CONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS

DR. MORGANE FORTIN fortin@camk.edu.pl N. Copernicus Astronomical Center, Polish Academy of Sciences -Warsaw

Helmholtz International Summer School Dubna - July 18, 2017

Neutron stars: general aspects

Constraints from mass measurements

Constraints from radius measurements

Others...

Radius uncertainty

Hyperons in neutron stars?

MORGANE FORTIN (CAMK)

Neutron stars: general aspects

Constraints from mass measurements

Constraints from radius measurements

Equation of state

Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

- Neutron star matter: many-body system of strongly-interacting particles (e, p, n, μ, more?) at T=0.
- EoS: describes its composition and properties;
- P(ρ) with P the pressure, ρ the energy density.

Key point

How to constrain the EoS thanks to NS observations and experiments ?

Mass-radius plot

An EoS + Tolman and Oppenheimer & Volkoff (TOV) equations for hydrostatic equilibrium in GR = a specific mass-radius relation.

Equation of state

Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

- Neutron star matter: many-body system of strongly-interacting particles (e, p, n, μ, more?) at T=0.
- EoS: describes its composition and properties;
- P(ρ) with P the pressure, ρ the energy density.

Key point

How to constrain the EoS thanks to NS observations and experiments ?

Constraints

- Mass: 2 M_☉ NS (PSR J1614-2230 & J0348+0432)
- Radius: uncertainties in the modeling and the observations. Consensus R = 9 - 14 km...

Mass-radius plot

An EoS + Tolman and Oppenheimer & Volkoff (TOV) equations for hydrostatic equilibrium in GR = a specific mass-radius relation.

Perspectives

NICER

- Neutron star Interior Composition ExploreR Mission
- NASA project
- On the ISS
- Launch on June 3
- First light on July 17
- Rotating hot spots from non-accreting MSPs
- M R constraints with a precision of ~ 5% for ~ 3 NS.

Athena

- Advanced Telescope for High ENergy Astrophysics
- ESA project
- L2 point
- in 2028
- X-ray emission from MSPs;
- quiescent thermal emission of accreting NSs;
- PRE bursts from accreting NSs.

M - R measurements

- rule out EoS
- reconstruct the EoS (see H. Grigorian's talk).

Others...

Rotational frequency

Theory

Haensel et al., A&A (1995) Mass shedding limit:

$${f_{\rm MS} \simeq \over 1220\,{\rm Hz} \left({M_{\rm max}^{\rm NR} \over M_\odot}\right)^{1/2} \left({R_{\rm max}^{\rm NR} \over 10~{\rm km}}\right)^{-3/2} .$$

Consistency with the fastest rotating NS:

$$\left(\frac{\textit{M}_{\max}^{\rm NR}}{\rm{M}_{\odot}}\right) \left(\frac{\textit{R}_{\max}^{\rm NR}}{10~\rm{km}}\right)^{-3} > 0.67 \left(\frac{\textit{f}_{\max}^{\rm obs}}{1000~\rm{Hz}}\right)$$

PSR J1748-2446ad

Hessels et al., Science (2006) Eclipsing binary MSP in Terzan 5 globular cluster.

$$f_{\rm max}^{
m obs} = 716 \ {
m Hz}$$

XTE J1739-285

Kaaret et al., ApJ (2007) Oscillations in an X-ray burst.

 $f = 1122 \text{ Hz} \rightarrow \text{not confirmed.}$

Mass-radius diagram

Perspectives

New radiotelescopes (FAST, SKA)

CONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS

MORGANE FORTIN (CAMK)

Redshift

Surface gravitational redshift zg

$$\frac{M}{R} = \frac{c^2}{2G} \left[1 - (1+z_g)^{-2} \right]$$

If M known \rightarrow a single point in the (M, R) plane.

EXO 0748-676

 Cottam et al., Nature (2002) : narrow absorption lines in the spectra of X-ray bursts with

 $z_g = 0.35.$

 Lin et al., ApJ (2010) : lines do not come from the surface.

Hohle et al., MNRAS (2012)

Narrow absorption lines detected in the X-ray spectra of 2 thermally emitting and slowly rotating isolated neutron stars \rightarrow NS surface, circumstellar or interstellar origin?

