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1949 y. Nuclear Shell Model

• Magic numbers

• Nuclear Mean Filed: independent motion of nucleons in an
appropriately chosen potential. The long mean free path
of nucleons in a nucleus.

• This theory is differ significantly from the Hartree model
in atomic physics. In a nucleus nucleons themselves
completely determine the nuclear potential.

• Strong spin-orbit interaction

λ
1

r

dV

dr
l⃗ · s⃗

• The long mean free path of nucleons in a nucleus can not
be easily reconciled with the cross section for collision
between free nucleons.
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1952 y. Generalized (Collective) nuclear model

• Nuclear potential, nuclear density are almost constant
inside nucleus

• Low-lying collective excitations of nuclei are related to
surface oscillations

R(θ, φ) = R0

(
1 +

∑
λ=2,...

∑
µ

α ∗λµ Yλµ(θ, φ)

)
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Nobel Prize for Physics for 1949: Prof. H.Yukawa

Prof.H.Yukawa is best known for his theory of nuclear forces
which, in 1935, first postulated the existance of a particle a
few hundred times heavier than the electron. The nuclear
forces would then be in the same relation to the possible
emission and absorbtion of such a particle as the
electromagnetic forces to the emission and absorbtion of light.
The discovery of the µ-meson in cosmic rays appeared to be a
confirmation of Yukawas prediction, but the study of its
properties gradually led to the conviction that it could not be
identical with the particle required for Yukawas theory. It was
not until 1947 that Powell and his collaborators demonstrated
the existance of a second short-lived particle, the π-meson,
which is strongly linked to protons and neutrons.
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1955 y. Classical field theory of nuclear forces

M.M.Johnson and E.Teller, Phys. Rev. 98, 783 (1955)

• Nuclear interactions are strong which has the consequence
that at high energies the multiple production of nuclear
quanta-meson is the rule, where the multiple production of
gamma-quanta is a rare event. Consequently in
nucleon-nucleon collisions several mesons may be expected
in virtual states.

• For heavy nucleus in which the expectation value of
mesons present is considerably larger than one, the mesons
obeying the Bose statistics will tend to occupy the same
quantum states. The wave function of this quantum state
will correspond to the classical potential of nuclear forces.
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Type of the meson field

Interaction can take form:∑
l

Ψ ∗OlΨ · Φl(Φ) (1)

where Φ is the amplitude of the meson field

– Φl must be a simple scalar and isotopic singlet

– If Ψ ∗OlΨ is an isotopic triplet it will have components in
which the nucleon changes charge

– A pseudoscalar Φl can be ruled out because nuclear mean
filed conserves parity

Thus meson is scalar and neutral (isoscalar). This meson need
not be an elementary particle. It may be a virtual state
composed of other mesons. It can be even a superposition of
such virtual states. It may decay into π-mesons so quickly that
it cannot be observed (resonance with a large width).
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The simplest Hamiltonian valid for the interior of nuclei is

H1 =

∫
dτ

{
~2

2m

∑
j

|∇Ψj|2 + µ2c4Φ2 − ~cgΦ
∑
j

|Ψj|2
}

(2)

At the moment it does not include kinetic energy of meson
field.

This Hamiltonian has two shortcomings

– it does not explain saturation

– it predicts too large neutron excess in heavy nuclei
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δH1

δΦ(r)
= 2µ2c4Φ− ~cg

∑
j

|Ψj|2 ≡ 2µ2c4Φ− ~cgρ = 0

at equilibrium. Then

H1 =

∫
dτ

{
~2

2m

∑
j

|∇Ψj|2 +
µ2c4~2c2g2

4µ4c8
ρ2 − (~cg)2

ρ2

2µ2c4

}

=

∫
dτ

{
~2

2m

∑
j

|∇Ψj|2 −
1

4

(~cg)2

2µ2c4
ρ2

}
Nucleon kinetic energy ∼ ρ5/3. Therefore, there is no
saturation.
The Coulomb energy should be added to H1. The energy
minimum occur when the kinetic energy at the top of the
proton Fermi distribution differs from the energy at the top of
the neutron Fermi distribution by the Coulomb potential. This
minimum occurs in heavy nuclei for two large neutron excess.
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Both difficulties can be removed by adding to H1 a
velocity-dependent term:

