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Constraints from mass measurements
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Constraints from radius measurements
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Equation of state

Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

◮ Neutron star matter: many-body
system of strongly-interacting
particles (e, p, n, µ, more?) at T=0.

◮ EoS: describes its composition and
properties;

◮ P(ρ) with P the pressure, ρ the
energy density.

Key point

How to constrain the EoS thanks to NS
observations and experiments ?

Mass-radius plot

An EoS + Tolman and Oppenheimer &
Volkoff (TOV) equations for hydrostatic
equilibrium in GR = a specific mass-radius
relation.
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Equation of state
Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

◮ Neutron star matter: many-body
system of strongly-interacting
particles (e, p, n, µ, more?) at T=0.

◮ EoS: describes its composition and
properties;

◮ P(ρ) with P the pressure, ρ the
energy density.

Key point

How to constrain the EoS thanks to NS
observations and experiments ?

Constraints

◮ Mass: 2 M⊙ NS (PSR J1614-2230 &
J0348+0432)

◮ Radius: uncertainties in the modeling
and the observations. Consensus
R = 9 − 14 km. . .

Mass-radius plot

An EoS + Tolman and Oppenheimer &
Volkoff (TOV) equations for hydrostatic
equilibrium in GR = a specific mass-radius
relation.
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Perspectives

NICER

◮ Neutron star Interior Composition
ExploreR Mission

◮ NASA project

◮ On the ISS

◮ Launch on June 3

◮ First light on July 17

◮ Rotating hot spots from non-accreting
MSPs

◮ M − R constraints with a precision of
∼ 5% for ∼ 3 NS.

Athena

◮ Advanced Telescope for High ENergy
Astrophysics

◮ ESA project

◮ L2 point

◮ in 2028

◮ X-ray emission from MSPs;

◮ quiescent thermal emission of
accreting NSs;

◮ PRE bursts from accreting NSs.

M − R measurements

◮ rule out EoS

◮ reconstruct the EoS (see H.
Grigorian’s talk).
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Others. . .
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Rotational frequency

Theory

Haensel et al., A&A (1995)

Mass shedding limit:

fMS ≃

1220 Hz

(

MNR
max

M⊙

)1/2 (
RNR
max

10 km

)−3/2

.

Consistency with the fastest rotating NS:

(

MNR
max

M⊙

)(

RNR
max

10 km

)−3

> 0.67

(

fobs
max

1000 Hz

)

PSR J1748-2446ad

Hessels et al., Science (2006)

Eclipsing binary MSP in Terzan 5 globular
cluster.

fobs
max = 716 Hz.

XTE J1739-285

Kaaret et al., ApJ (2007)

Oscillations in an X-ray burst.

f = 1122 Hz → not confirmed.

Mass-radius diagram

Perspectives

New radiotelescopes (FAST, SKA)
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Redshift

Surface gravitational redshift zg

M
R

= c2

2G

[

1 − (1 + zg)
−2

]

If M known → a single point in the
(M, R) plane.

EXO 0748-676

◮ Cottam et al., Nature (2002) :
narrow absorption lines in the
spectra of X-ray bursts with

zg = 0.35.

◮ Lin et al., ApJ (2010) :
lines do not come from the
surface.

Hohle et al., MNRAS (2012)

Narrow absorption lines detected in
the X-ray spectra of 2 thermally emit-
ting and slowly rotating isolated neutron
stars → NS surface, circumstellar or in-
terstellar origin?

Mass-radius plot

Perspectives

Athena (ESA, 2028).

MORGANE FORTIN (CAMK) CONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS



Double pulsar PSR J0737−3039

NS baryon mass

Pulsar B:

◮ Very low mass:
MG = 1.2489 ± 0.0007 M⊙.

◮ IF originates from an O-Ne-Mg
electron capture supernova then
loss of matter during the NS
formation negligible.

◮ Total number of baryons Ab or
NS baryon mass MB = Abmb

constrained from the properties of
the WD progenitor.