Mass-radius plot

Perspectives

Athena (ESA, 2028).

Double pulsar PSR J0737-3039

NS baryon mass

Pulsar B:

- ► Very low mass: $M_{\rm G} = 1.2489 \pm 0.0007 \, {\rm M}_{\odot}.$
- IF originates from an O-Ne-Mg electron capture supernova then loss of matter during the NS formation negligible.
- Total number of baryons A_b or NS baryon mass M_B = A_bm_b constrained from the properties of the WD progenitor.

Podsiadlowski et al. MNRAS (2005)

 $M_{
m B} = 1.336 - 1.375~{
m M}_{\odot}$

Kitaura et al. A&A (2006)

 $\mathit{M}_{
m B} = 1.36 \pm 0.002~M_{\odot}$

But...

see Oertel et al. arXiv:1610.03361 RMP (2017) No consensus it originates from an O-Ne-Mg electron capture supernova.

Double pulsar PSR J0737-3039

Moment of inertia

Pulsar A

- M = 1.3381 ± 0.0007 M_☉.
- moment of inertia / measurable from the periastron advance of the binary orbit omega with the decay of the orbital period P_b
- expected with up to 10% within the next years

Lattimer & Schutz ApJ (2005)

Fitting a sample of EoS

Raithel et al. PRC93 (2016)

Simple model of constant densities in the core.

Nuclear parameters

At given density $n_{\rm b} = n_n + n_p$ and asymmetry $\delta = (n_n - n_p)/n_{\rm b}$, the energy per nucleon is

$$E(n_{\rm b},\delta) = E_0(n_{\rm b},0) + E_{\rm sym}(n_{\rm b})\delta^2 + +\mathcal{O}(\delta^4)$$

which can be expanded around n_0 the saturation density, with $u = (n_{\rm b} - n_0)/3n_0$:

the energy per nucleon in symmetric matter

$$E_0(n_{
m b},0) = E(n_0) + K/2u^2 + Q/6u^3 + ...$$

with *K* the incompressibility, *Q* the skewness coefficient, and M = Q + 12K its slope;

the symmetry energy

$$E_{
m sym}(n_{
m b}) = J + Lu + K_{
m sym}/2u^2 + \dots$$

with J the symmetry energy, L its slope, and $K_{\rm sym}$ its curvature.

Nuclear constraints

MORGANE FORTIN (CAMK)

- neutron skin thickness of ²⁰⁸Pb
- heavy ion collisions (HIC)
- electric dipole polarizalibility α_D
- giant dipole resonance of ²⁰⁸Pb
- measured nuclear masses
- isobaric analog states (IAS)

Nuclear parameters

Nuclear constraints

At given density $n_{\rm b} = n_n + n_p$ and asymmetry $\delta = (n_n - n_p)/n_{\rm b}$, the energy per nucleon is

$$E(n_{\rm b},\delta) = E_0(n_{\rm b},0) + E_{\rm sym}(n_{\rm b})\delta^2 + +\mathcal{O}(\delta^4)$$

which can be expanded around n_0 the saturation density, with $u = (n_{\rm b} - n_0)/3n_0$:

the energy per nucleon in symmetric matter

$$E_0(n_{\rm b},0) = E(n_0) + K/2u^2 + Q/6u^3 + \dots$$

with *K* the incompressibility, *Q* the skewness coefficient, and M = Q + 12K its slope;

the symmetry energy

$$E_{\rm sym}(n_{\rm b}) = J + Lu + K_{\rm sym}/2u^2 + \dots$$

with J the symmetry energy, L its slope, and $K_{\rm sym}$ its curvature.