H2 = H1 +

∫
dτ

{
~3µ−2c−1fΦ

∑
j

|∇Ψj|2
}

(3)

• – The velocity-dependent term added in H2 is positive and
increases with ρ as ρ8/3. The nuclear potential has a
minimum at a finite ρ

• – Since meff < m nuclear velocity and kinetic energies will
be increased. Therefore, a smaller neutron excess produces
the difference in kinetic energies at top of the Fermi
distributions necessary to balance the Coulomb potential
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Influence of the effective mass

meff =
m

1 + 2m~fΦµ−2c−1
≈ 0.5

The kinetic energy of a neutron at the top of the Fermi
distribution is(

p2max

2m

)
n

=

(
9π

4

)2/3 ~2

2mR2
N2/3

and for protons(
p2max

2m

)
p

=

(
9π

4

)2/3 ~2

2mR2
Z2/3

For 238U
(

p2max

2m

)
n
−
(

p2max

2m

)
p
= 10.7 MeV. For equilibrium this

quantity must be equal to Coulomb potential, i.e. 21 MeV.
Equilibrium is achieved for meff = 0.51m
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Nuclear Surface energy

A Hamiltonian capable to describe a surface energy must
contain kinetic energy of the meson field:

H3 = H2 +

∫
dτ~2c2|∇Φ|2

The presence of |∇Φ|2 in the integral prevents Φ from
dropping sharply to zero at the surface.
Independent on the kinetic energy the part of the integrand of
H3 is

µ2c4Φ2 − ~cgΦρ

The first term is the potential of the meson field, the second
term is the potential for nucleons times ρ. Since Φ diffused at
the surface Vnucl obtain some diffusion which creates a surface
effect.

R.V. Jolos Historical Introduction into Relativistic Mean Field Theory



Since Φ is diffused meson field contributes to the surface
energy. Let Φ is constant inside nucleus and goes to zero with
a constant slope in a layer of thickness L(L << R)
Then the surface energy is equal:∫ R+L

R

dτµ2c4Φ2 =
L

R

4π

3
R3(µc2Φ)2

Contribution of the kinetic energy of mesons to the surface
energy is∫

dτ~2c2|∇(Φ)|2 = 3L

R
(~µ−1c−1L−1)2 · 4π

3
R3(µc2Φ)2

The sum of two terms is

S = (L+
3

L
(~µ−1c−1)2) · 4π

3
R2(µc2Φ)2

dS

dL
= 0 → Lmin =

√
3~µ−1c−1

and Smin = 116~µ−1c−1ρ1/2A2/3 MeV. The experimental
value of Sexp = 18A2/3 MeV and we obtain µc2 = 660 MeV
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Spin-Orbit Coupling

Spin-orbit coupling estimated by analogy to atomic
physics have a correct sign within nuclei. However,
its value is too small.

Vso =
~

2m2c2
1

r

∂V

∂r
σ⃗ · l⃗

With meff instead m the spin-orbit coupling
approach experimental value.
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Summary of the ideas of the paper by Johnson and Teller

– The nuclear model is proposed in which it is assumed that
the scalar nuclear potential arises from a linear coupling of
the scalar neutral (isoscalar) meson field. The idea of the
scalar meson condensate is introduced.

– Effective nucleon mass meff ≈ 0.5m

– An additional linear coupling to the scalar meson field is
introduced which is proportional to the kinetic energy of
the nucleons. This additional term is repulsive. This term
increases with density. As a result a saturation properties
are correctly given.

