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Periodic table
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Nuclear landscape
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Why exotic?

● far from stable nuclei
● complicatedly available

strange 
in other 

way

too 
heavy

or



What’s 
going on?
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FAIR

U400M
hall

SPIRAL 2

FRIB

RIBF

Modest vs. big, bigger, the biggest
Huge increase in the scale 

of modern RIB facilities
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U400M
hall

SPIRAL 2

FRIB

RIBF

Modest vs. big, bigger, the biggest

Facility for 
Antiproton and 
Ion Research:
●10 member states
●scientists from more 
than 50 countries

●20 years of construction
●1,6 billions euro
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Radioactive ion beams
acceleration of a primary beam (I~1012 pps)
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Radioactive ion beams
acceleration of a primary beam (I~1012 pps)
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Radioactive ion beams

ISOL technique
• reactions in a thick production target:

(fast production – slow release) 
• reaction products to be extracted, ionized and 

reaccelerated
• secondary beam: (I<108 pps)

acceleration of a primary beam (I~1012 pps)
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Radioactive ion beams

ISOL technique
• reactions in a thick production target:

(fast production – slow release) 
• reaction products to be extracted, ionized and 

reaccelerated
• secondary beam: (I<108 pps)

acceleration of a primary beam (I~1012 pps)

reactions on a physical target
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Radioactive ion beams

In-Flight Production
• reactions on a thin production target
• secondary beam: fragment-separator (I<106 pps)

ISOL technique
• reactions in a thick production target:

(fast production – slow release) 
• reaction products to be extracted, ionized and 

reaccelerated
• secondary beam: (I<108 pps)

acceleration of a primary beam (I~1012 pps)

reactions on a physical target
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Examples of RIB facilities

● In flight
– GANIL (France), RIKEN (Japan), 

GSI (Germany), MSU (USA)
● ISOL

– REX-ISOLDE (CERN), SPIRAL (France), 
TRIUMF (Canada)

● Other
– Sao Paolo (Brazil), Orsay (France), 

Catania (Italy), Oak Ridge (USA), 
Jyvaskyla (Finland), Dubna



FLNR itself
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Nuclear physics in FLNR

● Heavy and superheavy elements
– synthesis of superheavy nuclei

– nuclear spectroscopy

– mass spectrometry

● Light exotic nuclei
– properties and structure of light exotic nuclei

– reactions with exotic nuclei



FLNR accelerator complex

U400M

DRIBs

MT25

U200

IC100

Nuclear physics with stable & RI-beams

U400M 
&SC ECR

Production & 
studies of the 
exotic nuclei

Applied
research

U400R

Current state of FLNR

Nano/Lab

1500m2



FLNR accelerator complex

U400M

DRIBs

MT25

U200

IC100

Nuclear physics with stable & RI-beams

U400M 
&SC ECR

Nano/Lab

1500m2

1500m21000m2

DC-280 new

SHE FactorySHE Factory

Production & 
studies of the 
exotic nuclei

Applied
research

U400R
upgraded

Full-scale realization of the DRIBs-III 
Dubna Radioactive Beams



Superheavy elements factory



SHE: Island of stability

Island of stability:
● set of predicted heavy 

transuranium isotopes
● much more stable than 

nuclei around uranium
● centered around 

Z = 114 and N = 184



SHE: to the Island of Stability

● low-energy physics
● compound nucleus
● combination of light and 

heavy nuclei gives 
higher cross sections

synthesis of superheavies

Z
1
 + Z

2
 = Z

N
1
 + N

2
 = N + (2 – 4)n

“cold” fusion: Pb + heavy ion

“hot” fusion: light beam + heavy target



SHE: synthesis of superheavies
beam

● 48Ca
● 254 MeV; 1011 pps
● ~250 000 USD/g

recently synthesized
● 2002: 118th element
● 2010: 117th element

targets

● 249Bk (117), 251Cf (118)

