Gravitational waves from neutron stars in the era of Advanced LIGO and Advanced Virgo detectors

Michał Bejger (CAMK PAN)

Helmholtz International Summer School "Nuclear Theory and Astrophysical Applications" Dubna | 17.7.17

Outline

- \star Gravitational waves from Einstein's equations,
- \star Detection principles (what is actually measured by interferometers?)
- \star Newtonian intuitions from inspiralling binary system,
- \star Binary neutron stars and rotating neutron stars.

Four fundamental interactions

xkcd/1489

Einstein (1915): gravitation *is* the geometry of spacetime

"Mass tells spacetime how to curve, and spacetime tells mass how to move." (John A. Wheeler)

Gravitation: Newton vs Einstein

- \star Absolute time and space,
- \star deterministic solutions,
- \star Eternal two body systems.

- \star Stable two body system does not exist,
- \star Constant evolution due to the existence of a third "body": the spacetime.

Gravitational waves

Einstein (1916) - in linear regime there are wave solutions to GR equations *(time-varying distortions of the curvature propagating with the speed of light)*:

- \star In realistic astrophysical situations, length-scale of the wave λ is much smaller than other important curvatures \mathcal{L} ,
- \star Split of the Riemann curvature tensor

$$
R_{\alpha\beta\gamma\delta}=R_{\alpha\beta\gamma\delta}^{GW}+R_{\alpha\beta\gamma\delta}^{B}
$$

"Kip Thorne's orange": B - large-scale background ($\mathcal{L} \simeq 10$ cm), GW - fine-scale distortions/waves $(\lambda \simeq$ few mm).

Gravitational waves: indirect evidence

The 50s - breakthrough in theoretical understanding of the nature of the waves:

 \star Herman Bondi, Felix Pirani, Andrzej Trautman (gravitational waves carry energy!)

The 60s - early insight of Bohdan Paczyński:

? *"Gravitational Waves and the Evolution of Close Binaries", AcA 1967* - orbital period evolution of WZ Sge and HZ29 driven by the GW emission.

70s - observations of pulsars in relativistic binary systems (e.g. Hulse-Taylor pulsar):

System is losing energy as if by emittion of gravitational waves in concordance with GR.

Neutron stars in relativistic binaries: PSR J0737-3039

Periastron advance:

$$
\dot{\omega} = 3 \left(\frac{P_b}{2\pi}\right)^{-5/3} (T_{\odot} M)^{2/3} (1 - e^2)^{-1}
$$

 \star Orbit decay:

$$
\dot{P}_b = -\frac{192\pi m_p m_c}{5M^{1/3}} \left(\frac{P_b}{2\pi}\right)^{-5/3} \times
$$
\n
$$
\left(1 + \frac{73}{24}e^2 + \frac{37}{96}e^4\right)\left(1 - e^2\right)^{-7/2}T_0^{5/3}
$$

- \star Shapiro effect: $r = T_{\odot} m_c$ $s = \frac{a_p \sin i}{cm_c} \left(\frac{P_b}{2\pi} \right)^{-2/3} T_{\odot}^{-1/3} M^{2/3}$
- ? Gravitational redshift:

$$
\gamma = \\ {\rm e} \left(\frac{P_b}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_c (M + m_c)
$$

where $\mathcal{T}_\odot = G M_\odot / c^3$, $M = m_\rho + m_c$.

Relativistic binaries show a number of effects compatible with GR!

- \star Pulsar A: $P = 22.7$ *ms*, pulsar B: $P = 2.77$ *s*,
- \star Orbital period \simeq 2.4 h,
- eccentricity \simeq 0.08,
- Orbit decay \simeq 7 mm/day.

Detection principle: resonant bars

Pioneered by Joseph Weber in the 1960s:

- \star Passing gravitational wave carries energy \rightarrow induces mechanical vibrations
- \star A narrow-band detector (sensitive near characteristic frequencies of the bar)

Gravitational waves: weak field wave zone

"Ripples" in the "nearly flat" spacetime metric: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, where e.g., $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$, and $|h_{\mu\nu}| \ll 1$ for all μ, ν .