– The kinetic energy dependent coupling has the effect of
decreasing the mass of a nucleon within a nucleus

– Scalar meson which can be a resonance with large width
and a mass ∼ 600 MeV
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Relativistic Effects in Nuclear Forces

H.-P.Dürr, Phys.Rev. 103, 469 (1956)
Let us try to find a relativistic formulation of an interaction which in the
relativistic limit will lead to a velocity dependence as it is proposed by
Johnson and Teller. We also introduce vector meson field in addition to
scalar meson field. Dirac equation (~ = c = 1)

iγµpµ +m = Oj

In general,

O1 = Vs − scalar

O2 = iγνAν , Aν = (A⃗, iA0)− vector

O3 = iγ5Vps − pseudoscalar

We restrict consideration to the interactions which have a non-vanishing
linear averages. In the time-independent problem this amounts to
selfconsistent field treatment. On the basis of the transformation
properties of the fields only the scalar interaction and the fourth
component of the vector vector field will contribute to nonrelativistic
Hamiltonian. Because of the parity conservation pion field contribution
vanishes.
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Dirac Hamiltonian

H = α⃗ · p⃗+ βm− βV + A0

α⃗ · p⃗ mixes large and small component of a Dirac
spinor. Because of this, a weight of a small
component will increase with p⃗. The nuclear
potential −βV + A0 is attractive for small |p⃗|
(V > A0) and becomes repulsive for higher |p⃗|.

Let V = amΦ, A0 = bmΦ0
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It can be shown that the interaction with uncharged
scalar field lead always to attraction. The
interaction with the fourth component of an
uncharged vector field always gives repulsion.

Lint = gsΨ̄ΨΦ → V s
eff(r) = − g2s

4π

e−msr

r

For vector meson field we get

V v
eff(r) =

g2v
4π

e−mvr

r
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Foldy-Wouthuysen transformation

H ′ = eiSHe−iS = H + [iS,H] +
1

2
[iS, [iS,H]] + . . .

with iS = −1
2
α⃗ · p⃗ β 1

m(1−aΦ)
and assuming that Φ and Φ0 are

constant inside the nucleus we get

H ′ =
p⃗ 2

2m(1− aΦ)
β + βm(1− aΦ) + bmΦ0

We omit here ∇ and σ⃗ dependent terms.
For the gross component of Dirac spinor

H ′ =
p⃗ 2

2m
− (1− 1

1− aΦ

p⃗ 2

2m2
)amΦ + bmΦ0
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The total Hamiltonian

H ′ = Hnucl +Hs
int +Hv

int +Hs
m +Hv

m

Hnucl =

∫
dτEkρ

Hs
int = −

∫
dτ

(
1− 1

1− aΦ

Ek

m

)
amΦρ

Hv
int =

∫
dτbmΦ0ρ

Hs
m =

1

2

∫
dτ
(
|∇Φ|2 + µ21Φ

2
)

Hv
m = −1

2

∫
dτ
(
|∇Φ0|2 + µ22Φ

2
0

)
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By variation of H ′ by Φ and Φ0 we obtain

−∇2Φ + µ21Φ =

(
1− 1

1− aΦ

Ek

m

)
amρ

−∇2Φ0 + µ22Φ0 = bmρ

Assuming a constancy of the nuclear density inside
a nucleus we get

µ21Φ =

(
1− 1

1− aΦ

Ek

m

)
amρ

µ22Φ0 = bmρ
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From H ′ the volume energy per nucleon EV = H′

A
is

EV = Ek +
1

1− aΦ

Ek

m
amΦ− amΦ + bmΦ0 +

µ2
1

2

Φ2

ρ
− µ2

2

2

Φ2
0

ρ

Minimizing EV over ρ we obtain

ρ
∂EV

∂ρ
=

2

3

1

1− aΦ
Ek −

1

2
µ2
1

Φ2

ρ
+

1

2
µ2
2

Φ2
0

ρ

After some algebraic manipulations we get

EV = −
(

1

1− aΦ
− 4

3

)
Ek

1− aΦ

The empirical Bethe-Weizsäcker value of EV is −15.75 MeV.
With r0 = 1.22 · 10−13 cm we get Ek = 19.25 MeV and from
the experimental value of the volume energy we get
aΦ = 0.44. This means meff = 0.56m.
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If we take into account the electrostatic repulsion experienced
by protons and treat neutrons and protons as separate Fermi
gases of densities ρn and ρp, respectively, we obtain the
following additional term to the total kinetic energy per
nucleon