● T
1/2

 = 330 d, 900 y

● much more expensive 
than beam

● delivered by LLNL

GFRS
Gas Filled 

Recoil Separator

in collaboration with LLNL (USA)



Periodic table (~150 years ago)



Periodic table today
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ACCULINNA

● stable beams transportation

● radioactive ion beams

● the only working RIB facility in JINR
● in-flight technique
● beams up to 26S

E
beam 

~ 10 – 45 MeV/A

I
beam

 ~ 103 – 106 pps

unique 
combination of 
tritium beam 
and target
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ACCULINNA-2

● energy range 6 – 60 MeV/A
● beam intensities higher in 2 orders
● Z

RIB
 ~ 1 – 36

first beam: 
November 2016
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New megascience project
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New megascience project
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Why exotic?

● far from stable nuclei
● complicatedly available

strange 
in other 

way

too 
heavy

or
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Drip-line

Limits of 
nuclear 
structure

Continuum
dynamics

Continuous 
spectrum

Discrete 
spectrum

0

ET

Stationary states

Quasistationary states

J. Erler et al., Nature 486 
(2012) 509

moving away from the nuclear stability → 
transition from discrete spectrum to continuum 
→ immediate emission of nucleon
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Nuclear halo

„classic“ 
nucleus

nuclear 
skin

nuclear 
halo
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● tunneling to the forbidden regions
● extended size of nucleus

neutron halo neutron layer

Nuclear halo

B. Jonson P.G. Hansen. The 
Neutron Halo of Extremely 
Neutron-Rich Nuclei. Europhys. 
Lett., 4(4):409–414, 1987
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neutron halo neutron layer

Nuclear halo

First observation 
of 6He

T. Bjerge. Radio-Helium. 
NATURE, 137, 865, 

138:400–400, 1936!!!

Observation of 
large 6He radius

I. Tanihata et al., Physics 
Letters B, 160(6):380–

384, 1985.
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Borromean nuclei

`

M.V. Zhukov et al., Bound 
state properties of 
Borromean halo nuclei: 6He 
and 11Li. Physics Reports, 
231(4):151–199, 1993
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GDR
● protons vs. neutrons

● EGDR ~ 14 – 24 MeV

● induced by EM excitation

Soft dipole mode (SDM) of Giant 
dipole resonance (GDR)
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GDR
● protons vs. neutrons

● EGDR ~ 14 – 24 MeV

● induced by EM excitation

SDM
● halo vs. core

● ESDM lower than EGDR

● induced by EM 
excitation and charge-
exchange reaction

Soft dipole mode (SDM) of Giant 
dipole resonance (GDR)
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GDR
● protons vs. neutrons

● EGDR ~ 14 – 24 MeV

● induced by EM excitation

SDM
● halo vs. core

● ESDM lower than EGDR

● induced by EM 
excitation and charge-
exchange reaction

Excitation energy

Soft dipole mode (SDM) of Giant 
dipole resonance (GDR)
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Radioactivity and decays

α decay
E. Rutherford, 1899

β- decay
H. Becquerel, 1886

β+ decay
F. and I. Joliot-Curie, 

1932

p rad.
S. Hoffman,

1982

2p rad.
M. Pfützner,

B. Blank,
2002

(multi)-n 
radioactivity

still waiting

cluster 
emission
H. Rose,

1984
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Proton radioactivity

p-radioactivity
natural generalization 

of α-radioactivity
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Proton radioactivity

p-radioactivity
natural generalization 

of α-radiactivity

2p-radioactivity
no analogue in 

classical mechanics
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Proton radioactivity

p-radioactivity
natural generalization 

of α-radiactivity

2p-radioactivity
no analogue in 

classical mechanics

45Fe, 19Mg, 54Zn,
48Ni, 67Kr, 94mAg
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Neutron radioactivity

2n decays 4n decays

              

