What do you know about weakly bound nuclei?

How do they behave in low energy collisions?

Reaction dynamics of weakly bound nuclei

ALEXIS DIAZ-TORRES

https://www.researchgate.net/profile/Alexis_Diaz-Torres2

Lecture 1

Fusion dynamics of weakly bound nuclei

What I will tell you next

* Motivation, Important Concepts & Issues

***** Classical & Quantum Dynamical Models

* Summary & Outlook

Why I find reaction physics important and exciting

* The physics of low-energy nuclear reactions is crucial for understanding energy production and nucleosynthesis in the Universe

* Nuclear reactions are the primary probe of the New Physics

Interaction Potential between Nuclei & Scales

Energy: MeV = 10^{6} eV; **Length:** fm = 10^{-15} m; **Time:** 10^{-21} s

Reactions between Complex Nuclei at Low Energy

The interplay between **nuclear structure** & **reaction dynamics** determines the reaction observables (**cross sections**)

Unified description of low-energy reaction processes?

Some examples of low-energy models in the last 17 years

Classical

AD-T, Hinde, Tostevin, Dasgupta & Gasques, PRL 98 (2007) 152701 Hagino, Dasgupta & Hinde, NPA 738 (2004) 475c

Mixed Quantum-Classical

Sargsyan, Adamian, Antonenko, AD-T, Gomes & Lenske, PRC **92** (2015) 054620 Marta, Canto & Donangelo, PRC **89** (2014) 034625; PRC **73** (2005) 034608 Baye, Capel & Melezhik, NPA **722** (2003) 328c Esbensen & Bertsch, NPA **706** (2002) 383

Quantum Mechanical

◆ Boselli & AD-T, PRC **92** (2015) 044610

Descouvemont, Druet, Canto & Hussein, PRC **91** (2015) 024606 Ito, Yabana, Nakatsukasa & Ueda, PLB **637** (2006) 53 AD-T, Thompson & Beck, PRC **68** (2003) 044607; PRC **65** (2002) 024606 Tostevin, Nunes & Thompson, PRC **63** (2001) 024617

Classical Trajectory Monte Carlo Method

- After breakup, interaction among fragments is crucial
- Useful for interpreting particle-gamma coincidence data
- Transfer triggered breakup enriches the fusion scenario

See e.g., R. E. Olson, CTMC techniques, in Springer Handbook of Atomic, Molecular & Optical Physics (2006) pp. 869-874

Classical Dynamical Model

AD-T, Hinde, Tostevin, Dasgupta & Gasques, PRL **98** (2007) 152701 AD-T, CPC **182** (2011) 1100 (**PLATYPUS code**)

$$P_{BU}^{\bullet}(R_{min}) = 2 \int_{R_{min}}^{\infty} P_{BU}^{L}(R) dR = Aexp(-\alpha R_{min})$$

Constructing Probabilities and Cross Sections

For each projectile angular momentum L_0 we have:

 $Condition: \quad \tilde{P}_i = N_i/N \quad ; \quad \tilde{P}_0 + \tilde{P}_1 + \tilde{P}_2 = 1$

 $(N_i \text{ is the number of events in which fragments are captured})$ $(NCBU): P_0(E_0, L_0) = P_{BU}(R_{min})\tilde{P}_0$ $(ICF): P_1(E_0, L_0) = P_{BU}(R_{min})\tilde{P}_1$ $(CF): P_2(E_0, L_0) = [1 - P_{BU}(R_{min})]H(L_{cr} - L_0)$ $+ P_{BU}(R_{min})\tilde{P}_2$