E ′
k − Ek =

5

9
Ek∆

2, ∆ =
N − Z

N + Z

Minimization with respect to the total density leads to the
additional term to the volume binding energy per nucleon

5

9

(
10

3
− 1

1− aΦ

)
Ek

1− aΦ
∆2

which is the symmetry energy. Numerically, we get for this
term: 29.6∆2 MeV. The experimental value is 23.42∆2 MeV.
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In this approach, the nucleons are the source of two
kinds of mesons: scalar and vector. The exchange
by scalar meson leads to attraction, the exchange by
vector mesons - to repulsion. However, the source
strength of the scalar meson is not a constant but
has the form

aeff = a

[
1− 1

1− aΦ

p⃗2

2m2

]
It decrease with increasing momentum p⃗ of a
nucleon and decrease with increasing scalar field
amplitude. This can be interpreted as a saturation
of the scalar meson interaction.
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Spin-Orbit Coupling

Appearance of the spin-orbit interaction.
Let charge particle moves with a velocity V⃗ in the field of a nucleus
located at the center of a coordinate system. Nucleus create a Coulomb
field of the strength:

eE⃗ = − r⃗

r

∂V

∂r
.

In the coordinate system of a charged particle a moving nucleus creates
electric field E⃗ and magnetic field

H⃗ = −1

c
V⃗ × E⃗ = − 1

mc
p⃗× E⃗

The corresponding Hamiltonian is

Hso =
e~

2m2c2
σ⃗ · (p⃗× E⃗).

Because of the Thomas precession which is a kinematical effect related to
the variation of an orientation of vector (coupled to the noninertial
system) with respect to the lab.frame. This decreases spin orbit
interaction by factor 2.

R.V. Jolos Historical Introduction into Relativistic Mean Field Theory



In the approach based on Dirac equation we have a
superposition of a strong attractive scalar and a
strong repulsive vector potentials. The vector field
precession will add to the scalar field precession
constructively and will lead to extremely strong
spin-orbit coupling!

This coupling is in addition enhanced by the
effective mass in the interior of a nucleus.

This result follows from the nonrelativistic limit of
Dirac equation.
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H ′ = eiSHe−iS

S = − i

4m
βα⃗

(
1

(1− aΦ)
p⃗+ p⃗

1

(1− aΦ)

)

H ′ = βm + β
1

8m

(
p⃗

2

(1− aΦ)
p⃗+ p⃗ 2 1

(1− aΦ)
+

1

(1− aΦ)
p⃗ 2

)
− βamΦ + bmΦ0 +

1

8m2
∇
(

∇bΦ0

(1− aΦ)2

)
+

1

4m2(1− aΦ)2
σ⃗ · (∇(βaΦ + bΦ0)× p⃗)
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For nucleus in the nonrelativistic limit we take the
upper rows of Dirac equation, i.e. β → 1. We
obtain very strong spin-orbit coupling

Hso =
1

4m2(1− aΦ)2
σ⃗ · (∇(aΦ + bΦ0)× p⃗)

=
1

4m2(1− aΦ)2
1

r

∂

∂r
(aΦ + bΦ0)σ⃗ · l⃗

In the shell-model

Hso = λ
1

4m2

(
1

r

∂V

∂r

)
σ⃗ · l⃗

With our results for aΦ and bΦ0 we get λ ≈ 33
which is in reasonable agreement with the
phenomenology.
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Interaction of nucleons with nuclei

Let us calculate the potential which acts on a
nucleons of a kinetic energy E ′ = E −m (c = 1)
impinging on a heavy nucleus at rest.
For constant Φ and Φ0 the Hamiltonian operator

H = α⃗ · p⃗+ βm− βamΦ + bmΦ0

reduces inside the nucleus to

H =
√
m2(1− aΦ)2 + p2 + bmΦ0 = E

We consider this as resulting from an effective
potential which is defined by√

m2 + p2 + Veff = E

by eliminating p2 from both equations we obtain
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Veff = E −
√

(E − bmϕ0)2 +m2aϕ(2− aϕ) (c = 1).

