r0, t0) =
X

i

�⇤
i (r, t0)ni�j(r0, t0)

⇢�(r, r0, t0) =
X

ij

�⇤
i (r, t0)⇢

�
ij�j(r0, t0)

⇢�
ij = �ijni

�⇢�
ij�⇢

�
j0i0 =

1
2
�jj0�ii0 [ni(1� nj) + nj(1� ni)] .

SMF	in	collective	space
Q(t0)

Q�(t0)

Q
�(t0) = Q(t0)

�Q(t0) = (Q�(t0)�Q�(t0)
2
)



Description	of	large	amplitude	collective	motion	with	SMF
The	case	of	spontaneous	symmetry	breaking

Lipkin Model

e

See	for	instance	:	Ring	and	Schuck book
Severyukhin,	Bender,	Heenen,	PRC74	(2006)

p=1 p=2 … p=N

J
x

=
1
2
(J+ + J�)

Jy =
1
2i

(J+ � J�)

E H
F
/(

εN
)

α

N=40	particles

J
z(

t)

Time

Exact	dynamics

Mean-field
is	stationary



Description	of	large	amplitude	collective	motion	with	SMF
The	stochastic	mean-field	solution
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SMF

Lacroix,	Ayik,	Yilmaz,	PRC	85	(2012)
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Application	to	fusion	reactions
Stochastic semi-classical treatment of	discrete channels

relative	dist.

Environment

Collective	Motion

Discrete	Channels

Esbensen et	al,	PRL	41	(1978)

+	Coupling

Ayik,	Yilmaz,	Lacroix,	PRC81	(2010)

SMF

Coupled-channel



Application	to	fusion	reactions
Stochastic semi-classical treatment of	discrete channels

relative	dist.

Environment

Collective	Motion

Discrete	Channels

Esbensen et	al,	PRL	41	(1978)

+	Coupling

Ayik,	Yilmaz,	Lacroix,	PRC81	(2010)



Application	to	fission:	current	quasi-static	picture
Fission	as	a	multi-dimensional process

Staszczak,	Baran,	Dobaczewski,	and	Nazarewicz
Phys.	Rev.	C	80,	014309	(2009)

T.	Ichikawa,	Iwamoto,	Möller,	and	Sierk,	
Phys.	Rev.	C	86	(2012)

Several	fission	paths	

Emergence	of	the	notion	of	fission	modes	(multimodal	fission)

Beyond	the	quasi-static	picture?	



How	modes	are	populated-role	of	dynamics?

Fission	is	a	quantum	dynamical	
Process	(quantum	tunneling,	
Entanglement… )

Regnier,	et	al,	Phys.	Rev.	C	93	(2016)

239Pu(n, f)



Application	to	fission

Tanimura,	Lacroix,	Ayik,	PRL	(2017)
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From	deterministic	to	statistical	approach

Distribution	des	temps	de	fission
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Including	binary	collisions
The	Stochastic	TDHF	method



We assume that the residual interaction
can be treated as an ensemble of 
two-body interaction:

Statistical assumption in the Markovian limit :

Weak coupling approximation : perturbative treatment

Residual interaction in the mean-field 
interaction picture

Reinhard and Suraud, Ann. of Phys. 216  (1992)

GOAL: Restarting from an uncorrelated state we should:   

2-interpret it as an average over jumps between “simple” states   
1-have an estimate of   

Markovian limit,	quantum-diffusion	and	stochastic	Schrödinger	Equation



{
t t+Dt

R
ep

lic
as

 

Collision time

Average time between two collisions

Mean-field time-scale 

Hypothesis :

Average Density Evolution:

Time-scale	and	Markovian dynamic



with 

Initial simple state

One-body density
Master equation 

step by step

2p-2h nature 
of the interaction 

with 

Separability of the 
interaction

Dissipation contained in Extended TDHF is included 
The master equation is a Lindblad equation  
Associated SSE DL, PRC73 (2006)

Dissipation:	link	between	Extended	TDHF	and	Lindblad	Eq.	



