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Naturally occurring in:
- nuclear gamma radiation: E ≈ 0.1 – 10 MeV
- solar flares and cosmic rays (E ~ MeV)
- gamma-ray bursts (E < 10 TeV)

Applications:
- medicine: nuclear imaging (99mTc in SPECT, 22Na in PET), cancer 
treatment
- gamma-ray irradiators (60Co): sterilization of food and medical 
products, photo-polymerization of chemical compounds
- gamma imaging sensors in many industries (60Co, 137Cs): mining, 
chemical, agriculture, etc.
- material science
- the only way to make superheroes out of physicists

B. Banner et al.
Marvel Comics (1962)



Gamma Beam Systems

Goals:
● small divergence Δθ (strong forward focusing)
● variable energy E (5–20 MeV) with low bandwidth (energy resolution) BW=ΔE/E
● high brilliance B
● high polarization (linear/circular) desirable  

B≡
photons

s⋅mrad2
⋅mm2

⋅0.1%BW
Number of emitted gammas per second, unit of solid
angle and transversal size within 0.1% of energy
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3)electron bremsstrahlung
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5)positron annihilation in-flight
6)Coulomb excitation
7) inverse Compton scattering

Goals:
● small divergence Δθ (strong forward focusing)
● variable energy E (5–20 MeV) with low bandwidth (energy resolution) BW=ΔE/E
● high brilliance B
● high polarization (linear/circular) desirable  

B≡
photons

s⋅mrad2
⋅mm2

⋅0.1%BW
Number of emitted gammas per second, unit of solid
angle and transversal size within 0.1% of energy

M. Ciemala et al.
NIM A 608 (2009)

Spectrum of 23Na(p,γ)24Mg
at E

r
=1.318MeV (Q=11.69MeV) 
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Gamma Beam Systems:
Electron Bremsstrahlung (I)

Bremsstrahlung (“braking radiation”) = electromagnetic radiation
of a charged particle decelerated by another charged particle.

+
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γ
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E>E
c
≈700MeV/Z electrons lose energy mainly by bremsstrahlung

Classical electrodynamics radiated energy: S(E) ~ a2

Charge in Coulomb field: F
C
 ~ −qZ/r2 = ma → S ~ Z2/m2

Strongest radiation: electron beams in high-Z matter

critical energy

e−/e+ fractional energy loss per radiation length



Gamma Beam Systems:
Electron Bremsstrahlung (II)

R. Schwengner et al., NIM A 555 (2005)Bethe-Heitler cross-section:
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→ weak forward focusing

→ no (E
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,θ) correlation: no improvement by collimation

→ large background from low energy gammas ~1/E
γ

J.W. Motz, R.C. Placious, Nuovo Cimento 15 (1960) 571
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Gamma Beam Systems:
Electron Bremsstrahlung (III)

Spectra measured with bremsstrahlung gamma 
systems need to be deconvoluted:

A. Zilges et al.
Phys.Lett. B542(2002)
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W (Em , E)σ(E)dE

E
m
 = end-point energy

Y(E
m
) = measured yield

W(E
m
,E) = bremsstrahlung spectrum

σ(E) = reaction cross-section

138Ba(γ,γ') spectrum: E1 transitions from Jπ=1− to g.s.



Gamma Beam Systems:
Electron Bremsstrahlung (III)

Spectra measured with bremsstrahlung gamma 
systems need to be deconvoluted:

A. Zilges et al.
Phys.Lett. B542(2002)

Y (Em)=∫
Eth

Em

W (Em , E)σ(E)dE

E
m
 = end-point energy

Y(E
m
) = measured yield

W(E
m
,E) = bremsstrahlung spectrum

σ(E) = reaction cross-section

→ energy resolutions ~ 200keV 

138Ba(γ,γ') spectrum: E1 transitions from Jπ=1− to g.s.

G. Bellia et al.
Z.Phys. A314(1983)

experiment theory

238U photofission: experiment vs. theory



Gamma Beam Systems:
Electron Bremsstrahlung (IV)

ELBE (Electron Linear accelerator of high Brilliance and low Emittance), Germany

R. Schwengner et al., NIM A 555 (2005)



Gamma Beam Systems:
Electron Bremsstrahlung (IV)

ELBE (Electron Linear accelerator of high Brilliance and low Emittance), Germany

Electron beam:
E

max
=20MeV, I

max
=1mA

Gamma beam:
Intensity ~ 1010 γ/s/keV/cm2

Divergence ~ 5 mrad after colimator
Linear polarization ~ 5-25%

R. Schwengner et al., NIM A 555 (2005)



Gamma Beam Systems:
Electron Bremsstrahlung (V)

DHIPS (Darmstadt High Intensity Photon Setup) @ S-DANILAC 
(Superconducting Darmstadt electron LINear ACcelerator)