$$\sigma_i(E_0) = \pi \lambda^2 \sum_{L_0} (2L_0 + 1) P_i(E_0, L_0)$$

Classical results vs CDCC outcomes: "⁸Be " + ²⁰⁸Pb

AD-T, Hinde, Tostevin, Dasgupta & Gasques, PRL 98 (2007) 152701

Complete fusion of ⁷Li +¹⁹⁸Pt at above-barrier energy

Sequential CF becomes substantial as energy increases

See e.g., Dasgupta *et al.*, PRC **66** (2002) 041602 (R), for ^{6,7}Li + ²⁰⁹Bi

Incomplete fusion of ⁷Li +¹⁹⁸Pt at above-barrier energy

PLATYPUS code

AD-T, CPC 182 (2011) 1100

Useful for planning & interpreting particle-gamma-coincidence measurements Incomplete fusion measurements vs. **Platypus+PACE** calculations: E* and spin distribution from **Platypus** fed to evaporation code **PACE**

⁷Li + ¹⁹⁸Pt @ 45 MeV

triton - fusion

 α gated γ spectra t + ¹⁹⁸Pt : ²⁰¹Au*

 α - fusion t gated γ spectra α + ¹⁹⁸Pt : ²⁰²Hg*

Shrivastava, Navin, AD-T *et al.*, PLB **718** (2013) 931

Q-value spectrum in sub-barrier breakup of ⁷Li on ²⁰⁹Bi

Luong et al., Phys. Rev. C 88, 034609 (2013)

Courtesy of Ed Simpson (ANU)

Breakup triggered by transfer affects above-barrier fusion

Effects of delayed breakup on incomplete fusion for ⁶Li +²⁰⁹Bi

Direct channels of incomplete fusion for ⁶Li +²⁰⁹Bi

Different channels of incomplete fusion for ⁶Li +²⁰⁹Bi

Time-Dependent Wave-Packet Dynamics

Useful for understanding sub-Coulomb fusion data

In collaboration with Maddalena Boselli, who was my PhD student at the ECT*

Wave-Packet Dynamics

D.J. Tannor, Quantum Mechanics: a Time-Dependent Perspective, USB, 2007

• **Preparation:** the initial state $\Psi(t = 0)$

• **Time propagation:** $\Psi(0) \rightarrow \Psi(t)$, guided by the operator, $\exp(-i\hat{H}t/\hbar)$ \hat{H} is the model Hamiltonian

 Analysis: extraction of probabilities from the time-dependent wave function

One-Dimensional Toy Model

$$H = \frac{P_{x_{CM}}^{2}}{2M_{T12}} + \frac{P_{\xi}^{2}}{2m_{12}} + U_{12}(\xi) + V_{T1}(x_{CM} - a\xi) + V_{T2}(x_{CM} + b\xi)$$

Describing Fusion

To simulate fusion (irreversibility): acting inside the Coulomb barrier

$$-iW_{T1}(x_1)$$
 &

$$-iW_{T2}(x_2)$$

Preparing the Initial State

Time Propagation

R. Kosloff, Ann. Rev. Phys. Chem. 45 (1994) 145

$$\Psi(t + \Delta t) = \exp\left(-i\frac{\hat{H}\,\Delta t}{\hbar}\right)\Psi(t)$$
$$\exp\left(-i\frac{\hat{H}\,\Delta t}{\hbar}\right) \approx \sum_{n} a_{n} Q_{n}(\hat{H}_{norm})$$

$$\hat{H}_{norm} = \frac{(\bar{H}\,\hat{1} - \hat{H})}{\Delta H}$$

The Chebyshev Propagator

$$a_n = i^n (2 - \delta_{n0}) \exp\left(-i\frac{\bar{H}\,\Delta t}{\hbar}\right) J_n\left(\frac{\Delta H\,\Delta t}{\hbar}\right)$$

Slicing the Wave Function: A Novel Idea

on the wave function:

 $\tilde{\Psi}(x_1, x_2, t) = (P_1 P_2 + P_1 Q_2 + Q_1 P_2 + Q_1 Q_2) \tilde{\Psi}(x_1, x_2, t) = \Psi_{CF} + \Psi_{ICF} + \Psi_{SCATT}$

ICF

Analysis of the Wave Function

Power Spectrum of the Wave Function

$$\mathcal{P}(E) = \langle \Psi(t) | \delta(E - \hat{H}) | \Psi(t) \rangle$$

Energy Projector

Reflection & Transmission Coefficients

$$\mathcal{R}(E) = rac{\mathcal{P}^{final}(E)}{\mathcal{P}^{initial}(E)}$$

$$T(E) = 1 - \mathcal{R}(E)$$

Example

* The time-dependent perspective is useful for understanding and quantifying low-energy reaction dynamics of exotic nuclei.