SSE on single-particle state :

with

time (arb. units)

w
id
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co
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te

mean-field

average evolution

N-body density: 

1D bose condensate with gaussian two-body interaction

The numerical effort is fixed by the number of Ak

r

r(
r)

 (a
rb

. u
ni

ts
)

t=0
t>0

mean-field

average evolution

Application	to	Bose-Einstein	condensates



Including all correlations
The Quantum Monte-Carlo approach



Open systems

<A1>

<A2>

<B>
Exact evolution

Mean-field

Brownian motion

N-body

Towards Exact stochastic methods for N-body and Open systems

Environment

System
(one-body)

(others) Environment

System

Self-interacting	vs	Open	Quantum	systems



Environment

System

Self-interacting	vs	Open	Quantum	systems
Approximate	and	exact	Quantum	jump

Projection

Lindblad master Eq.
+quantum Diffusion

Gardiner and Zoller, Quantum noise (2000) 
Breuer and Petruccione, The Theory of Open Quant. 
Syst.(2002).

Quantum Monte-Carlo (Exact)

Stoch. master Eq.
+ quantum Diff.

Lindblad master Eq.
+quantum Diffusion

Stoch. master Eq.
+ quantum Diff.



More insight in mean-field dynamics: 

Exact state Trial states

{
The approximate evolution is obtained 
by minimizing the action: 

Included part: average evolution
exact Ehrenfest
evolution

Missing part: correlations 

Environment

System

Complex
self-interacting 

System

Hamiltonian splitting

System Environment

<A1>

<A2>

<B>
Exact evolution

Mean-field

Relevant degrees 
of freedom

The idea is now to treat the missing information
as the Environment for the Relevant part (System)

Mean-field	from	variationnal principle



<A1>

Exact evolution

<A2>

with

D. Lacroix, Ann. of Phys. 322 (2007).

…
Mean-field

Mean-field level

Mean-field + noise

Theorem :
One can always find a stochastic process for trial 
states such that
evolves exactly over a short time scale.

Valid for 

or
In practice 

Existence	theorem :	Optimal	stochastic path from observable	evolution



t>0
Mean-field evolution:

x
t>0

Reduction of the information: I want to simulate the expansion with Gaussian wave-
function having fixed widths.

t=0

with

Relevant/Missing information: 

Relevant degrees 
of freedom Missing information

Trial states 

Coherent states 

illustration:	simulation	of	the	free	wave spreading with “quasi-classical states”



Stochastic c-number evolution
from Ehrenfest theorem 

Densities 

with

Nature of the stochastic mechanics

with

the quantum wave spreading can 
be simulated by a classical brownian 
motion in the complex plane 

x

x

ti
m

e

x

fluctuationsmean values

Guess of	the	SSE		from the	existence	theorem



The method is general.
the SSE are deduced easily

Ehrenfest theorem BBGKY hierarchy

D. Lacroix, Ann. Phys. 322 (2007)
Starting point: 

with

Observables

Fluctuations

with

Stochastic one-body evolution

The mean-field appears naturally 
and the interpretation is easier

extension to Stochastic TDHFB 
DL, arXiv nucl-th 0605033
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ob

ab
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ty

time

two-level system
Bosons

but…

the numerical effort can be 
reduced by reducing the number 
of observables

unstable 
trajectories

SSE	for	Many-Body Fermions	and	bosons



Simplified QD

Fluctuationü
Dissipation

Generalized QD

Fluctuationü
Dissipation ü

Exact QD

Everything ü

Mean-field

Fluctuation
Dissipation

variational QD  

Partially 
everything ü

Numerical issues 

FlexibleFlexible Fixed Fixed

Approximate evolution

Summary,	stochastic	methods	for	Many-Body	Fermionic	and	bosonic	systems

Numerical
instabilities