DHIPS

S-DANILAC

K. Sonnabend et al.
NIM A 640 (2011) 6

Electron beam:
E

max
=10-130MeV, I

max
=60μA

Gamma beam:
Maximum energy = 10 MeV
Intensity: T

0
=3∙108 γ/s/keV/cm2, T

1
=106 γ/s/keV/cm2



Gamma Beam Systems:
Photon Tagging
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NEPTUN @ S-DANILAC

NEPTUN @ S-DANILAC:
– E

γ
=6–20MeV

– high energy resolution: ΔE
γ
=35keV (ΔE

e
=25keV) at 

E
γ
=10MeV

– low gamma intensity: 5∙104 γ/s/keV (low primary 
beam intensity, large coincidence time window ~ 2μs)
– final γ spectrum has the same bremsstrahlung shape



Gamma Beam Systems:
Positron In-flight Annihilation (I)

Gamma produced by annihilation of a relativistic positron (γ=E
p
/m>>1) on an electron at rest (E

e
=m):

Eγ (θγ )=
m

1−
pp

E p+m
cos (θ γ)

θ
γ
 [rad]

E
γ [

M
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E
p
=9.5MeV
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<0.15rad → E

γ
=8-10MeV
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Gamma produced by annihilation of a relativistic positron (γ=E
p
/m>>1) on an electron at rest (E

e
=m):

- (E
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,θ

γ
) correlation: hardening by collimation

- focused forward in cone Δθ≈1/γ: small divergence
- energy range ΔE≈E

γ,max
/2γ: good resolution

Eγ (θγ )=
m

1−
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cos (θ γ)

R.J. Abrams et al.
Phys. Rev. ST Accel. Beams NN (2011)
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R.J. Abrams et al., Phys. Rev. ST Accel. Beams NN (2011)

Gamma Beam Systems:
Positron In-flight Annihilation (II)

Another improvement of the bremsstrahlung method:
1)  convert primary e− beam to e+ beam:

separate e+ from bremsstrahlung γ→e+e− (target+magnet)
2)  prepare secondary e+ beam:

reduce energy and angular spread (degrader+magnets)
3)  annihilate e+ beam to final γ beam: radiator
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Gamma Beam Systems:
Positron In-flight Annihilation (II)

● background gammas from bremsstrahlung still present 
→ deconvolution, lower resolution, shielding

● signal gammas from annihilation form a high-energy peak
→ target specific processes

● high intensities are possible:
1015 e−/s primary beam at 75 MeV → ~1010 γ/s in 8-10MeV 

Another improvement of the bremsstrahlung method:
1)  convert primary e− beam to e+ beam:

separate e+ from bremsstrahlung γ→e+e− (target+magnet)
2)  prepare secondary e+ beam:

reduce energy and angular spread (degrader+magnets)
3)  annihilate e+ beam to final γ beam: radiator



Gamma Beam Systems:
Positron In-flight Annihilation (III)

H. Beil et al.
NIM 67 (I969) 293

A: primary e− beam
B: high-Z target (Pb)
C: collimator
D: monochromating magnet syst.
E: low-Z radiator (Li)
F: deflection magnet
G: Faraday cup
H: neutron detector

Saclay, France

Primary electron beam: E = 45MeV
Final gamma beam: E = 5-40MeV
       ∆E

γ
 = 140keV at E

γ
 = 10MeV
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H. Beil et al.
NIM 67 (I969) 293

A: primary e− beam
B: high-Z target (Pb)
C: collimator
D: monochromating magnet syst.
E: low-Z radiator (Li)
F: deflection magnet
G: Faraday cup
H: neutron detector

Saclay, France

Primary electron beam: E = 45MeV
Final gamma beam: E = 5-40MeV
       ∆E

γ
 = 140keV at E

γ
 = 10MeV

Lawrence Livermore Natl. Lab., USA



Gamma Beam Systems:
Coulomb Excitation (I)

+
γ*

γ*
+

b

A

B

E
beam

<B
C
: standard method to study low-lying collective modes.

Peripheral (b>R
A
+R

B
) ion collisions via virtual photon exchange.
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Coulomb Excitation (I)

– rely on models to get energy distribution
– separate from nuclear reactions: forward θ~0o,
   various kinematic cuts (e.g. Bρ/Bρ

0
)

+
γ*

γ*
+

b

A

B

E
beam

<B
C
: standard method to study low-lying collective modes.

Peripheral (b>R
A
+R

B
) ion collisions via virtual photon exchange.