In the weak-field limit *h* is small, 1st order (linear) sufficient: $\hbar_{\mu\nu}=\eta_{\mu\alpha}\eta_{\beta\nu}h^{\alpha\beta}$

Coordinate transformations that preserve "nearly flat" (nearly Lorentz) spacetime:

 \star background Lorentz transformations (boosts with $v \ll 1$),

$$
g'_{\mu\nu} = \eta'_{\mu\nu} + \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} h_{\alpha\beta} = \eta'_{\mu\nu} + h'_{\mu\nu}
$$

 \star Gauge transformations $(\xi^{\mu},\,|\xi^{\mu}_{,\nu}|,\,|\xi_{,\mu\nu}|\ll 1)$:

g 0

$$
x^{\prime \mu} = x^{\mu} + \xi^{\mu} (x^{\nu}), \text{ so that}
$$

$$
\gamma_{\mu \nu}^{\prime} = \eta_{\mu \nu} + h_{\mu \nu} - \xi_{\mu, \nu} - \xi_{\nu, \mu} \to h_{\mu \nu}^{\prime} = h_{\mu \nu} - \xi_{\mu, \nu} - \xi_{\nu, \mu} \ll 1.
$$

Gravitational waves: wave equation

In linear regime, weak field the Riemann tensor is

$$
R_{\alpha\beta\gamma\delta}=\frac{1}{2}\left(h_{\alpha\delta,\beta\gamma}+h_{\beta\gamma,\alpha\delta}-h_{\alpha\gamma,\beta\delta}-h_{\beta\delta,\alpha\gamma}\right).
$$

Ricci tensor:
$$
R_{\mu\nu} = \frac{1}{2} \left(h_{\mu,\nu\alpha}^{\alpha} + h_{\nu,\mu\alpha}^{\alpha} - h_{\mu\nu,\alpha}^{\alpha} - h_{,\mu\nu} \right),
$$

where
$$
h \equiv h_{\mu}^{\mu} = \eta^{\mu\nu} h_{\mu\nu}, \quad h_{\mu\nu,\alpha}^{\alpha} = \eta^{\alpha\gamma} h_{\mu\nu,\alpha\gamma}.
$$

And so... Einstein's equations:

 $R_{\mu\nu}$ $-\frac{1}{2}$ $\frac{1}{2}$ *Rg_{μν}* = $\frac{1}{2}$ 2 $\left(h^{\alpha}_{\mu,\nu\alpha}+h^{\alpha}_{\nu,\mu\alpha}-h^{\alpha}_{\mu\nu,\alpha}-h_{,\mu\nu}-\eta_{\mu\nu}\left(h^{\alpha\beta}_{\alpha\beta}-h^{\beta}_{,\beta}\right)\right).$ Using trace-reversed form, $\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}$ $\frac{1}{2}h\eta_{\mu\nu}$,

$$
R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=-\frac{1}{2}\left(\bar{h}_{\mu\nu,\alpha}^{\alpha}+\eta_{\mu\nu}\bar{h}_{\alpha\beta}^{\alpha\beta}-\bar{h}_{\mu\alpha,\nu}^{\alpha}-\bar{h}_{\nu\alpha,\mu}^{\alpha}\right)^{\text{vacuum}}0.
$$

'Good choice' of gauge (Lorentz gauge $\bar h^{\mu\alpha}_{,\alpha} = 0$) reduces it to

$$
\bar{h}_{\mu\nu,\alpha}^{\alpha} \equiv \eta^{\alpha\alpha} \bar{h}_{\mu\nu,\alpha\alpha} = \left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right) \bar{h}_{\mu\nu} = 0.
$$

Plane gravitational waves

$$
\bar{h}_{\mu\nu} = \text{Re} \left(A_{\mu\nu} \exp \left(i k_{\alpha} x^{\alpha} \right) \right),
$$
\nwith $k_{\alpha} k^{\alpha} = 0 \rightarrow \omega = k^{t} = \sqrt{k_{x}^{2} + k_{y}^{2} + k_{z}^{2}}.$

From the choice of Lorentz gauge: $A_{\mu\alpha}k^{\alpha} = 0$.

Using remaining freedom, apply the transverse-traceless gauge for a wave traveling in the *z* direction:

$$
\star \ \ k^t = k^z = \omega, k^x = k^y = 0, \quad A_{\alpha z} = 0,
$$

 \star $A^{\mu}_{\mu} = \eta^{\mu\nu} A_{\mu\nu} = 0$, $A_{\alpha t} = 0$.