MORGANE FORTIN (CAMK)

Nuclear parameters

At given density $n_{\rm b} = n_n + n_p$ and asymmetry $\delta = (n_n - n_p)/n_{\rm b}$, the energy per nucleon is

$$E(n_{\rm b},\delta) = E_0(n_{\rm b},0) + E_{\rm sym}(n_{\rm b})\delta^2 + +\mathcal{O}(\delta^4)$$

which can be expanded around n_0 the saturation density, with $u = (n_{\rm b} - n_0)/3n_0$:

the energy per nucleon in symmetric matter

$$E_0(n_{
m b},0) = E(n_0) + K/2u^2 + Q/6u^3 + \dots$$

with K the incompressibility, Q the skewness coefficient, and M = Q + 12K its slope;

the symmetry energy

$$E_{\mathrm{sym}}(n_{\mathrm{b}}) = J + Lu + K_{\mathrm{sym}}/2u^2 + \dots$$

with J the symmetry energy, L its slope, and $K_{\rm sym}$ its curvature.

Fortin et al. PRC 94 (2016)

Alam et al. PRC 94 (2016)

L also correlated to ⁴⁸Ca and ²⁰⁸Pb neutron skin thickness (PREX & CREX)

Gray strip: GMR experimental constraint (De+, PRC 92 2015) $R_{1.4} = 11.09 - 12.86$ km

MORGANE FORTIN (CAMK)

Nucleonic DUrca process

▶ $n \rightarrow p + e^- + \bar{\nu}_e$ and $p + e^- \rightarrow n + \nu_e$

• momentum conservation \rightarrow density $n_{\rm DU}$ and mass $M_{\rm DU}$ threshold

Fortin, Taranto et al., submitted (2017)

 eg. Beznogov & Yakovlev MNRAS (2015): DUrca process needed to explain the thermal emission of isolated and accreting NS.

Nucleonic DUrca process

▶ $n \rightarrow p + e^- + \bar{\nu}_e$ and $p + e^- \rightarrow n + \nu_e$

• momentum conservation \rightarrow density $n_{\rm DU}$ and mass $M_{\rm DU}$ threshold

Fortin et al., PRC 94 (2016)

- eg. Beznogov & Yakovlev MNRAS (2015): DUrca process needed to explain the thermal emission of isolated and accreting NS.
- For L ≤ 70 MeV, EoS with DUrca and others without.
- L − J plane: the intersection of all constraints gives L ≤ 70 MeV.

Radius uncertainty

Equation of state

Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

- Neutron star matter: many-body system of strongly-interacting particles (e, p, n, μ, more?) at T=0.
- EoS: describes its composition and properties;
- P(ρ) with P the pressure, ρ the energy density.

NS structure

Mass-radius plot

EoS + TOV equations

EoS

- core: homogeneous mixture
- ► crust: lattice of neutron rich atomic nuclei → non-uniform.
- \Rightarrow many more core EoS than crust EoS.

How to glue an EoS for the core to one for the crust?

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

- core glued to BPS+BBP EoS at 0.01 fm⁻³;
- transition at the crossing density between the 2 EoSs;
- transition at the core-crust transition density n_t;
- transition at $n_0 = 0.16 \text{ fm}^{-3}$;
- crust below $0.5n_0$ and core above n_0 ;
- crust below $0.1n_0$ and core above n_t ;
- reference: unified EoS.

Uncertainty on R

- due to the treatment of the core-crust transition: up ~ 4% (up to ~ 30% on the crust thickness),
- decreases if crust and core EoSs with similar saturation properties.

How to glue an EoS for the core to one for the crust?

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

- core glued to BPS+BBP EoS at 0.01 fm⁻³;
- transition at the crossing density between the 2 EoSs;
- transition at the core-crust transition density n_t;
- transition at $n_0 = 0.16 \text{ fm}^{-3}$;
- crust below $0.5n_0$ and core above n_0 ;
- crust below $0.1n_0$ and core above n_t ;
- reference: unified EoS.

Uncertainty on R

- due to the treatment of the core-crust transition: up ~ 4%
- with NICER, Athena or LOFT(?): expected precision ~ 5%
- how to, if not solve, at least handle this problem?