Podsiadlowski et al. MNRAS (2005)

MB = 1.336 − 1.375 M⊙

Kitaura et al. A&A (2006)

MB = 1.36 ± 0.002 M⊙
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But. . .

see Oertel et al. arXiv:1610.03361 RMP (2017)

No consensus it originates from an O-Ne-Mg
electron capture supernova.
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Double pulsar PSR J0737−3039

Moment of inertia

Pulsar A

◮ M = 1.3381 ± 0.0007 M⊙.

◮ moment of inertia I measurable
from the periastron advance of
the binary orbit ˙omega with the

decay of the orbital period Ṗb

◮ expected with up to 10% within
the next years

Lattimer & Schutz ApJ (2005)

Fitting a sample of EoS

Raithel et al. PRC93 (2016)

Simple model of constant densities in
the core.
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Nuclear parameters
At given density nb = nn + np and asymmetry δ = (nn − np)/nb ,
the energy per nucleon is

E(nb, δ) = E0(nb, 0) + Esym(nb)δ
2 + +O(δ4)

which can be expanded around n0 the saturation density, with u = (nb − n0)/3n0 :

◮ the energy per nucleon in symmetric matter

E0(nb, 0) = E(n0) + K/2u
2
+ Q/6u

3
+ . . .

with K the incompressibility, Q the skewness coefficient, and M = Q + 12K its slope;

◮ the symmetry energy

Esym(nb) = J + Lu + Ksym/2u
2
+ . . .

with J the symmetry energy, L its slope, and Ksym its curvature.

Nuclear constraints

◮ neutron skin thickness of 208Pb

◮ heavy ion collisions (HIC)

◮ electric dipole polarizalibility αD

◮ giant dipole resonance of 208Pb

◮ measured nuclear masses

◮ isobaric analog states (IAS)
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Nuclear parameters
At given density nb = nn + np and asymmetry δ = (nn − np)/nb ,
the energy per nucleon is

E(nb, δ) = E0(nb, 0) + Esym(nb)δ
2 + +O(δ4)

which can be expanded around n0 the saturation density, with u = (nb − n0)/3n0 :

◮ the energy per nucleon in symmetric matter

E0(nb, 0) = E(n0) + K/2u
2 + Q/6u

3 + . . .

with K the incompressibility, Q the skewness coefficient, and M = Q + 12K its slope;

◮ the symmetry energy

Esym(nb) = J + Lu + Ksym/2u
2 + . . .

with J the symmetry energy, L its slope, and Ksym its curvature.

Nuclear constraints Fortin et al. PRC 94 (2016)

33 EoS; R1.4 = 12.45 − 13.75 km.
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Nuclear parameters
At given density nb = nn + np and asymmetry δ = (nn − np)/nb ,
the energy per nucleon is

E(nb, δ) = E0(nb, 0) + Esym(nb)δ
2
+ +O(δ

4
)

which can be expanded around n0 the saturation density, with u = (nb − n0)/3n0 :

◮ the energy per nucleon in symmetric matter

E0(nb, 0) = E(n0) + K/2u
2 + Q/6u

3 + . . .

with K the incompressibility, Q the skewness coefficient, and M = Q + 12K its slope;

◮ the symmetry energy

Esym(nb) = J + Lu + Ksym/2u
2 + . . .

with J the symmetry energy, L its slope, and Ksym its curvature.

Fortin et al. PRC 94 (2016)

L also correlated to 48Ca and 208Pb
neutron skin thickness (PREX & CREX)

Alam et al. PRC 94 (2016)
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Gray strip: GMR experimental constraint
(De+, PRC 92 2015)
R1.4 = 11.09 − 12.86 km
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Nucleonic DUrca process

◮ n → p + e− + ν̄e and p + e− → n + νe

◮ momentum conservation → density nDU and mass MDU threshold

Fortin, Taranto et al., submitted (2017)

◮ eg. Beznogov & Yakovlev MNRAS
(2015): DUrca process needed to
explain the thermal emission of
isolated and accreting NS.
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Nucleonic DUrca process

◮ n → p + e− + ν̄e and p + e− → n + νe

◮ momentum conservation → density nDU and mass MDU threshold

Fortin et al., PRC 94 (2016)
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◮ eg. Beznogov & Yakovlev MNRAS
(2015): DUrca process needed to
explain the thermal emission of
isolated and accreting NS.