With the values of aϕ=0.44 and bϕ0=0.36 defined
above we obtain for very low kinetic energy

Veff = −0.04m = −43.8MeV.

The effective potential is negative up to
E ′ = E −m=121 MeV and then becomes repulsive
for higher particle energies.
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In the case of the antinucleon - nucleus potential
the vector meson potential becomes attractive. On
the other hand, the spin-orbit coupling will be only
of the order of the spin-orbit coupling in atoms.
Antinucleon-nucleus potential is always strongly
attractive.
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Summary

– Velocity-dependent meson-nucleon coupling is
not introduced into consideration.

– Effective mass is produced by the coupling to
the scalar meson.

– The empirical value of the nuclear size and the
symmetry energy are reproduced.

– Appearance of the strong spin-orbit interaction
is explained.

– Saturation is explained as relativistic effect
(small component of a Dirac spinor, decrease of
the coupling to the scalar meson with
momentum p⃗ increases).

R.V. Jolos Historical Introduction into Relativistic Mean Field Theory



Present formulation of the Relativistic Mean Field theory
(RMF)

RMF theory is a phenomenological description of
the nuclear many-body problem. This theory is fully
Lorentz invariant and nucleons are treated as
point-like particles. They are described by Dirac
equation, although we know that nucleons are
composite objects. The nucleons interact between
themselves only by exchange of effective point-like
particles - mesons. In a phenomenological theory
the number of these mesons, their quantum
numbers and the values of their masses and
coupling constants are determined to reproduce the
experimental data.
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Only as few mesons as possible are included. It is
accepted that the parameters within the nuclear
medium do not necessary have the same values as in
the free space. The lightest and therefore the most
important meson is the pion. Its quantum numbers:
J=0, T=1 and P = −1. However, since it carries
negative parity, the corresponding mean field breaks
parity on the Hartree level. This is certainly not the
case in the real nuclei where mean field is parity
conserving to a very high degree of accuracy.
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Two and any even number of pions, however,
contribute to positive parity fields. In the RMF
theory a phenomenological σ-meson is introduced
with the quantum numbers J=0, T=0 and P=+1.
This can be understood as an approximation of a
more complicated object with the same quantum
numbers formed from quark-antiquark pairs and
gluons. As a consequence of the relativistic
structure of the theory the exchange of such scalar
mesons leads to an attractive forces between
nucleons.
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The repulsive part of the interaction is determined
by the exchange of vector mesons. The most
important one is the ω-meson with the quantum
numbers J=1, T=0. A meson of this kind is
experimentally known. Its mass is mω ≈783 MeV.
On the mean field level it produces a vector field
ωµ(x), whose time-like component is strongly
repulsive, in close analogy to the electromagnetic
field of photons which also carries spin J=1. It is
presented by the vector potential Aµ(x) and its
time-like component represents the Coulomb
repulsion.
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In addition we know, that nuclear forces depends on
the isospin. The isospin dependence is caused by the
exchange of ρ-mesons with quantum numbers J=1,
T=1. In principle, there are many more mesons
which play a role in a quantitative description of the
bare nucleon-nucleon forces by meson exchange.
The δ-meson, for instance, would lead to scalar
nuclear potential different for protons and neutrons.
In order to simplify equations in many nuclear
models only the most important fields σ(x), ωµ(x),
ρ⃗µ(x) and the photon Aµ(x) are taken into account.
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Figure : Hierarchy of scales governing the nucleon-nucleon interaction (adapted
from Taketani [5]). The distance r is given in units of the pion Compton
wavelength. µ−1 ≈ 1.4 fm.
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L = LN + LM + Lint,

LN = ψ̄(iγµ∂µ −m)ψ,

Lσ =
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
,

Lω = −1

2

(
ΩµνΩ

µν − 1

2
m2

ωωµω
µ

)
,

Lρ = −1

2

(
R⃗µνR⃗

µν − 1

2
m2

ρρ⃗µρ⃗
µ

)
.
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LA = −1

2
FµνF

µν.