1. Unified equations of state

Very few unified EoSs for NSs exist

eg. Douchin & Haensel 01, BSk EoS (Chamel+), Sharma+ 15

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

33 nucleonic EoSs and 15 hyperonic EoSs Tables with n, ρ, P as supplemental material to the paper + soon on Compose

MORGANE FORTIN (CAMK)

1. Unified equations of state

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

Nuclear constraints

- neutron skin thickness of ²⁰⁸Pb
- heavy ion collisions (HIC)
- electric dipole polarizalibility α_D
- giant dipole resonance of ²⁰⁸Pb
- measured nuclear masses
- isobaric analog states (IAS) MORGANE FORTIN (CAMK)

Low-density: $n_{\rm b} < n_0$

Hebeler et al. ApJ (2013): chiral effective field theory;

Gandolfi et al. PRC (2012): Quantum Monte Carlo technique

Selected EoSs

Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in a catalyzed crust

Assuming that in the crust $m \approx M$ and $4\pi r^3 P/mc^2 \ll 1$ in the TOV equation one obtains:

$$\frac{\mathrm{d}P}{\rho+P/c^2} = -GM \frac{\mathrm{d}r}{r^2(1-2GM/rc^2)} \ .$$

With

$$\frac{\mathrm{d}P}{\rho c^2 + P} = \frac{\mathrm{d}\mu}{\mu} \qquad \text{one gets} \qquad \frac{\sqrt{1 - 2GM/r_2c^2}}{\sqrt{1 - 2GM/r_1c^2}} = \frac{\mu_2}{\mu_1}$$

valid for no jump in the chemical potential.

Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in a catalyzed crust

Assuming that in the crust $m \approx M$ and $4\pi r^3 P/mc^2 \ll 1$ in the TOV equation one obtains:

$$\frac{\mathrm{d}P}{\rho+P/c^2} = -GM\frac{\mathrm{d}r}{r^2(1-2GM/rc^2)} \ .$$

With

$$\frac{\mathrm{d}P}{\rho c^2 + P} = \frac{\mathrm{d}\mu}{\mu} \qquad \text{one gets} \qquad \frac{\sqrt{1 - 2GM/r_2c^2}}{\sqrt{1 - 2GM/r_1c^2}} = \frac{\mu_2}{\mu_1}$$

valid for no jump in the chemical potential. Taking $r_1 = R$ and $r_2 = R_{core}$

$$\frac{\sqrt{1-2GM/Rc^2}}{\sqrt{1-2GM/R_{\rm core}c^2}} = \frac{\mu_{\rm b}}{\mu_0}$$

with $\mu_0 = \mu(P = 0) = 930.4$ MeV - minimum energy per nucleon of a bcc lattice of ⁵⁶Fe and $\mu_{\rm b}$ at the core-crust transition.

Zdunik, Fortin, and Haensel, A&A (2017)

- All you need is ...: the core EOS down to a chosen density n_b with µ(n_b) = µ_b.
- Obtain the *M*(*R*_{core}) relation solving the TOV equations.
- Obtain M(R) with $R = R_{\text{core}} / \left(1 - \left(\frac{\mu_b^2}{\mu_0^2} - 1\right) \left(\frac{R_{\text{core}}c^2}{2GM} - 1\right)\right).$

Results

- uncertainty in the radius: \lesssim 0.2% for $M > 1 M_{\odot}$
- uncertainty in the crust thickness: \lesssim 1% for $M > 1 M_{\odot}$

Solution of the TOV equation with a unified EoS TOV solution for the core $M(R_{core})$ Approximate M(R) for $n_{\rm b} = 0.077$ fm⁻³

Zdunik, Fortin, and Haensel, A&A (2017)

- All you need is ...: the core EOS down to a chosen density n_b with µ(n_b) = µ_b.
- Obtain the *M*(*R*_{core}) relation solving the TOV equations.
- Obtain M(R) with $R = R_{\text{core}} / \left(1 - \left(\frac{\mu_{\text{b}}^2}{\mu_0^2} - 1\right) \left(\frac{R_{\text{core}}c^2}{2GM} - 1\right)\right).$

How to choose the core-crust transition density $n_{\rm b}$?

- inversely proportional to L (Horowitz & Piekarewicz 2001)
- \blacktriangleright Ducoin et al. (2011): for EOSs with 30 \leq L \leq 120 MeV, obtain: 0.06 \lesssim $n_{\rm b}$ \lesssim 0.10 fm^{-3}
- $\Rightarrow~n_{
 m b}\simeq n_0/2=0.08~{
 m fm}^{-3}$
- + approximate approach for a NS with an accreted crust.