◮ For L . 70 MeV, EoS with DUrca
and others without.

◮ L − J plane: the intersection of all
constraints gives L . 70 MeV.
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Radius uncertainty
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Equation of state

Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

◮ Neutron star matter: many-body
system of strongly-interacting
particles (e, p, n, µ, more?) at T=0.

◮ EoS: describes its composition and
properties;

◮ P(ρ) with P the pressure, ρ the
energy density.

NS structure

Envelope

Crust

Z e

Z e n

Outer core
n p e µ

Inner core?

∼ 0.5ρ0

Mass-radius plot

EoS + TOV equations
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EoS

◮ core: homogeneous mixture

◮ crust: lattice of neutron rich atomic
nuclei → non-uniform.

⇒ many more core EoS than crust EoS.
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How to glue an EoS for the core to one for the crust?
Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)
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Unified
nm=0.01
nm=nc
nm=nt
nm=n0
nm=0.5n0−n0
nm=0.1n0−nt

◮ core glued to BPS+BBP EoS at
0.01 fm−3;

◮ transition at the crossing density
between the 2 EoSs;

◮ transition at the core-crust
transition density nt;

◮ transition at n0 = 0.16 fm−3;

◮ crust below 0.5n0 and core above
n0;

◮ crust below 0.1n0 and core above
nt;

◮ reference: unified EoS.

Uncertainty on R

◮ due to the treatment of the
core-crust transition: up ∼ 4%
(up to ∼ 30% on the crust
thickness),

◮ decreases if crust and core EoSs
with similar saturation properties.
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How to glue an EoS for the core to one for the crust?
Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)
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Unified
nm=0.01
nm=nc
nm=nt
nm=n0
nm=0.5n0−n0
nm=0.1n0−nt

◮ core glued to BPS+BBP EoS at
0.01 fm−3;

◮ transition at the crossing density
between the 2 EoSs;

◮ transition at the core-crust
transition density nt;

◮ transition at n0 = 0.16 fm−3;

◮ crust below 0.5n0 and core above
n0;

◮ crust below 0.1n0 and core above
nt;

◮ reference: unified EoS.

Uncertainty on R

◮ due to the treatment of the
core-crust transition: up ∼ 4%

◮ with NICER, Athena or LOFT(?):
expected precision ∼ 5% . . . .

◮ how to, if not solve, at least
handle this problem?
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1. Unified equations of state
Very few unified EoSs for NSs exist
eg. Douchin & Haensel 01, BSk EoS (Chamel+), Sharma+ 15

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

33 nucleonic EoSs and 15 hyperonic EoSs
Tables with n, ρ,P as supplemental material to the paper + soon on Compose
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1. Unified equations of state
Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

Nuclear constraints

◮ neutron skin thickness of 208Pb

◮ heavy ion collisions (HIC)

◮ electric dipole polarizalibility αD

◮ giant dipole resonance of 208Pb

◮ measured nuclear masses

◮ isobaric analog states (IAS)

Low-density: nb < n0

Hebeler et al. ApJ (2013): chiral effective field
theory;

Gandolfi et al. PRC (2012): Quantum Monte

Carlo technique

Selected EoSs

R1.4 = 13.10 ± 0.65 km.
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in a catalyzed crust

Assuming that in the crust m ≈ M and 4πr3P/mc2 ≪ 1 in
the TOV equation one obtains:

dP

ρ+ P/c2
= −GM

dr

r2(1 − 2GM/rc2)
.