Ωµν = ∂µων − ∂νωµ,

R⃗µν = ∂µρ⃗ν − ∂ν ρ⃗µ,

F µν = ∂µAν − ∂νAµ.
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Lint = −gσψ̄σψ − gωψ̄γµω
µψ − gρψ̄γµτ⃗ ρ⃗

µψ − eψ̄γµA
µψ.

The pion does not contribute to the mean field on
the Hartree level. However, in the case of pairing or
in time dependent calculations it contributes.
It was recognized that essential nuclear properties
such as compressibility or surface properties can not
be reproduced quantitatively by the ansatz above.
In particular, linear parameter sets are not able to
reproduce the nuclear deformations. For this reason
the model was extended to include a nonlinear
self-coupling amongst the σ-mesons

g3σ
3 + g4σ

4
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Relativistic Mean Field equations

A classical spinor field ψi(i = 1...A) is introduced
for each nucleon and the classical equations of
motion are derived.
Dirac equation for the spinor fields:

{γµ(i∂µ + V µ) +m+ S}ψi = 0

with the relativistic fields:

S(x) = gσσ(x),

V µ(x) = gωω
µ(x) + gρτ⃗ ρ⃗

µ(x) + eAµ(x).
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Relativistic Mean Field equations

For the meson fields:

(�+mσ)σ = −gσρs,
(�+mω)ω

µ = gωj
µ,

(�+mρ)ρ⃗
µ = gρ⃗j

µ,

�Aµ = ejµc .

The scalar density and currents are:

ρs(x) =
A∑
i=1

ψ̄i(x)ψi(x),

jµ =
A∑
i=1

ψ̄i(x)γ
µψi(x),

j⃗µ =
A∑
i=1

ψ̄i(x)γ
µτ⃗ψi(x),

jµc (x) =
A∑
i=1

ψ̄i(x)
1

2
(1 + τ3)γ

µψi(x).
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j⃗µ =
A∑
i=1

ψ̄i(x)γ
µτ⃗ψi(x),

jµc (x) =
A∑
i=1

ψ̄i(x)
1

2
(1 + τ3)γ

µψi(x).

The four-current jµ = (ρv, j⃗) contains the usual
3-dimensional current of the nucleons j⃗) and the
normal density of the nucleons ρv. The index v
indicates that it is the time-like component of a
Lorentz vector. ρv is different from the scalar
density ρs.
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In the static approximation we assume
time-independence for the meson fields and a
time-dependent phase exp(iεit) for the spinors ψi.
With time reversal invariants and good parity space
like component of all currents j⃗, j and jc vanish and
we come to the stationary RMF equations:

(−iα⃗ · ∇+ β(m+ S) + V )ψi = εiψi

(−∆+mσ)σ = −gσρσ
(−∆+mω)ω

0 = gωρv

(−∆+mρ)ρ
0
3 = g3ρ3

−∆ρ0c = eρc
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where

ρs =
A∑
i

ψ̄iψi,

ρv =
A∑
i

ψ+
i ψi,

ρ3 =
A∑
i

ψ+
i τ3ψi,

ρc =
A∑
i

ψ+
i

1

2
(1 + τ3)ψi,

V (r⃗) = gωω
0(r⃗) + gρτ3ρ

0
3(r⃗) + eA0(r⃗),

S(r⃗) = gσσ(r⃗), m∗ = m+ S(r⃗).
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Resulting total energy

E =

∫
d3rH(r⃗) =

A∑
i

∫
d3rψ+

i (−iα⃗ · ∇+ βm)ψi

+
1

2

∫
d3r
{
(∇σ)2 +m2

σσ
2
}

− 1

2

∫
d3r
{
(∇ω0)2 +m2

ω(ω
0)2
}

− 1

2

∫
d3r
{
(∇ρ0)2 +m2

ρ(ρ
0
3)

2
}
− 1

2

∫
d3r(∇A0)2

+

∫
d3r
{
gσρsσ + gωρvω

0 + gρρ3ρ
0
3 + eρcA

0
}
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For the selfconsistent solution we obtain

E =
A∑
i

εi

− 1

2

∫
d3r
{
gσρsσ + gωρvω

0 + gρρ3ρ
0
3 + eρcA

0
}
.