In the TT gauge, $\bar{h}^{(TT)}_{\mu\nu} = A^{(TT)}_{\mu\nu}\cos{(\omega(t-z))}$, with

$$
A_{\mu\nu}^{(TT)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & A_{xx}^{(TT)} & A_{xy}^{(TT)} & 0 \\ 0 & A_{xy}^{(TT)} & -A_{xx}^{(TT)} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
$$
 Also, $\bar{h}_{\mu\nu}^{(TT)} = h_{\mu\nu}^{(TT)}$.

For a free test particle initially at rest, in the coordinate system corresponding to the TT gauge, it stays at rest: coordinates do not change, particles remain attached to initial positions.

TT gauge represents a coordinate system that is comoving with freely-falling particles.

What about the **proper distance** between neighbouring particles?

Detection principle: spacetime distance measurement

(Quentin Blake "Izaak Newton") (Rene Magritte "The Son of Man")

"How to measure distance when the ruler also changes length?"

Proper distance between test particles

Consider two test particles, both initially at rest, one at $x = 0$ and the other at $x = \epsilon$. The proper distance is

$$
\Delta s = \int |g_{\mu\nu} dx^{\mu} dx^{\nu}|^{1/2} \rightarrow \int_0^{\epsilon} |g_{xx}|^{1/2} \approx \epsilon \sqrt{g_{xx}(x=0)}.
$$

If $g_{xx}(x=0) = \eta_{xx} + h_{xx}^{(TT)}(x=0)$, then

$$
\Delta s \approx \epsilon \left(1 + \frac{1}{2} h_{xx}^{(TT)}(x=0)\right),
$$

which, in general, is time-varying $\ddot{\smile}$

Geodesic deviation - effect of tidal forces

Consider two test particles, both initially at rest $(\boldsymbol{\mu}^{\alpha}=(1,0,0,0))$ one at $x=0$ and the other at $x=\epsilon$ (distance between particles $\xi^\alpha = (0, \epsilon, 0, 0)$). Geodesic deviation equation in the weak field (proper time $\tau \approx$ coordinate time *t*).

$$
\frac{\partial^2 \xi^{\alpha}}{\partial t^2} = R^{\alpha}_{\beta \gamma \delta} u^{\beta} u^{\gamma} \xi^{\delta}
$$

simplifies further to

$$
\frac{\partial^2 \xi^{\alpha}}{\partial t^2} = \epsilon R^{\alpha}_{ttx} = -\epsilon R^{\alpha}_{txt},
$$

with $R_{txt}^x = \eta^{xx} R_{xtxt} = -\frac{1}{2}$ $\frac{1}{2}h_{xx,tt}^{(TT)}$, $R_{txt}^{y} = \eta^{yy}R_{ytxt} = -\frac{1}{2}$ $\frac{1}{2}h_{xy,tt}^{(TT)}$

$$
\frac{\partial^2 \xi^x}{\partial t^2} = \frac{1}{2} \epsilon \frac{\partial^2 h_{xx}^{(TT)}}{\partial t^2}, \quad \frac{\partial^2 \xi^y}{\partial t^2} = \frac{1}{2} \epsilon \frac{\partial^2 h_{xy}^{(TT)}}{\partial t^2}.
$$

Geodesic deviation - effect of tidal forces

More general case; $x = \epsilon \cos \theta$, $y = \epsilon \sin \theta$, $z = 0$:

$$
\frac{\partial^2 \xi^x}{\partial t^2} = \frac{1}{2} \epsilon \cos \theta \frac{\partial^2 h_{xx}^{(TT)}}{\partial t^2} + \frac{1}{2} \epsilon \sin \theta \frac{\partial^2 h_{xy}^{(TT)}}{\partial t^2},
$$

$$
\frac{\partial^2 \xi^y}{\partial t^2} = \frac{1}{2} \epsilon \cos \theta \frac{\partial^2 h_{xy}^{(TT)}}{\partial t^2} - \frac{1}{2} \epsilon \sin \theta \frac{\partial^2 h_{xx}^{(TT)}}{\partial t^2}.
$$

with solutions, for the plane wave in the *z* direction,

$$
\xi^{X} = \epsilon \cos \theta + \frac{1}{2} \epsilon \cos \theta A_{xx}^{(TT)} \cos \omega t + \frac{1}{2} \epsilon \sin \theta A_{xy}^{(TT)} \cos \omega t,
$$

$$
\xi^{Y} = \epsilon \sin \theta + \frac{1}{2} \epsilon \cos \theta A_{xy}^{(TT)} \cos \omega t - \frac{1}{2} \epsilon \sin \theta A_{xx}^{(TT)} \cos \omega t.
$$

