CONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS

DR. MORGANE FORTIN <fortin@camk.edu.pl> N. Copernicus Astronomical Center, Polish Academy of Sciences - Warsaw

Helmholtz International Summer School Dubna - July 18, 2017

III Sciences

EDITION

ı.

5

SCIENCES Vidéos Supplément partenaire : Les Prix EDF Pulse Affaire de logique Astronomie Cervesu Géophysique

Dubna: chez les chasseurs russes des nouveaux atomes

Quatre nouveaux éléments, les plus lourds jamais produits, viennent d'être officiellement baptisés. A Dubna, le temple soviétique de la science explore depuis soixante ans les confins de la matière.

LE MONDE SCIENCE ET TECHNO | 10.07.2017 à 17h47 • Mis à jour le 11.07.2017 à 09h30

Par Vahé Ter Minassian (Dubna (Russie), envoyé spécial)

■ Réagir ★ Ajouter ● 图

Au Centre international des conférences de Dubna, petite cité de 70 000 habitants aux allures de ville de vacances sur les rives du canal de la Volga, à 120 kilomètres de Moscou, les festivités du « banquetanniversaire » des soixante ans du Laboratoire Fleroy des réactions nucléaires (FLNR) battent leur plein. La vodka aidant, le brouhaha des conversations a rapidement augmenté. Et bientôt, en suivre une devient excessivement difficile. Sans regrets inutiles : il est déià évident qu'on ne

Visite de la demeure romaine découverte à Auch

Sur les sites du groupe Le Monde.

Dix ans après la crise financière, la finance mondiale renoue avec les... Le Monde

Plerre Vimont : « Le nationalisme turc permet au réalme de trouver une forme... [Neutron stars: general aspects](#page-3-0)

[Constraints from mass measurements](#page-22-0)

[Constraints from radius measurements](#page-26-0)

Others...

MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

[Neutron stars: general aspects](#page-3-0)

Discovery of neutron stars (NSs)

Yakovlev et al., arXiv:1210.0682 (2012); Haensel et al.'s book (2007)

From theoretical predictions . . .

- ► Feb. 1931: anticipation of the idea of NSs by Lev Landau.
- ▶ Jan. 1932: experiments by Chadwick and discovery of the neutron.
- ◮ Dec. 1933: Baade & Zwicky: "*supernovæ represent the transitions from ordinary stars to neutron stars, which in their final stages consist of extremely closely packed neutrons*".

. . . to observations

- ► 1967: observation by chance by Bell (Hewish's graduate student) of very stable radio pulses with $P = 1.3373012$ s. The source is called "pulsar" meaning "Pulsating Source of Radio".
- ▶ 1974: Nobel Prize to Hewish (only) for the discovery of pulsars.
- \blacktriangleright May 1968 : Gold, Nature : pulsar = rotating NS.

Lighthouse model

Period of the pulses = spin period *P* of the pulsar. All PSRs are NSs but not all NSs are seen as PSRs.

MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

Discovery of neutron stars (NSs)

Yakovlev et al., arXiv:1210.0682 (2012); Haensel et al.'s book (2007)

From theoretical predictions . . .

- ► Feb. 1931: anticipation of the idea of NSs by Lev Landau.
- ▶ Jan. 1932: experiments by Chadwick and discovery of the neutron.
- ◮ Dec. 1933: Baade & Zwicky: "*supernovæ represent the transitions from ordinary stars to neutron stars, which in their final stages consist of extremely closely packed neutrons*".

. . . to observations

- ► 1967: observation by chance by Bell (Hewish's graduate student) of very stable radio pulses with $P = 1.3373012$ s. The source is called "pulsar" meaning "Pulsating Source of Radio".
- ▶ 1974: Nobel Prize to Hewish (only) for the discovery of pulsars.
- \blacktriangleright May 1968 : Gold, Nature : pulsar = rotating NS.

Lighthouse model

Period of the pulses = spin period *P* of the pulsar. All PSRs are NSs but not all NSs are seen as PSRs.

MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

What is a neutron star?

Origin

Remnant from the gravitational collapse of a ∼ 10 M[⊙] star during a Type II, Ib, Ic supernova event.