PLATYPUS is a powerful tool for planning and interpreting (fusion & breakup) measurements that allow its fine tuning.

AD-T, CPC **182** (2011) 1100

Outlook

* A quantum dynamical 3D-model is being developed. Maddalena Boselli & AD-T, PRC 92 (2015) 044610

Understanding the breakup mechanisms and their impact on unambiguously separated **CF** & **ICF** processes could make for further progress in the field.

EXTRA SLIDES

Continuum Discretised Coupled-Channels Method

- Continuum-continuum couplings reduce the fusion cross sections.
- CF and ICF cannot be separated unambiguosly.

See e.g., N. Austern, Physics Report 154 (1987) pp. 125-204.

CDCC Approach: Three-Body Model

Breakup mechanism: Inelastic excitation of the projectile to the continuum.

Potentials:

- Vtc, Vtv real Wood-Saxons
- Vcv Wood-Saxons with SO
- Imaginary short-ranged potentials

Aplications: ¹¹Be + ²⁰⁸Pb ; ^{6, 7}Li + ⁵⁹Co, ²⁰⁹Bi; ⁶He + ⁵⁹Co

target
target

$$\mathbf{R}$$

 \mathbf{R}
 \mathbf{r}

CF and ICF cannot be separated unambiguously!

AD-T & Thompson, PRC 65 (2002) 024606 AD-T, Thompson & Beck, PRC 68 (2003) 044607

Effects of Continuum Couplings on Fusion

AD-T & Thompson, PRC 65 (2002) 024606

Total Fusion within the CDCC Approach

AD-T & Thompson, PRC 65 (2002) 024606 AD-T, Thompson & Beck, PRC 68 (2003) 044607

Energy Projection of the Wave Function

Schafer & Kulander, PRA 42 (1990) 5794

• Energy spectra of $\Psi(t)$ at initial and final time as expectation values of the projection operator

$$E_{k+1} = E_k + 2\epsilon$$

 $\mathcal{P}(E_k) = \langle \Psi | \hat{\Delta} | \Psi \rangle$, for instance, **n** = 2 :

$$(\hat{\mathcal{H}} - E_k + \sqrt{i}\epsilon)(\hat{\mathcal{H}} - E_k - \sqrt{i}\epsilon)|\chi\rangle = |\Psi\rangle$$

$$\mathcal{P}(E_k) = \epsilon^4 \left< \chi \right| \chi \right>$$

Transmission & Reflection Coefficients

$$egin{aligned} \mathcal{T}(E_k) &= 1 - \mathcal{R}(E_k) \ \mathcal{R}(E_k) &= rac{\mathcal{P}^{final}(E_k)}{\mathcal{P}^{initial}(E_k)} \end{aligned}$$

$$egin{aligned} \mathcal{P}ig(E_kig) &= ig\langle\Psi|\hat{\Delta}|\Psi
ight
angle \ \hat{\Delta}(E_k,n,\epsilon) \equiv rac{\epsilon^{2^n}}{(\hat{\mathcal{H}}-E_k)^{2^n}+\epsilon^{2^n}} \ E_{k+1} &= E_k+2\epsilon \end{aligned}$$

Energy-resolved total transmission for different values of the width of the initial wave packet

Energy-resolved total transmission for different values of the location of the initial wave packet

Energy-resolved total transmission for different values of the mean energy of the initial wave packet

 Transmission coefficients compared with those obtained from a time-independent calculation