With

dP

ρc2 + P
=

dµ

µ
one gets

√

1 − 2GM/r2c2

√

1 − 2GM/r1c2
=

µ2

µ1

valid for no jump in the chemical potential.
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in a catalyzed crust

Assuming that in the crust m ≈ M and 4πr3P/mc2 ≪ 1 in
the TOV equation one obtains:

dP

ρ+ P/c2
= −GM

dr

r2(1 − 2GM/rc2)
.

With

dP

ρc2 + P
=

dµ

µ
one gets

√

1 − 2GM/r2c2

√

1 − 2GM/r1c2
=

µ2

µ1

valid for no jump in the chemical potential.
Taking r1 = R and r2 = Rcore

√

1 − 2GM/Rc2

√

1 − 2GM/Rcorec2
=

µb

µ0

with µ0 = µ(P = 0) = 930.4 MeV - minimum energy per

nucleon of a bcc lattice of 56Fe and µb at the core-crust
transition.
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

◮ All you need is . . . : the core EOS down to
a chosen density nb with µ(nb) = µb.

◮ Obtain the M(Rcore) relation solving the
TOV equations.

◮ Obtain M(R) with
R =

Rcore/

(

1 − (
µ2
b

µ2
0

− 1)(Rcorec2

2GM
− 1)

)

.

Results

◮ uncertainty in the radius: . 0.2% for
M > 1 M⊙

◮ uncertainty in the crust thickness: . 1%
for M > 1 M⊙

Solution of the TOV equation with a unified EoS
TOV solution for the core M(Rcore)

Approximate M(R) for nb = 0.077 fm−3
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

◮ All you need is . . . : the core EOS down to
a chosen density nb with µ(nb) = µb.

◮ Obtain the M(Rcore) relation solving the
TOV equations.

◮ Obtain M(R) with
R =

Rcore/

(

1 − (
µ2
b

µ2
0

− 1)(Rcorec2

2GM
− 1)

)

.

How to choose the core-crust
transition density nb?

◮ inversely proportional to L (Horowitz &
Piekarewicz 2001)

◮ Ducoin et al. (2011): for EOSs with
30 ≤ L ≤ 120 MeV, obtain:
0.06 . nb . 0.10 fm−3

⇒ nb ≃ n0/2 = 0.08 fm−3

+ approximate approach for a NS with an
accreted crust.

Solution of the TOV equation with a unified EoS
TOV solution for the core M(Rcore)
Approximate M(R) for nb = 0.16, 0.13, 0.11,

0.09, 0.077 fm−3 from left to right.
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Hyperons in neutron stars?
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Hyperonic equations of state

Hyperons (Y)

Mass (MeV)

n (uud)

p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)

Σ0 (uds)

Σ− (dds)

1190

Ξ0 (uss)

Ξ− (dss)

1320

Structure

Crust

Z e

Z e n

Outer core
n p e µ

Inner core
?

∼
ρ0
2

?

ρ0 ≃ 3 × 1014 g cm−3

Equation of state
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Hyperonic equations of state

Hyperons (Y)

Mass (MeV)

n (uud)

p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)

Σ0 (uds)

Σ− (dds)

1190

Ξ0 (uss)

Ξ− (dss)

1320

M − R plot Equation of state
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Hyperonic equations of state

Hyperons (Y)

Mass (MeV)

n (uud)

p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)

Σ0 (uds)

Σ− (dds)

1190

Ξ0 (uss)

Ξ− (dss)

1320

M − R plot

• each EoS has a maximum mass Mmax;

• Mmax strongly reduced when Y are included;

• consistency with the observations:
Mmax ≥ Mobs

max.

Hyperon puzzle

Can hyperons be present in NSs and yet
Mmax ≥ Mobs

max with Mobs
max ≃ 2 M⊙?