Properties

- \triangleright mass *M* ~ 1.4 M_☉ (M_☉ = 10³⁰ kg),
- ◮ radius *R* ∼ 10 km,
- ◮ compactness *GM Rc*² [∼] ⁰.2,
- ► average density $\bar{\rho} \sim 10^{18}$ kg m⁻³.

 \Rightarrow relativistic objects sustained by the strong interaction.

Crab Nebula hosting a pulsar

Credits : NASA/ESA.

Observations

 \sim 3000 NSs from radio to γ -rays, a majority as radio pulsars.

 \sim 5% of them in a binary with a companion star.

NSs undergo a regular spin-down ie. an increase *P*˙ of their spin period *P* :

Several types of emission

- PSR: radio or γ -ray pulsars,
- ▶ INS: X-ray pulses, no radio pulses,
- ▶ AXP/SGR: bursts observed in X- or γ -rays,
- \blacktriangleright RRAT: radio bursts.

Toy model

Magnetic dipole :

 \blacktriangleright spin-down due to emission of electromagnetic radiation.

P − *P*˙ diagram. Data from ATNF pulsar catalog.

NSs undergo a regular spin-down ie. an increase *P*˙ of their spin period *P* :

Several types of emission

- PSR: radio or γ -ray pulsars,
- ▶ INS: X-ray pulses, no radio pulses,
- ► AXP/SGR: bursts observed in X- or γ -rays,
- ▶ RRAT: radio bursts.

Toy model

Magnetic dipole :

- \blacktriangleright spin-down due to emission of electromagnetic radiation.
- \blacktriangleright estimate of the magnetic field :

$$
B=\left(\frac{3c^3I}{8\pi^2R^6}P\dot{P}\right)^{1/2}
$$

P − *P*˙ diagram. $I = 10^{45}$ g cm², $R = 10$ km.

NSs undergo a regular spin-down ie. an increase *P*˙ of their spin period *P* :

Several types of emission

- PSR: radio or γ -ray pulsars,
- ▶ INS: X-ray pulses, no radio pulses,
- ◮ AXP/SGR: bursts observed in X- or γ -rays,
- ▶ RRAT: radio bursts.

Toy model

Magnetic dipole :

- \blacktriangleright spin-down due to emission of electromagnetic radiation.
- \blacktriangleright estimate of the magnetic field :

$$
B=\left(\frac{3c^3I}{8\pi^2R^6}P\dot{P}\right)^{1/2}
$$

• estimate of the age :
$$
\tau = \frac{P}{2P}
$$

P − *P* diagram. $I = 10^{45}$ g cm², $R = 10$ km.

NSs undergo a regular spin-down ie. an increase *P*˙ of their spin period *P* :

P − *P*˙ diagram. $I = 10^{45}$ g cm², $R = 10$ km.

Several types of emission

- \blacktriangleright PSR: radio or γ -ray pulsars,
- ▶ INS: X-ray pulses, no radio pulses,
- ► AXP/SGR: bursts observed in X- or γ -rays,
- \blacktriangleright RRAT: radio bursts.

Toy model

Magnetic dipole :

- \blacktriangleright spin-down due to emission of electromagnetic radiation.
- \blacktriangleright estimate of the magnetic field :

$$
B=\left(\frac{3c^3I}{8\pi^2R^6}P\dot{P}\right)^{1/2}
$$

- **Exercise** estimate of the age : $\tau = \frac{P}{2P}$
- \blacktriangleright (model-dependent) death line : below the line, electromagnetic emission stops.

MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

Two main types of pulsars

P − *P*˙ diagram. $I = 10^{45}$ g cm², $R = 10$ km.

P − *P*˙ diagram. $I = 10^{45}$ g cm², $R = 10$ km.

Two main types of pulsars

Normal pulsars

NSs born fastly rotating, spun down by the radio emission until they cross the death line.

P − *P*˙ diagram. $I = 10^{45}$ g cm², $R = 10$ km.

Two main types of pulsars

Normal pulsars

NSs born fastly rotating, spun down by the radio emission until they cross the death line.

$$
P - P \text{ diagram.}
$$

$$
I = 10^{45} \text{ g cm}^2, R = 10 \text{ km.}
$$

Two main types of pulsars

Normal pulsars

NSs born fastly rotating, spun down by the radio emission until they cross the death line.