$The + polarisation$

$$
A_{xx}^{(TT)} \neq 0, A_{xy}^{(TT)} = 0
$$

$$
\xi^{x} = \epsilon \cos \theta \left(1 + \frac{1}{2} A_{xx}^{(TT)} \cos \omega t \right),
$$

$$
\xi^{y} = \epsilon \sin \theta \left(1 - \frac{1}{2} A_{xx}^{(TT)} \cos \omega t \right).
$$

The \times polarisation

$$
A_{xy}^{(TT)} \neq 0, A_{xx}^{(TT)} = 0
$$

$$
\xi^{x} = \epsilon \cos \theta + \frac{1}{2} \epsilon \sin \theta A_{xy}^{(TT)} \cos \omega t,
$$

$$
\xi^{y} = \epsilon \sin \theta - \frac{1}{2} \epsilon \cos \theta A_{xy}^{(TT)} \cos \omega t.
$$

For purely $+$ mode wave ($h = he_+$), fractional change in proper distance is

$$
\frac{\Delta L}{L}=\frac{h}{2}
$$

Gertsenshtein & Pustovit (1962) were first to suggest an interferometer to detect GWs. In the 70s Rainer Weiss (MIT) had the same idea → LIGO

Detection principle: laser interferometry

"How to measure distance when the ruler also changes length?"

Changes in arms length are **very** small: $\delta L_x - \delta L_y = \Delta L \le 10^{-18}$ m (smaller than the size of the proton). Wave amplitude $h = \Delta L/L \leq 10^{-21}$.

Change of arms' length \leftrightarrow variation in light travel time

Change of the x-arm: $ds^2 = -c^2 dt^2 + (1 + h_{xx}) dx^2 = 0.$

Assume *h*(*t*) is constant during light's travel through $\frac{1}{n}$ and $\frac{n}{t}$ is constant during lights travel through interferometer, replace $\sqrt{1 + h_{xx}}$ with $1 + h_{xx}/2$, integrate from $x = 0$ to $x = L$:

$$
\int dt = \frac{1}{c} \int \left(1 + \frac{1}{2} h_{xx}\right) dx \quad \rightarrow \quad t_x = h_{xx} L/2c.
$$

Round-trip time in the x-arm: $t_x = h_{xx}L/c$.

Round-trip time in the y-arm: $t_v = -hL/c$ ($h_{vv} = -h_{xx} = -h$)

Round-trip times difference:

$$
\boxed{\Delta\tau=2\hbar L/c}
$$

Phase difference (dividing ∆τ by the radian period of light $2\pi/\lambda$:

$$
\Delta \phi = \frac{4\pi}{\lambda} hL = \frac{2\pi c}{\lambda} h\tau.
$$

- \star Do test masses move in response to a gravitational wave?
	- \star No, in the TT gauge (free-falling masses define the coordinates),
	- \star Yes, in the laboratory coordinates (masses move affected by tidal forces).
- \star Do light wavelength change in response to a gravitational wave?
	- \star No (see above),
	- \star Yes, stretch by *h* as the masses move (as in the cosmological redshift).
- \star If light waves are stretched by gravitational waves, how can light be used as a ruler?
	- \star Indeed, the instantaneous response of an interferometer to a gravitational wave is *null*.
	- \star But the light travels through the arms for some finite time allowing for the phase shift to build up.

See also Saulson, P.R. (1997), *Am. J. Phys*. 65, 501

How the sensitivity curve looks like?

Initial LIGO proposal (1989)

 \star Range of frequencies similar to human ears:

From 20 Hz (H0) to a few thousands Hz (3960 Hz, H7) - 8 octaves.

 \star Poor, like for an ear, angular resolution.