Solution of the TOV equation with a unified EoS TOV solution for the core $M(R_{core})$ Approximate M(R) for $n_{\rm b} = 0.16, 0.13, 0.11, 0.09, 0.077$ fm⁻³ from left to right.

Hyperons in neutron stars?

- each EoS has a maximum mass *M*_{max};
- M_{max} strongly reduced when Y are included;
- consistency with the observations: $M_{\text{max}} \ge M_{\text{max}}^{\text{obs}}$.

Hyperon puzzle

Can hyperons be present in NSs and yet $M_{\rm max} \ge M_{\rm max}^{\rm obs}$ with $M_{\rm max}^{\rm obs} \simeq 2 M_{\odot}$?

Fortin, Zdunik, Haensel and Bejger, A&A 576 (2015)

14 hyperonic EoSs consistent with 2 M_{\odot} :

- large radius for hyperonic EoSs correlated with a large pressure at n₀
- over-pressure at n₀ for hyperonic EoSs inconsistent with up-to-date microscopic calculations by Hebeler et al. (2013)
- $\label{eq:model} \begin{array}{l} \rightarrow \ 2\ M_{\odot} \ \text{is reach by compensating} \\ \text{the decrease of the pressure at} \\ \text{high density due to Y by a large} \\ \text{pressure at low density} \end{array}$

Fortin et al. PRC 94 (2016)

Hyperonic EoSs consistent with Hebeler et al. constraint and with $M_{\rm max} \ge 2 M_{\odot}$.

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Hyperons (Y)

20 40 60 80

Ν

100 120 140 160 180

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Hyperons (Y)

From nuclei to hypernuclei

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

- ~ 40 Λ-hypernuclei
 + measurement of binding energy B_Λ
- few Ξ-hypernuclei but no measurement of binding energy
- no Σ-hypernuclei repulsive Σ-nucleon interaction?
- only one unambiguous AA-hypernuclei: measurement of the bond energy:

 $\Delta B_{\Lambda\Lambda}(^6_{\Lambda\Lambda}$ He) = 0.67 \pm 0.17 MeV.

Hyperons (Y)

From nuclei to hypernuclei

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

- ~ 40 Λ-hypernuclei
 + measurement of binding energy B_Λ
- few Ξ-hypernuclei but no measurement of binding energy
- no Σ-hypernuclei repulsive Σ-nucleon interaction?
- only one unambiguous ΛΛ-hypernuclei: measurement of the bond energy:

 $\Delta B_{\Lambda\Lambda}(^6_{\Lambda\Lambda}$ He) = 0.67 \pm 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

- the Λ -potential in symmetry nuclear matter $U^N_{\Lambda}(n_0)$: usually (-30, -28) MeV
- the Λ -potential in pure Λ matter $U_{\Lambda}^{\Lambda}(n_0, n_0/5)$: usually (-5, -1) MeV

Hyperons (Y)

From nuclei to hypernuclei

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

- ~ 40 Λ-hypernuclei
 + measurement of binding energy B_Λ
- few Ξ-hypernuclei but no measurement of binding energy
- no Σ-hypernuclei repulsive Σ-nucleon interaction?
- only one unambiguous ΛΛ-hypernuclei: measurement of the bond energy:

 $\Delta B_{\Lambda\Lambda}(^6_{\Lambda\Lambda}$ He) = 0.67 \pm 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

- the Λ -potential in symmetry nuclear matter $U^N_{\Lambda}(n_0)$: usually (-30, -28) MeV
- the Λ -potential in pure Λ matter $U_{\Lambda}^{\Lambda}(n_0, n_0/5)$: usually (-5, -1) MeV

Modeling of hypernuclei

- for the TM1, TM2ωρ, NL3, NL3ωρ, DDME2 RMF models.
- adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

- ~ 40 Λ-hypernuclei
 + measurement of binding energy B_Λ
- few Ξ-hypernuclei but no measurement of binding energy
- no Σ-hypernuclei repulsive Σ-nucleon interaction?
- only one unambiguous ΛΛ-hypernuclei: measurement of the bond energy:

 $\Delta B_{\Lambda\Lambda}(^6_{\Lambda\Lambda}$ He) = 0.67 \pm 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

- the Λ -potential in symmetry nuclear matter $U^N_{\Lambda}(n_0)$: usually (-30, -28) MeV
- the Λ -potential in pure Λ matter $U_{\Lambda}^{\Lambda}(n_0, n_0/5)$: usually (-5, -1) MeV

Modeling of hypernuclei

- for the TM1, TM2ωρ, NL3, NL3ωρ, DDME2 RMF models.
- adjust the Λ-couplings to reproduce:
 - 1. Λ-hypernuclei:
 - 2. AA-hypernuclei

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

- ~ 40 Λ-hypernuclei
 + measurement of binding energy B_Λ
- few Ξ-hypernuclei but no measurement of binding energy
- no Σ-hypernuclei repulsive Σ-nucleon interaction?
- only one unambiguous AA-hypernuclei: measurement of the bond energy:

 $\Delta B_{\Lambda\Lambda}(^6_{\Lambda\Lambda}$ He) = 0.67 \pm 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

- the Λ -potential in symmetry nuclear matter $U_{\Lambda}^{N}(n_{0})$: usually (-30, -28) MeV
- the Λ -potential in pure Λ matter $U_{\Lambda}^{\Lambda}(n_0, n_0/5)$: usually (-5, -1) MeV

Modeling of hypernuclei

- for the TM1, TM2ωρ, NL3, NL3ωρ, DDME2 RMF models.
- adjust the Λ-couplings to reproduce:
 - 1. Λ-hypernuclei:
 - 2. AA-hypernuclei
- build calibrated hyperonic EoSs including the other hyperons and the current experimental uncertainty of their properties: two hyperonic models:
 - 1. 'minimal hyperonic model': only Λ included
 - 2. 'maximal hyperonic model': Λ , Σ , and Ξ included with: $U_{\Xi}^{R}(n_{0} \text{ or } 2/3n_{0}) = -14 \text{ MeV}$ suggested by experiments $U_{\Sigma}^{N}(n_{0}) = 0, 30 \text{ MeV}.$

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

- ~ 40 Λ-hypernuclei
 + measurement of binding energy B_Λ
- few Ξ-hypernuclei but no measurement of binding energy
- no Σ-hypernuclei repulsive Σ-nucleon interaction?
- only one unambiguous AA-hypernuclei: measurement of the bond energy:

 $\Delta B_{\Lambda\Lambda}(^6_{\Lambda\Lambda}$ He) = 0.67 \pm 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

- the Λ -potential in symmetry nuclear matter $U_{\Lambda}^{N}(n_{0})$: usually (-30, -28) MeV
- the Λ -potential in pure Λ matter $U_{\Lambda}^{\Lambda}(n_0, n_0/5)$: usually (-5, -1) MeV

Modeling of hypernuclei

- for the TM1, TM2ωρ, NL3, NL3ωρ, DDME2 RMF models.
- adjust the Λ-couplings to reproduce:
 - 1. Λ-hypernuclei:
 - 2. AA-hypernuclei
- build calibrated hyperonic EoSs including the other hyperons and the current experimental uncertainty of their properties: two hyperonic models.

Conclusions

- models are consistent with 2 M_☉
- because lack of constraints on the nuclear model at high density
- thus no solution to the hyperon puzzle at the moment.

NSs are at the interface between astrophysics and nuclear physics

- Goal: constrain the properties of the nuclear force with astrophysical observations and vice-versa.
- Currently: only constraints from mass measurements;
- Hopefully more to come in the next few years thanks to new instruments.
- More constraints thanks to nuclear experiments.
- Be careful when gluing an EoS for the core to one for the crust:
 - Use unified equations of state eg. Fortin+ PRC 94 (2016)
 - Approximate formula for M(R) with no crust needed (Zdunik+ A&A, 2017).
- ► Hyperonic equations of state are *not* ruled out by the existence of 2 *M*_☉ neutron stars.