Millisecond pulsars

Old pulsars rejuvenated by the accretion of matter from a binary companion.

Structure

Nuclear saturation density: $n_0 = 0.16$ fm⁻³

Problem

NS matter not accessible in terrestrial laboratories . . .

Envelope

 \blacktriangleright Plasma whose composition determines the spectrum of the NS emission.

Crust

- \blacktriangleright Gas of electrons,
- \blacktriangleright lattice of neutron-rich ions,
- ◮ at larger densities free neutrons (superfluid?).

Nuclei in lab. vs. NS crust

Structure

Nuclear saturation density: $n_0 = 0.16$ fm⁻³

$2 =$

- \blacktriangleright nucleons.
- ► hyperons (baryons with a least one *s* quark),
- ◮ quark matter (deconfined *d*, *u* and *s*),
- pion or kaon condensation, ...

Envelope

 \blacktriangleright Plasma whose composition determines the spectrum of the NS emission.

Crust

- \blacktriangleright Gas of electrons,
- lattice of neutron-rich ions,
- \blacktriangleright at larger densities free neutrons (superfluid?).

Outer core

- \blacktriangleright Free neutrons and protons (superfluid?),
- \blacktriangleright electrons.
- \blacktriangleright muons.

Inner core

 \blacktriangleright ?

Mystery : equation of state (EoS)

- \blacktriangleright Describes the composition and properties of NS matter;
- \blacktriangleright *P(n)* with *P* the pressure and *n* the baryon density.

NS matter

Many-body system of stronglyinteracting particles $(e, p, n, \mu,$ more?) at zero temperature (thermal energy ≪ nucleon Fermi energy).

Two approaches:

- \blacktriangleright phenomelogical models with effective interactions with parameters adjusted to nuclear and astrophysical quantities,
- \blacktriangleright ab-initio approaches: 'solving' the many body problem starting with 2 (and 3)-body interactions.

Mass-radius diagram

General relativity constraint

GR imposes that the radius of a neutron star is larger than the Schwarzschild radius:

$$
R>2\frac{GM}{c^2}.
$$

Mass-radius diagram

General relativity constraint

GR imposes that the radius of a neutron star is larger than the Schwarzschild radius:

$$
R>2\frac{GM}{c^2}.
$$

Finite pressure constraint

For a uniform density profile inside a neutron star, finite pressure imposes:

$$
R>\frac{9}{4}\frac{GM}{c^2}.
$$

Mass-radius diagram

General relativity constraint

GR imposes that the radius of a neutron star is larger than the Schwarzschild radius:

$$
R>2\frac{GM}{c^2}.
$$

Finite pressure constraint

For a uniform density profile inside a neutron star, finite pressure imposes:

$$
R>\frac{9}{4}\frac{GM}{c^2}.
$$

Causality constraint

Subluminal speed of sound implies:

$$
R>3\frac{GM}{c^2}.
$$

Mass-radius diagram

General relativity constraint

GR imposes that the radius of a neutron star is larger than the Schwarzschild radius:

$$
R>2\frac{GM}{c^2}.
$$

Finite pressure constraint

For a uniform density profile inside a neutron star, finite pressure imposes:

$$
R>\frac{9}{4}\frac{GM}{c^2}.
$$

Causality constraint

Subluminal speed of sound implies:

$$
R>3\frac{GM}{c^2}.
$$

Mass-radius diagram

An EoS + Tolman and Oppenheimer & Volkoff (TOV) equations for hydrostatic equilibrium in $GR = a$ specific mass-radius relation.

Key point

How to constrain the EoS and thus the properties of the nuclear interaction at large densities thanks to NS observations ?

[Constraints from mass measurements](#page-22-0)

Mass

See eg. Özel & Freire, ARAA (2016)

Keplerian orbital elements

- \triangleright orbital period,
- \blacktriangleright time of periastron passage,
- \blacktriangleright eccentricity,
- \blacktriangleright projected semi-major axis,
- \blacktriangleright angle of periastron;
- \Rightarrow mass function $f_1(M, m_c, i)$.

+ 2 additional quantities

- ► Post Keplerian parameters:
	- precession of periastron,
	- \triangleright orbital decay,
	- Einstein delay,
	- Shapiro delay;
- ► Spectroscopy:
	- \triangleright orbital velocity,
	- \blacktriangleright H lines in the white dwarf atmosphere;
- \blacktriangleright Eclipse modeling.