Antenna patterns

- Interferometers have a broad antenna pattern
	- Cannot locate direction of the source with a single detector
	- Can scan large portions of the sky simultaneously

Beam patterns of networks

Orders of magnitude comparison

- \star GW150914: *h* = Δ*L*/*L* \simeq 10⁻²¹
- \star Two neutron stars merging near Sgr A $^*\colon\!\sim10^{-19}$
- \star Io orbiting Jupiter: \sim 3 \times 10⁻²⁵
- ? Hulse-Taylor pulsar: ∼ 10−²⁶
- \star Dumbbell 1 tonnes masses, 1 m arm from 300 m: \sim 10⁻³⁵
- \star Collision of two aircraft carriers: 5 × 10⁻⁴⁶
- \star Angry protester shaking her fist: \sim 7 \times 10⁻⁵²
- \star Tennis ball rotating on 1 m string, from 10 m: \sim 10 $^{-54}.$
- \star The amplitude $h = \Delta L/L \leq 10^{-21}$ corresponds to the distance measurement between Earth and Sun with the accuracy of the size of the atom $(10^{-10}$ m)
- ? Ground motion amplitude near the detector: ∆*L* ∼ 10[−]⁶ m (10¹² × *h*)
- \star Laser wavelength: 10⁻⁶ m (10¹² × *h*)

Astrophysical sources: binary systems

(Hokusai "The Great Wave off Kanagawa")

One-time cataclismic events well described by models, e.g. last moments of the binary system of

- \star black holes.
- \star neutron stars,
- \star black hole and a neutron star.

Binary black hole merger simulation (C. Henze/NASA

Ames Research Center)

Astrophysical sources: "bursts"

(Isoda Koryûsai "The crane, waves and the rising sun")

One-time events difficult to model, e.g.

- \star supernova explosions,
- \star magnetar & gamma-ray bursts.

Crab nebula, supernova 1054CE remnant

Astrophysical sources: continuous waves

Periodic phenomena, e.g.

 \star rotating non-axisymmetric neutron stars ("*gravitational pulsars*").

(Shoson "Cranes landing")

Astrophysical sources: stochastic background

(Utagawa Hiroshige "Crowds Visiting the Shrine of

Stochastic background:

- \star waves emitted by the population of objects,
- \star waves from the early Universe.

Benzaiten")

Gravitational waves: some estimates

For a spherical wave of amplitude *h*(*r*), flux of energy is $F(r) \propto h^2(r)$ and the luminosity $L(r) \propto 4\pi r^2 h^2(r)$. Conservation of energy demands

 $\implies h(r) \propto 1/r$.

Radiating modes: quadrupole and higher

For a mass distribution $\rho(r)$, conserved moments:

- \star monopole $\int \rho(r) d^3r$ total mass-energy (energy conservation),
- \star dipole $\int \rho(r) r d^3 r$ center of mass-energy (momentum conservation).

Evolution of a binary system

Gravitational waves: some estimates

GWs correspond to accelerated movement of masses.

Consider a binary system of *m*¹ and *m*2, semiaxis *a* with

- \star total mass $M = m_1 + m_2$,
- \star reduced mass $\mu = m_1 m_2/M$,
- \star $\,$ mass quadrupole moment Q \propto $\,$ $\!$
- \star Kepler's third law $GM = a^3\omega^2$.

Gravitational waves: quadrupole approximation

The quadrupole approximation (slowly-moving sources, Einstein 1918), wave amplitude is

$$
h^{\mu\nu} = \frac{2}{r} \frac{G}{c^4} \ddot{Q}^{\mu\nu}, \quad \text{or, in terms of kinetic energy,} \quad h \sim \frac{E_{kin.}}{r}
$$

Resulting GW luminosity is

$$
L_{GW} \equiv \frac{dE_{GW}}{dt} \approx \frac{1}{5} \frac{G}{c^5} \langle \dddot{Q}^{\mu\nu} \dddot{Q}_{\mu\nu} \rangle
$$

$$
\propto \frac{G}{c^5} Q^2 \omega^6 \propto \frac{G^4}{c^5} \left(\frac{M}{a}\right)^5 \propto \frac{c^5}{G} \left(\frac{R_s}{a}\right)^2 \left(\frac{V}{c}\right)^6.
$$

$$
(R_s = 2GM/c^2, c^5/G \simeq 3.6 \times 10^{52} \text{ Joule/s})
$$

Binary system: evolution of the orbit

Waves are emitted at the expense of the orbital energy:

$$
E_{orb}=-\frac{Gm_1m_2}{2a},\qquad \frac{dE_{orb}}{dt}\equiv \frac{Gm_1m_2}{2a^2}\dot{a}=-\frac{dE_{GW}}{dt}.
$$

Evolution of the semi-major axis:

$$
\frac{da}{dt} = -\frac{dE_{GW}}{dt} \frac{2a^2}{Gm_1m_2} \rightarrow \frac{da}{dt} = -\frac{64}{5} \frac{G^3}{c^5} \frac{\mu M^4}{a^3}.
$$

The system will coalesce after a time τ ,

$$
\tau = \frac{5}{256} \frac{c^5}{G^3} \frac{a_0^4}{\mu M^4},
$$

where a_0 is the initial separation.