MORGANE FORTIN (CAMK) CONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS



Hyperonic equations of state

Fortin, Zdunik, Haensel and Bejger,
A&A 576 (2015)

14 hyperonic EoSs consistent with
2 M⊙:

◮ large radius for hyperonic EoSs
correlated with a large pressure
at n0

◮ over-pressure at n0 for hyperonic
EoSs inconsistent with up-to-date
microscopic calculations by
Hebeler et al. (2013)

→ 2 M⊙ is reach by compensating
the decrease of the pressure at
high density due to Y by a large
pressure at low density

Fortin et al. PRC 94 (2016)

Hyperonic EoSs consistent with Hebeler et al.
constraint and with Mmax ≥ 2 M⊙.

+ eg. Oertel et al. JPG (2015)
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Experimentally calibrated hyperonic EoS

Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Hyperons (Y)

Mass (MeV)

n (uud)
p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)
Σ0 (uds)
Σ− (dds)

1190

Ξ0 (uss)
Ξ− (dss)

1320

From nuclei to hypernuclei
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Experimentally calibrated hyperonic EoS
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Hyperons (Y)

Mass (MeV)

n (uud)
p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)
Σ0 (uds)
Σ− (dds)

1190

Ξ0 (uss)
Ξ− (dss)

1320

From nuclei to hypernuclei
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Experimentally calibrated hyperonic EoS
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Hyperons (Y)

Mass (MeV)

n (uud)
p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)
Σ0 (uds)
Σ− (dds)

1190

Ξ0 (uss)
Ξ− (dss)

1320

From nuclei to hypernuclei
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Experimentally calibrated hyperonic EoS
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Hyperons (Y)

Mass (MeV)

n (uud)
p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)
Σ0 (uds)
Σ− (dds)

1190

Ξ0 (uss)
Ξ− (dss)

1320

From nuclei to hypernuclei
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Experimentally calibrated hyperonic EoS
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:

0.00 0.05 0.10 0.15 0.20 0.25
A−2/3

0

5

10

15

20

25

30

B
Λ
 (M

eV
)

Rσ =0.621

Rω =2/3

TM1-a

sΛ

pΛ

UN
Λ (n0) ∈ [−36,−30] MeV
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Experimentally calibrated hyperonic EoS
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:
2. ΛΛ-hypernuclei

UΛ
Λ (n0) ∈ [−14,−9] MeV

UΛ
Λ (n0/5) ∈ [−7,−5] MeV
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Experimentally calibrated hyperonic EoS
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:
2. ΛΛ-hypernuclei

◮ build calibrated hyperonic EoSs including
the other hyperons and the current
experimental uncertainty of their
properties: two hyperonic models:

1. ’minimal hyperonic model’: only Λ
included

2. ’maximal hyperonic model’: Λ, Σ,
and Ξ included with:
UN
Ξ (n0 or 2/3n0) = −14 MeV

suggested by experiments
UN
Σ (n0) = 0, 30 MeV.
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Experimentally calibrated hyperonic EoSs
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:
2. ΛΛ-hypernuclei

◮ build calibrated hyperonic EoSs including
the other hyperons and the current
experimental uncertainty of their
properties: two hyperonic models.

Conclusions

◮ models are consistent with 2 M⊙

◮ because lack of constraints on the nuclear
model at high density

◮ thus no solution to the hyperon puzzle at
the moment.
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NSs are at the interface between astrophysics and nuclear physics

◮ Goal: constrain the properties of the nuclear force with astrophysical

observations and vice-versa.

◮ Currently: only constraints from mass measurements;

◮ Hopefully more to come in the next few years thanks to new instruments.

◮ More constraints thanks to nuclear experiments.

◮ Be careful when gluing an EoS for the core to one for the crust:
◮ Use unified equations of state eg. Fortin+ PRC 94 (2016)
◮ Approximate formula for M(R) with no crust needed (Zdunik+ A&A, 2017).

◮ Hyperonic equations of state are not ruled out by the existence of 2 M⊙

neutron stars.
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