A-2 n

n

A-2 n

n

A-4 n

n

n
n

5H, 10He, 26O, … 7H, 18Be, 28O, ...
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General tasks

1) existence of the isotope

2) mass of the isotope

3) decays

4) eventually Jπ identification



47

Ion identification

nucleus

d
et

e 
ct

o
r

d
et

e 
ct

o
r
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Ion identification
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Ion identification

mean energy loss
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Ion identification
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Mass measurement

● mass spectrometers
● calculations from decay 

kinematics
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Decays

nucleus

d
et

e 
ct

o
r

d
et

e 
ct

o
r
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Decays

d
et

e 
ct

o
r

d
et

e 
ct

o
r

reaction
products
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Decays

d
et

e 
ct

o
r

d
et

e 
ct

o
r

reaction
products



3-body decays

Jacobi
coordinates

in momentum
representation

k
x
, l

x

k
y
, l

y

N
2

core

N
1

T-system

θ
k

k
x
, l

x

k
y

N
2 N

1

Y-system

core

θ
k

2-body vs. 3-body decay

● 2 parameters for 2-body decay (E,Γ)

● 5 additional parameters at given 
energy for 3-body decay
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Correlations
 full description of the internal correlations by parameters ε and θ

k

 external correlations:
3-body system
orientation

k
x
, l

x

k
y
, l

y

N
2

core

N
1

θ
k
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Correlations
 full description of the internal correlations by parameters ε and θ

k

 external correlations:
3-body system
orientation

k
x
, l

x

k
y
, l

y

N
2

core

N
1

θ
k



58

quasibinary 
kinematics

 useful when a few overlapping states present
 total angular momentum is determined by 

emission angle of the core

l
x

l
y

N
2

core

N
1

θ
k

Legendre 
polynomials 

can be visible

External correlations
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Available experimental methods

● ion-implantation method
● decay-in-flight by tracking 

technique
– information on life-time accessible
– identification of 2p-decay 

channels by correlations
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Optical Time Projection Chamber

lifetime range:

100 ns – 1 s beam
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Optical Time Projection Chamber

A.A. Lis et al., Phys. Rev. 
C91 (2015) 064309

45Fe

CCD

M. Pfützner et al., 
Eur.Phys.J. A, 14(3), 

2002

lifetime range:

100 ns – 1 s beam
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Decay-in-flight by tracking

fragmentation
in target

2p-decay
in flight

decay
vertex

successfully used in series
of experiments (e.g.)

● I. Mukha et al., PRC 77 (2008) 061303
● I. Mukha et al., PRC 82 (2010) 054315
● I. Mukha et al., PRL 115 (2015) 202501
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Life-time measurement by tracking

● characteristic
shape of vertices 
distribution

● suitable for lifetimes 
10-7 – 10-12 s
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Identification of 2p-decay channels
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Identification of 2p-decay channels
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Identification of 2p-decay channels

● transition k
p-HI

→θ
p-HI

● without measurement
of proton energies

16NeI. Mukha et al. Phys. Rev. C 
82 (2010) 054315 
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Identification of 2p-decay channels

● transition k
p-HI

→θ
p-HI

● without measurement
of proton energies

16Ne

true 2p 
decay

I. Mukha et al. Phys. Rev. C 
82 (2010) 054315 



ACCULINNA experiment



ACCULINNA experiment

MWPC

Plastic-
Veto

DSSD 
+SSD

DSSD 
+SSD’s

tritium 
target

SSD’s

6He, 8He
Beams

E~28AMeV

69Seminar AGH, 3-rd of April

8He + 3H → p + 10He
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6Be: Invariant mass spectrum

 0+, 2+ states
 broad hump 

at E
T
 > E

T
(2+)