Binary system: chirp mass

Waves are emitted at the expense of the orbital energy:

$$
E_{orb}=-\frac{Gm_1m_2}{2a},\qquad \frac{dE_{orb}}{dt}\equiv \frac{Gm_1m_2}{2a^2}\dot{a}=-\frac{dE_{GW}}{dt}.
$$

Resulting evolution of the orbital frequency ω :

$$
\dot{\omega}^3 = \left(\frac{96}{5}\right)^3 \frac{\omega^{11}}{c^{15}} G^5 \mu^3 M^2 = \left(\frac{96}{5}\right)^3 \frac{\omega^{11}}{c^{15}} G^5 \mathcal{M}^5,
$$

where $\mathcal{M} = \left(\mu^3 M^2 \right)^{1/5} = (m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}$ is the chirp mass. GWs frequency from a binary system is primarily twice the orbital frequency $(2\pi f_{GW} = 2\omega)$. Hence M is a directly measured quantity:

$$
\mathcal{M} = \frac{c^3}{G} \left(\frac{5}{96} \pi^{-8/3} f_{GW}^{-11/3} \dot{f}_{GW} \right)^{3/5}
$$

Binary system: emitted energy

End of the chirp f^c_{GW} is related to critical distance between masses *afin*:

$$
a_{\text{fin}} = R_{s1} + R_{s2} = \frac{2G}{c^2} (m_1 + m_2).
$$

It can be used to estimate the total mass *M*:

$$
M=m_1+m_2\approx \frac{c^3}{2\sqrt{2}G\pi}\frac{1}{f_{GW}^c}.
$$

Energy emitted during the life of the binary system:

$$
E = E_{ms} + E_{orb} = (m_1 + m_2) c^2 - \frac{Gm_1m_2}{2a}
$$

(for $m_1 = m_2$, $a_{fin} = 2R_s = 4Gm_1/c^2$, ∆*E* ≈ 6%).

Parameter estimation basics (GW510914) GW amplitude dependence for a binary system

$$
h \propto \mathcal{M}^{5/3} \times f_{GW}^{2/3} \times r^{-1}
$$

where M is the chirp mass, $\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$ $\frac{(m_1 m_2)}{(m_1 + m_2)^{1/5}}$, known from the observations:

$$
\mathcal{M} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f_{GW}^{-11/3} f_{GW} \right]^{3/5}
$$

From higher-order post-Newtonian corrections: $q = m_2/m_1$, spin components parallel to the orbital angular momentum...

 $\mathcal{M} \simeq 30 M_\odot \Longrightarrow M = m_1 + m_2 \simeq 70 M_\odot$ (if $m_1 = m_2,~M = 2^{6/5} \mathcal{M}$)

8 orbits observed until 150 Hz (orbital frequency 75 Hz):

- \star Double neutron star system compact enough, but too light,
- \star Neutron star-black hole system black hole too big, would merge at lower frequency.
- \rightarrow Double black hole binary.

LIGO O1: 2 ("and a half") events

Optimal signal-to-noise
$$
\rho
$$
: $\rho^2 = \int_0^\infty \left(\frac{2|\tilde{h}(f)|\sqrt{f}}{\sqrt{S_n(f)}} \right)^2 d\ln(f)$

(GW150914: $\rho \simeq$ 24, GW151226: $\rho \simeq$ 13, LVT151012: $\rho \simeq$ 10)

Binary coalescence search

In general, signal model lives in 17D parameter space: masses, spins, eccentricity of the orbit, its orientation, polarization angle, position of the binary, distance, epoch of coalescence and phase of the signal.