<https://stellarcollapse.org/nsmasses>

Maximum mass

Theory

- \blacktriangleright each EoS has a maximum mass *M*max;
- $\blacktriangleright M_{\max} \geq M_{\max}^{\text{obs}}$.

Mass-radius diagram

Maximum mass

Theory

- \blacktriangleright each EoS has a maximum mass $M_{\rm max}$;
- $\blacktriangleright M_{\max} \geq M_{\max}^{\text{obs}}$.

PSR J1614-2230

Fonseca et al., ApJ (2016) Shapiro delay parameters:

 $M_{\rm max}^{\rm obs} = 1.928 \pm 0.017~{\rm M}_\odot$.

PSR J0348+0432

Antoniadis et al., Science (2013) WD spectroscopy:

$$
\textit{M}_{\rm max}^{\rm obs}=2.01\pm0.04~\text{M}_\odot.
$$

Mass-radius diagram

EoSs for nucleonic matter (blue), exotic matter (pink) and strange quark matter (green).

[Constraints from radius measurements](#page-26-0)

Isolated NSs

Thermal emission

Modeling of the X-ray spectra using atmosphere models.

Determination of the radius observed at infinity :

$$
R_{\infty} = \frac{R}{\sqrt{1 - 2GM/(Rc^2)}}
$$

Cas A NS (Ho & Heinke, Nature 2009)

No pulsation \rightarrow emitting region = whole NS. \rightarrow NS with a C atmosphere.

Isolated NSs

Thermal emission

Modeling of the X-ray spectra using atmosphere models.

Determination of the radius observed at infinity :

$$
R_{\infty} = \frac{R}{\sqrt{1 - 2GM/(Rc^2)}}
$$

Limitations:

- \blacktriangleright unknown chemical composition of the envelope,
- \blacktriangleright distance to the source,
- ► magnetic field *B*,

 \blacktriangleright ...

Cas A NS (Ho & Heinke, Nature 2009)

Isolated NSs

Thermal emission

Modeling of the X-ray spectra using atmosphere models.

Determination of the radius observed at infinity :

$$
R_{\infty} = \frac{R}{\sqrt{1 - 2GM/(Rc^2)}}
$$

Limitations:

- \blacktriangleright unknown chemical composition of the envelope,
- \blacktriangleright distance to the source,
- ► magnetic field *B*,

◮ . . .

Cas A NS (Ho & Heinke, Nature 2009)

Quiescent thermal emission of accreting NSs

Properties

- \blacktriangleright Low *B*
- \blacktriangleright accreted atmosphere \rightarrow H, He
- \triangleright if NS in a globular cluster, distance accurately known.

Results

- ► NGC 6397: H atmosphere vs. He atmosphere Heinke et al., MNRAS (2014)
- ► QXT-1: based on 6 objects, only H atmosphere Guillot & Rutledge, ApJ (2014)
- \triangleright QXT-1+He: possibility of He atmosphere for NGC 6397

Limitations

- ► H or He atmosphere?
- \blacktriangleright Large uncertainty in the interstellar absorption $(N_H$ parameter).
- ▶ Undetected hot spots (Elshamouty et al., ApJ 2016)
- \blacktriangleright Lack for precise distance measurements. Athena and Gaia may help.

X-bursts from accreting NSs

Photospheric radius expansion bursts

Strong enough to lift up the outer layers of the NS.

4U 1724-307

Limitations

eg. Steiner et al., EPJA (2016) Suleimanov et al., EPJA (2016) Özel et Freire, ARAA (2016)

 \blacktriangleright uncertainties in the modelling of the burst, the burst selection, and the composition of the atmosphere.