● inelastic (p,p'γ) or (α,α'γ)
✔ E1 component is singled out as Coulomb excitation dominant at θ~0o

✔ other components (M1) are difficult to separate from nuclear reactions
● inverse kinematics heavy ions

✔ used for photo-fission studies (small sensitivity on <E
γ
*>)

✔ probablity of electromagnetic reaction increases with Z
A
, Z

B
 and E

beam
✔ kinematic boost of reaction products: higher energy resolution for both KE and (A,Z)

● radioactive isotope beams
✔ replace primary stable beam with secondary radioactive isotope beam

C.A. Bertulani, A. Gade
Phys. Rep. 485 (2010) 195
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Coulomb Excitation (II)

SOFIA @ GSI:
– 238U beam at 750MeV/n on U and Pb targets → E

γ*
<25MeV , σ

EM
≈2b (σ

reac
≈13.4b)
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Chambers): ΔE~Z2 (higher resolution)
MWPC (MultiWire Proportional
Chamber): (x,y) position for Bρ
ALADIN: large acceptance magnet
Scintillator wall: TOF
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Gamma Beam Systems:
Summary

● Bremsstrahlung:
✔ simplest method to get high γ flux
✗ large ~1/E background: spectrum deconvolution, low ΔE~200keV
✗ small polarization: ranges within 0-40%
✗ no (E,θ) correlation, weak forward focusing

● Photon tagging:
✔ significant ΔE improvement (~35keV)
✗ lower γ flux
✗ same problems with large ~1/E background

● Positron annihilation:
✔ high energy peak: target specific processes, better ΔE than BR
✔ high γ flux
✔ (E,θ) correlation, better forward focusing
✗ large ~1/E background still present

● Coulomb excitation:
● not a γ beam system, its own niche of photonuclear studies

→ Inverse Compton Scattering (ICS) systems are the most promising alternative
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Thomson scattering (up to soft X-rays): ε<<m
e
c2=511keV → ε'≈ε



Compton Scattering:
Cross Section (I)
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Fyenman diagrams at tree level:
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4 pe pγ
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d3 p ' e
(2π)32E ' e

d 3 p 'γ
(2 π)32E 'γ
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π re
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e4
|M|
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final state phase space factor

classical electron radius: re≡
ℏ α

mec
≈2.82 fm

For full calculation: L.D. Landau and E.M. Lifshitz “Quantum Electrodynamics”
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Thomson scattering (up to soft X-rays): ε<<m
e
c2=511keV → ε'≈ε at high energies Compton

scattering is forward peaked

Final photon Stokes vector ξ'=(ξ'
x
,ξ'

y
,ξ'

z
) has a more complicated

dependence on the initial photon Stokes vector ξ=(ξ
x
,ξ

y
,ξ

z
), but 

at high energies polarization is almost entirely transferred!
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Inverse Compton Scattering (ICS): Compton scattering of a low energy laser photon (~eV) on
an ultra-relativistic electron (hundreds MeV).

(a) frame S before collision: high-energy electron and low-energy photon move towards each other
(b) frame S' before collision: Lorentz boost of the photon to S' → hν'≈γ(1+β)hν
(c) frame S' after collision: energy correction due to small electron recoil Δ → hν'

s
≈hν'−Δ

(d) frame S after collision: Lorentz boost of the photon to S → hν
s
≈γ(1+β)hν'

s

S: laboratory frame

S': electron rest frame

γ>>1: electron's 
relativistic factor

ϵ '≈γ
2
(1+β)2ϵ≈4 γ

2
ϵ Example: ε=2.4eV, E

e
=720MeV, γ=1410 → ε'≈19MeV
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amplitude of the vector potential
associated to the laser e.m. field)
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Minimum γ energy set by collimation, using the strong (E,θ) correlation
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Trade-offs can be made between beam focusing, energy resolution and beam intensity.
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K. Dupraz et al.
Phys. Rev. ST Accel. Beams 17 (2014)



ELI-NP Gamma Beam Systems

laser rep. rate 100Hz → “dragon-shaped” laser recirculation system at IP

K. Dupraz et al.
Phys. Rev. ST Accel. Beams 17 (2014)

Gamma beam collimation system:
– low gamma transmission: tungsten 2cm thick
– adjustable aperture (BW): continuously in 1-20mm
– avoid beam contamination (radiation): 14 slits at 25.7o



Inverse Compton Scattering at ELI-NP 

Photon inverse scattering on ultra-relativistic electrons:
– most powerful frequency amplifier: eV → MeV
– high energy resolution: ~0.5% (but 0.3% reachable) 
– strong forward focusing: divergence ~ 0.1 mrad
– strong (E,θ) correlation: hardening via collimation
– almost complete linear polarization: >99%
– high intensity 1012 γ/s, spectral density 105 γ/s/eV, brilliance 1020-1023 γ/(s∙mrad2∙mm2∙0.1%BW)
→ we have a real photon accelerator
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HIGS @ TUNL/Duke
current state-of-the-art

Energy: 1-100MeV
Total Flux: 106-3∙109 γ/s

Accelerator: Storage Ring 0.2-1.2GeV
Laser: FEL 1060-190nm (1.17-6.53eV)

Vast research program:
– NRF (138Ba, 88Sr, 92Zr, 94Mo, 40Ar)
– nuclear astrophysics
– γ–3He/4He photodisintegration
– national security applications 

SD
γ/s/eV

BW
%

spot bunch
cross.

P
%

HIGS 102 3 cm MHz 99

ELI-NP 104 0.5 mm kHz 99
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