Matched filtering

Assuming a signal model *h*, looking for the "best match" correlation *C*(*t*) in data stream *x*, for a given time offset *t*

Rewrite correlation using Fourier transforms

$$
C(t) = 4 \int_0^\infty \tilde{x}(t) \tilde{h}^*(t) e^{2\pi i t t} dt
$$

(an inverse FT of $\tilde{x}(f)\tilde{h}^*(f)$). In practice, optimal matched filtering with the frequency weighting

$$
C(t) = 4 \int_0^\infty \frac{\tilde{x}(t)\tilde{h}^*(t)}{S_n(t)} e^{2\pi i t t} dt
$$

 $S_n(f)$ - noise power spectral density

Matched filter in pictures

(from Riccardo Sturani's talk)

LIGO SENSITIVITY DURING FIRST OBSERVING RUN (O1)

BINARY NEUTRON STARS (BNS)

Binary inspiral vs the sensitivity curve

The so-called *Newtonian* signal at instantaneous frequency *fGW* is

$$
h = Q(\text{angles}) \times \mathcal{M}^{5/3} \times f_{GW}^{2/3} \times r^{-1} \times e^{-i\Phi}.
$$

where the signal's phase is

$$
\Phi(t)=\int 2\pi f_{GW}(t')dt'.
$$

The relation between *fGW* and *t*

$$
\pi \mathcal{M} f_{\text{GW}}(t) = \left(\frac{5\mathcal{M}}{256(t_c - t)}\right)^{3/8}
$$

The orbital velocity

$$
v \propto (\pi \mathcal{M} f_{GW})^{1/3}
$$

Binary inspiral vs the sensitivity curve

Match filtering means that the signal is integrated as is sweeps through the range of frequencies.

Sensitivity curves most often show the effective (match-filtered) *heff* , and not the instantaneous *h*.

Order-of-magnitude estimation of the frequency slope:

$$
h_{\text{eff}} \propto \sqrt{N_{\text{cycles}}} \; h \propto \sqrt{t} \; h \propto \sqrt{f \times f^{-8/3}} \times f^{2/3} = f^{-1/6}.
$$

Binary inspiral vs the sensitivity curve

Actually used in estimating the SNR is the frequency-domain match-filtering signal model $\tilde{h}(f)$ (Fourier transform of $h(t)$),

$$
\tilde{h}(f) = Q(\text{angles}) \sqrt{\frac{5}{24}} \pi^{-2/3} \frac{\mathcal{M}^{5/6}}{r} f_{GW}^{-7/6} e^{-i\Psi(f)},
$$

where the frequency domain phase Ψ is

$$
\Psi(f) \equiv \Psi_{PP}(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3M}{128\mu\text{V}^{5/2}} \sum_{k=0}^{N} \alpha_k \text{V}^{k/2}.
$$

Note that the above equations are for point particles! Of course, at the end of inspiral, for a few last orbits

$$
\Psi(f) = \Psi_{PP}(f) + \Psi_{tidal}(f)
$$

Binary system: source distance estimate

- \star At cosmological distances, the observed frequency f_{GW} is redshifted by $(1 + z)$
- \rightarrow *f* \rightarrow *f* /(1 + *z*),
	- \star There is no mass scale in vacuum GR, so redshifting of *fGW* cannot be distinguished from rescaling the masses
- \rightarrow expansion in powers of $v \propto (\pi \mathcal{M} f_{GW})^{1/3}$

 \implies inferred masses are $m = (1 + z) m^{source}$

→ Direct, independent **luminosity distance** measurement (but not *z*) from GW with f_{GW} and the strain *h*:

$$
r=\frac{5}{96\pi^2}\frac{c}{h}\frac{f_{GW}}{f_{GW}^3}.
$$

PHYSICAL EFFECTS IN BINARY NEUTRON STAR COALESCENCE WAVEFORMS

dominated by gravitational radiation back reaction - masses and spins

AAAAAAA

appear at high PN order, dynamical tides might be important

tidal effects

complex physics of the merger remnant, multi-messenger source, signature of neutron star EoS

Gravitational-wave spectrum of binary NSs

accumulated phase shift at higher

frequencies.