The masses of the σ and ω mesons are quite large
and for a qualitative discussion we can neglect the
Laplace operator ∆ in the field equations. Then the
fields σ and ω are proportional to the scalar and
vector densities. In finite nuclei these fields take
more or less the Saxon-Woods shape.
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ψ =

(
f
g

)
(
m+ S + V −iσ⃗ · ∇
−iσ⃗ · ∇ −m− S + V

)(
f
g

)
= (m+ ε)

(
f
g

)

g =
−i

2m+ ε+ S − V
σ⃗ · ∇f,{

−σ⃗ · ∇ 1

2m+ ε+ S − V
σ⃗ · ∇+ V + S

}
f = εf
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Using the quantity ε/(2m+ S − V ) as a small one
and do an expansion we obtain{
−∇ 1

2meff
∇+ Vpot +

1

2m2
∇Vls · (p⃗× s⃗)

}
f = εf,

meff = m− 1

2
(V − S),

Vpot = V + S, V ≈ 350MeV, S ≈ −400MeV,

Vls =
m

meff
(V − S).

In the case of spherical symmetry we obtain for the
spin-orbit interaction

1

2m2

(
1

r

∂Vls(r)

∂r

)
l⃗ · s⃗.
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In the RMF theory collapse is prevented by a
specific relativistic effect

ρs(r⃗) =
A∑
i=1

(
|fi(r⃗)|2 − |gi(r⃗)|2

)
,

ρv(r⃗) =
A∑
i=1

(
|fi(r⃗)|2 + |gi(r⃗)|2

)
Here ρv is the normal baryon density and is
normalized to the particle number. ρs decreases
whenever the small components become important,
for instance, in the case of a possible collapse. This
mechanism automatically reduces attraction and
stabilizes the nucleus.
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We can get

ρs = ρv − 2
A∑
i=1

g2i ≈ ρv −
1

meff

A∑
i=1

|∇fi|2 ≈ ρv − 2τkin.

For large densities the kinetic energy increases.
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Density dependent Relativistic Mean Field Theory

Traditional RMF models have been following closely
to description of the interaction of nucleons and
mesons in a pure phenomenological way. A more
elaborate but more fundamental approach is based
on derivation in-medium interaction microscopically.
A fully covariant consistent field theory requires to
treat interaction vertices as a functional of the field
operators.

Lint = Ψ̄Γ̂c(ρ̂)Ψϕσ − Ψ̄Γ̂ω(ρ̂)γµΨA
(ω)µ,

+Ψ̄Γ̂δ(ρ̂)τ⃗Ψϕδ − Ψ̄Γ̂δ(ρ̂)γµτ⃗ΨA
(ρ)µ,

−cΨ̄Q̂γµΨA(γ)µ.
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Density dependent Relativistic Mean Field Theory

In the mean field approximation for mesons, with
only nucleons treated as a quantum field we obtain

{γµ (i∂µ − Σµ
b (ρ))− (M − Σs

b(ρ))}ψb = 0,

Σs
b(ρ) = Γσ(ρ)ϕσ + τbΓδ(ρ)ϕδ,

Σ0
b(ρ) = Σ

0(0)
b (ρ) + Σ

0(r)
b (ρ),

Σ
0(0)
b (ρ) = Γω(ρ)A

(ω)
0 + τbΓρ(ρ)A

(ρ)
0 + e

1− τb
2

A
(γ)
0 ,

Σ
0(r)
b (ρ) =

∂Γω

∂ρ
A

(ω)
0 ρ+

∂Γρ

∂ρ
A

(ρ)
0 ρ3,

−∂Γσ

∂ρ
ϕσρ

s − ∂Γδ

∂ρ
ϕδρ

s
3.
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Conclusion

The effective baryon-meson field theory is
introduced to describe finite nuclei.

The model includes the spin properties in a natural
way and distinguishes in a nucleus a large attractive
scalar field and a large repulsive vector field.
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