IVSDM
A.S. Fomichev et al.,

PLB 708, 2012 

E
T
 – excitation energy 

above the α +p + p 
threshold

2+

0+

hump
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6Be: Internal correlations

 test on 0+ ground state (no 
free parameters)

 overlapping states 0+ and 2+

 2+ alignment
 Interference of 0+ and 2+

pure 0+

2+ and 0+

low sensitivity of internal correlations to 
model parameters

Theoretical model

PWIA in combination with 
3-body model



Jπ determined 
by emission 
angle of α

6Be: Quasibinary kinematics

4He

p
2

p
1



aligned

nonaligned

constructive incoherent destructive

E
T
 ∈ (1.9,2.5) MeV

θ
Be

 ∈ (60,75)°

 dramatic changes of the θ
α 
distributions 

depending on the model parameters

 level of alignment and interference angle 
is changing with E

T
 and θ

Be

6Be: External correlations



 dramatic changes of the θ
α 
distributions 

depending on the model parameters

 level of alignment and interference angle 
is changing with E

T
 and θ

Be

such detailed 
analysis was done 

for the first time

experimental sensibility to Jπ 
orientation and interference between 
0+ and 2+

aligned

nonaligned

constructive
interference

incoherent
interference

destructive
interference

E
T
 ∈ (1.9,2.5) MeV

θ
Be

 ∈ (60,75)°

6Be: External correlations



75

10He: Missing mass spectrum

● missing mass spectrum 
from protons measured 
in coincidence with 8He

● 479 events found

● population of 0+ ground state with maximum at ET~2.1 MeV

● structureless spectrum for ET>4 MeV

0+?

2.1 MeV

S.I. Sidorchuk et al.
Phys. Rev. Lett. 108 

202502 (2012)



76

10He: Correlations

0+?

2.1 MeV

 

8He

n
n

8He)

quasibinary 
kinematics

● Jπ is fully determined by L of 8He
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10He: Correlations

● Jπ of the ground state confirmed by the experimental data analysis

● Jπ of the 1- states determined from experimental data for the first time

s-wave

2+ ?

1-

0+

2.1 MeV

p-wave

d-wave



Conclusion and outlook

● extensive field for pioneering research
● 3000 isotopes known, 3000 to be 

discovered
● new RIB factories constructed 

worldaround
● new facility in Dubna, new plans for the 

future (ERICA)
● new research methods Thank for 

attention



End
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Spin-parity identification

Standard methods:
– Elastic resonance scattering
– Direct reactions
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Elastic resonance scattering

● fit to R-matrix
● unambiguous Jπ identification
● constrains: 

– width of resonance
– existing beams
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Direct reactions

● angular distribution of products
– using (e.g. DWBA) ΔL may be 

determined
● “zero geometry“ approach
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Zero geometry approach

L = 0
S = 0

L = 0
S = 0

J = ΔL
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Zero geometry approach

L = 0
S = 0

L = 0
S = 0

J = ΔL

L = 0
S = 0

J = ΔL
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Zero geometry approach

L = 0
S = 0

L = 0
S = 0

J = ΔL

J = ΔL

L = 0
S = 0
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Zero geometry approach

● constrains:
– spinless reaction participants
– high reaction cross section needed

● it can be easily generalized 
→ correlation patterns
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EXPERT: Experimental setup
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EXPERT: Experimental setup
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EXPERT: Experimental setup
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EXPERT: Experimental setup



91

EXPERT: Experimental setup
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EXPERT: Experimental setup



OTPC



NeuRad
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NeuRad
● neutron radioactivity studies 
● E

n
 ~ 200 – 800 MeV in LAB

● low transverse momenta
0.1 – 100 keV

● precise information on angular
correlations of decay neutrons with
a charged fragment

● angular resolution ~0.1 – 0.2 mrad

28 m from the target 
in FMF2

at least 36 modules
30 x 30 x 100 cm3
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NeuRad
bundles

● 3 x 3 mm scintillation fibers BCF12
● 48 x 48 x 1000 mm
● 2 MAPMT from both sides

neutron beam

• longitudinal coordinate of the n interaction 
along the fiber

• determination the very first hit
• avoid neutron cross-talk
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NeuRad
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NeuRad
bundles