Signature of EOS in binary NSs waveforms

- Tidal tensors ε_{ii} of one of the component of the binary induces quadrupole moment O_{ii} in the other
- variation in the quadrupole moment causes GW emission
- in the adiabatic approximation

 $Q_{ij} = -\lambda(m)\,\mathcal{E}_{ij}, \quad \lambda(m) = (2/3) k_2(m)\,R^5(m)$

- where λ (m) is EoS dependent tidal deformability, k_2 (m) is the Love number and R is the NS radius
- Just from the scaling this is a 5-PN effect $(v/c)^{10}$

$$
\lambda = \frac{Q}{\mathcal{E}} = \frac{\text{size of quadrupole deformation}}{\text{strength of external tidal field}}
$$
\n1.67

\n1.68

\n1.68

\n1.69

\n1.60

\n1.60

\n1.61

\n1.61

\n1.62

\n1.63

\n1.64

\n1.64

\n1.65

\n1.67

\n1.68

\n1.69

\n1.60

\n1.60

\n1.61

\n1.62

\n1.63

\n1.64

\n1.65

\n1.67

\n1.68

\n1.69

\n1.60

\n1.61

\n1.61

\n1.62

\n1.63

\n1.64

\n1.65

\n1.67

\n1.68

\n1.69

\n1.60

\n1.60

\n1.61

\n1.61

\n1.62

\n1.63

\n1.65

\n1.67

\n1.68

\n1.69

\n1.60

\n1.61

\n1.61

\n1.62

\n1.63

\n1.65

\n1.67

\n1.68

\n1.69

\n1.60

\n1.61

\n1.61

\n

(from B.S. Sathyaprakash slides)

Cosmology from tidal interactions & microphysics

→ Post-Newtonian phasing formula has binary M and freq. f together

$$
\Psi(f) = 2\pi f t_C - \phi_C + \sum_{k=0}^{i} \alpha_k (\pi M f)^{(k-5)/3}
$$

- \cdot So it is possible to scale away cosmological frequency redshift: $f \rightarrow f/(1+z)$ and $M \rightarrow M(1+z)$
- \cdot The tidal term, on the other hand, cannot be scaled away

$$
\Psi_{\rm Tide}(f) = -\frac{1250k_2\alpha_0}{3} \left(\pi Mf\right)^{(k-5)/3} \left(\frac{R}{M}\right)^5
$$

 \cdot This helps measure neutron star radius and cosmological redshift directly from GW observations

(from B.S. Sathyaprakash slides)

Binary NSs: rates predictions

An unexpected lack of neutron-star mergers?

? Salpeter initial mass function, ξ(*M*) ∝ *M*[−]2.³⁵, for BHs and NSs progenitor stars:

$$
\frac{N(M>80M_{\odot})}{N(M>10M_{\odot})} = \left(\frac{80M_{\odot}}{10M_{\odot}}\right)^{-1.35} \simeq 0.06
$$

 \star If one assumes the same merger rates

$$
\frac{\mathcal{R}_{BH}}{\mathcal{R}_{NS}} = \left(\frac{80M_{\odot}}{10M_{\odot}}\right)^{-1.35} \simeq 0.06
$$

 \star Signal-to-noise \propto ${\cal M}^{5/6},$ detection volume \propto ${\cal S} {\sf N} {\sf R}^3 \propto {\sf r}^3$

$$
\frac{\mathcal{D}_{BH}}{\mathcal{D}_{NS}} = \frac{\mathcal{R}_{BH}}{\mathcal{R}_{NS}} \left(\frac{\mathcal{M}_{BH}}{\mathcal{M}_{NS}}\right)^{5/2} = \left(\frac{80 M_{\odot}}{10 M_{\odot}}\right)^{-1.35} \left(\frac{8.7 M_{\odot}}{1.4 M_{\odot}}\right)^{5/2} \simeq 5.8
$$

(Phys. Usp. 44 1 2001 [astro-ph/0008481])

Detection prospects of Advanced LIGO design

- binary neutron star mergers to ~200 Mpc
- neutron star– $(10 \text{ M}_{\text{sun}})$ black hole mergers to \sim 0.5 Gpc
- (10-10 M_{sun}) binary black hole mergers to ∼1 Gpc

(LIGO White Paper: https:// dcc.ligo.org/LIGO-T1400054/ public, rates above sky-averaged)

initial LIGO BNS range: up to 20 Mpc image: Shane Larson, Northwestern University

BNS expected 0.4 - 400 yr-1 NSBH expected 0.2 - 300 yr-1 LSC/Virgo 1003.2480

BBH expected 9 – 240 Gpc⁻³ yr⁻¹ ³ LSC/Virgo 1606.04856