Breakup triggered by transfer affects **above-barrier** fusion

Example: ⁷Li + ²⁰⁹Bi @ Ec.m. = 36 MeV (about 1.2 times the SP barrier)

PRELIMINARY RESULTS FROM **PLATYPUS**

	Processes	Reactions	ICF(mb)	CF [.] (mb)	CF ^{seq.} (mb)	NCBU(mb)
	direct	⁷ Li + ²⁰⁹ Bi	10.46	687.2	2.48	10.53
	n-stripping	⁶ Li + ²¹⁰ Bi	2.24	283.2	0.51	2.4
+.	2n-stripping	⁵ Li + ²¹¹ Bi	0.67 0.49		5.9 x 10 ⁻² 1.9 x 10 ⁻²	3.5 3.9
+	p-pickup	⁸ Be + ²⁰⁸ Pb	55.5	767.1	12.01	42.81

Prompt vs. delayed breakup of the ⁵Li projectile-like nucleus

In collaboration with Huy Luong *et al*. (ANU)

Linking breakup and fusion: "⁸Be " + ²⁰⁸Pb

Breakup function

CF & ICF excitation functions

AD-T, Hinde, Tostevin, Dasgupta & Gasques, PRL 98 (2007) 152701

Classical Dynamical Model

PLATYPUS code AD-T, CPC 182 (2011) 1100

Main aspects of the approach:

- Projectile-target interaction
- Encoding of breakup
- Initial conditions of breakup events
- Time propagation of breakup fragments & target
- Probabilities and cross sections

AD-T, Hinde, Tostevin, Dasgupta & Gasques, PRL 98 (2007) 152701 AD-T, JPG 37 (2010) 075109

Matching Reaction Stages

<u>Prior breakup</u>: For each L₀ a sample of N incident projectiles is taken. R_{BU} is sampled on the interval [R_{min}(E₀,L₀),∞] with the weighting P^LBU(F

<u>After breakup</u>: fragments F_1 and F_2 interact with T and with each oth i, j = 1, 2, T; $(i \neq j) \rightarrow V_B^{ij}, R_B^{ij}$

The dynamical variables (the excited projectile at breakup are Monte Carlc sampled as well ϵ_{12} ; $\vec{\ell}_{12}$; \vec{d}_{12}

Conservation laws of linear momentum, angular momentum and er (in the overall CM reference frame) determine the initial conditions for the three-body propagation in time

Time Propagation

Spin distribution of fusion products: ²¹⁶Rn & ²¹²Po

Direct alpha-production yields: "⁸Be " + ²⁰⁸Pb

AD-T,

 $E_{cm}/B_0 = 1.57$

Breakup probability function

Let us define two probabilities: (i) the probability of breakup between R and R + dR, $\rho(R)dR$ [being $\rho(R)$ a density of probability], and (ii) the probability of the weaklybound projectile's survival from ∞ to R, S(R). The survival probability at R + dR, S(R + dR), can be written as follows

$$S(R + dR) = S(R) [1 - \rho(R)dR].$$
 (A.1)

Expression (A.1) suggests the following differential equation for the survival probability S(R),

$$\frac{dS(R)}{dR} = -S(R)\,\rho(R),\tag{A.2}$$

whose solution is $[S(\infty) = 1]$:

$$S(R) = \exp(-\int_{\infty}^{R} \rho(R) dR).$$
(A.3)

From (A.3), the breakup probability at R, B(R) = 1 - S(R). If $\int_{\infty}^{R} \rho(R) dR \ll 1$, B(R) can be written as

$$B(R) \approx \int_{\infty}^{R} \rho(R) dR.$$
 (A.4)

From (A.4), identifying $\rho(R)$ with $\mathcal{P}_{BU}^{L}(R)$, we obtain expression (1) for the breakup probability integrated along a given classical orbit.

Breakup Function from CDCC Calculations

CDCC calculations give an exponential function for the breakup prob

Excitation energy distribution of ICF product ²¹²Po

Initial conditions

Complete Fusion