● 3 x 3 mm scintillation fibers BCF12
● 48 x 48 x 1000 mm
● 2 MAPMT from both sides

neutron beam

• longitudinal coordinate of the n interaction 
along the fiber

• determination the very first hit
• avoid neutron cross-talk
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Appendix: Nuclear halo

Stable nuclei

Exotic nuclei

neutron halo

one neutron:one neutron:  1111Be, Be, 1919CC
two neutron:two neutron:  66He, He, 1111Li, Li, 1717B,B,

        1919B, B, 2222CC
neutron skin:neutron skin:  88He and He and 1414BeBe

proton halo

g.s. ofg.s. of  88B, B, 1313N, N, 1717Ne, Ne, 2626P, P, 2727SS
the first e.s. ofthe first e.s. of  1717FF
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Appendix: Dipole modes

● property of particular 
nucleus

● its population does not 
depend on reaction 
mechanism

● characteristic for 
specific reaction

● its population is given 
by reaction mechanism

resonance vs. mode
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Appendix: microStrip detectors



Hardware



NeuRad
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NeuRad
● neutron radioactivity studies 
● E

n
 ~ 200 – 800 MeV in LAB

● low transverse momenta
0.1 – 100 keV

● precise information on angular
correlations of decay neutrons with
a charged fragment

● angular resolution ~0.1 – 0.2 mrad

28 m from the target 
in FMF2

at least 36 modules
30 x 30 x 100 cm3
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NeuRad
bundles

● 3 x 3 mm scintillation fibers BCF12
● 48 x 48 x 1000 mm
● 2 MAPMT from both sides

neutron beam

• longitudinal coordinate of the n interaction 
along the fiber

• determination the very first hit
• avoid neutron cross-talk
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NeuRad
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NeuRad
bundles

● 3 x 3 mm scintillation fibers BCF12
● 48 x 48 x 1000 mm
● 2 MAPMT from both sides

neutron beam

• longitudinal coordinate of the n interaction 
along the fiber

• determination the very first hit
• avoid neutron cross-talk
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Appendix: Theoretical model
● PWIA in combination

with 3-body problem
● task reduced to solving of

Schroedinger equation with source

● transition operator contains information
about population of 6Be from 6Li

● Transition operator takes a “simple” analytical form thanks to 
the choice of the N-N potential used in PWIA

r
1r

N

N
2

α

N
1

r
α2

r
α1

r
2r

r
12

Three-body
system
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NUSTAR
NUclear STructure, 

Astrophysics and Reactions
● HISPEC/DESPEC (High-Resolution 

Spectroscopy/Decay Spectroscopy)

● R3B (Reactions with Relativistic Radioactive Beams)

● MATS (Precision Measurements of very short-lived nuclei with Advanced 
Trapping System)

● LaSpec (Laser Spectroscopy)

● ILIMA (Isomeric Beams, Lifetimes and Masses)

● ELISe (Electron-Ion Scattering in a Storage Ring)

● EXL (Exotic nuclei studied in light-ion induced reactions at the NESR 
storage ring)

● Super-FRS Experiments
● SHE (Super-Heavy Element Research)
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SuperFRS Experiments
● Mass and charge resolution

– Search for new isotopes and ground-state properties

– Atomic collisions

● Unique experiments at Super-FRS as high-energy high-resolution 
spectrometer

– Spectroscopy of meson-nucleus bound system

– Exotic hypernuclei and their properties

– Importance of tensor forces in nuclear structure

– Delta resonances probing nuclear structure

● Experiments taking advantages of multi-stages and high-resolution 
of the Super-FRS

– Nuclear radii and momentum distributions

– EXPERT (EXotic Particle Emission and Radioactivity by Tracking)

– Low-q experiments with an active target

– Nuclear reaction studies and synthesis of isotopes with low-energy 
RIBs
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