SAX J1810.8-2609

Suleimanov et al., MNRAS (2017)

MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

Modeling the X-ray pulse profile of . . .

radio millisecond pulsars

PSR J0437−4715 (Bogdanov, ApJ 2013)

- \blacktriangleright pulsations due to magnetic polar caps
- + mass known from radio observations: $M = 1.76 \pm 0.2$ M_①.
- \rightarrow *R* > 12.29 km (2 σ)
- ◮ new mass measurement from Reardon et al., MNRAS (2016): $M = 1.44 \pm 0.07$ M_①

accreting millisecond X-ray pulsars

e.g. SAX J1808.4-3658 (Morsink & Leahy, ApJ 2011)

 \blacktriangleright pulsations due to accretion onto the NS magnetic poles

Limitations

Özel et Freire, ARAA (2016)

- \blacktriangleright hot spot modeling (shape)
- \blacktriangleright geometry of the system

MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

Modeling the X-ray pulse profile of . . .

radio millisecond pulsars

PSR J0437−4715 (Bogdanov, ApJ 2013)

- \blacktriangleright pulsations due to magnetic polar caps
- + mass known from radio observations: $M = 1.76 \pm 0.2$ M_①.
- \rightarrow *R* > 12.29 km (2 σ)
- ◮ new mass measurement from Reardon et al., MNRAS (2016): $M = 1.44 \pm 0.07$ M_⊙

accreting millisecond X-ray pulsars

e.g. SAX J1808.4-3658 (Morsink & Leahy, ApJ 2011)

 \blacktriangleright pulsations due to accretion onto the NS magnetic poles

Limitations

Özel et Freire, ARAA (2016)

- \blacktriangleright hot spot modeling (shape)
- geometry of the system

THE EQUATION OF STATE FROM NEUTRON STA MORGANE FORTIN (CAMK) C[ONSTRAINTS ON THE EQUATION OF STATE FROM NEUTRON STAR OBSERVATIONS](#page-0-0)

Radius

Fitting the spectrum of

- \blacktriangleright X-ray emission from radio millisecond pulsars (RP-MSP);
- \blacktriangleright the quiescent thermal emission of accreting NSs (QXT);
- \blacktriangleright X-bursts from accreting NSs (BNS).

Summary

Based on most recent publications. Adapted from Fortin et al. A&A (2015)

- ▶ RP-MSP: Bodganov, ApJ (2013)
- ▶ BNS-1: Nättilä et al. arXiv:1509.06561
- ▶ BNS-2: Güver & Özel, ApJ (2013)
- ▶ QXT-1: Guillot & Rutledge, ApJ (2014)
- ▶ BNS+QXT: Steiner et al., ApJ (2013)

Conclusion

- ► inconsistency (see QXT-1 and RP-MSP),
- \blacktriangleright many remaining uncertainties in the modelling,
- \blacktriangleright inclusion of rotation: effect \sim 10%.

Current consensus

 $R = 9 - 14$ km.

Radius

Fitting the spectrum of

- \blacktriangleright X-ray emission from radio millisecond pulsars (RP-MSP);
- \blacktriangleright the quiescent thermal emission of accreting NSs (QXT);
- \triangleright X-bursts from accreting NSs (BNS).

Summary

Based on most recent publications. Adapted from Fortin et al. A&A (2015)

- ▶ RP-MSP: Bodganov, ApJ (2013)
- ◮ BNS-1: Nättilä et al. arXiv:1509.06561
- ▶ BNS-2: Güver & Özel, ApJ (2013)
- ▶ QXT-1: Guillot & Rutledge, ApJ (2014)
- ▶ BNS+QXT: Steiner et al., ApJ (2013)

Conclusion

- inconsistency (see $QXT-1$ and RP-MSP),
- many remaining uncertainties in the modelling,
- \blacktriangleright inclusion of rotation: effect \simeq 10%.

Current consensus

 $R = 9 - 14$ km.

Perspectives

NICER

- ▶ Neutron star Interior Composition ExploreR Mission
- ▶ NASA project
- ▶ On the ISS
- ◮ Launch on June 3
- \blacktriangleright First light yesterday
- ◮ Rotating hot spots from non-accreting MSPs
- ► *M R* constraints with a precision of \sim 5% for \sim 3 NS.

Athena

- ▶ Advanced Telescope for High ENergy Astrophysics
- ► ESA project
- \blacktriangleright L2 point
- \blacktriangleright in 2028
- \blacktriangleright X-ray emission from MSPs;
- \blacktriangleright quiescent thermal emission of accreting NSs;
- ▶ PRE bursts from accreting NSs.

M − *R* measurements

- \blacktriangleright rule out EoS
- ▶ reconstruct the EoS (see H. Grigorian's talk).

Others...