Heidelberg Institute for Theoretical Studies

Neutron Star Mergers

Andreas Bauswein

Heidelberg Institute for Theoretical Studies

Nuclear Theory and Astrophysical Applications

JINR - July 19, 2017, Dubna

Neutron-star mergers

Gravitational waves \rightarrow properties of neutron stars (NSs) and high-density matter

Advanced LIGO

Ejecta \rightarrow rapid neutron-capture process (rprocess) forging heavy elements such as gold

- Thermal emission \rightarrow electromagnetic transient powered by radioactive decays in ejecta
- Accretion torus \rightarrow Relativistic jet \rightarrow short gamma-ray burst (frequently observed)

Large Synoptic Survey Telescope

Gravitational waves

- Recent detection of GWs from BH: breakthrough in astrophysics
- Fundamentally need way of observing astrophysical processes
- Next type of source to be detected: NS mergers !!!
- Scientific potential: rates, population properties, masses, ...
- Properties of nuclear matter Neutron-star properties unknown
	- \rightarrow Details of GW signal constrain EoS / NS properties

Advanced LIGO

Abott et al. 2016

Formation of heavy elements and em transients

- Astrophysical origin of heavy elements formed through the rapid neutroncapture process is unknown – examples: gold, uranium, ...
- NS mergers provide favorable conditions for the r-process
- Numerous astronomical observations, Galactic enrichment
- Nuclear decays during r-process heat ejecta \rightarrow thermal emission
- Electromagnetic counterpart potentially observable with optical survey telescopes \rightarrow GW searches become more sensitive, details of nucleosynthesis
- (mergers are likely the origin of short gamma-ray bursts !!!)

Outline

- Neutron stars (in binaries)
- Merger rates
- Inspiral dynamics and GW observations
- EoS constraints from the inspiral phase
- EoS constraints from the postmerger phase
- Classification of postmerger dynamics/ GWs

See also Michal's talk !

Neutron stars

- NSs are formed in core-collapse supernovae of massive stars (> 8 Msun)
- Masses between \sim 1 … \sim 2 M_{sun} upper limit depends on unknown EoS, but for sure > 2 M_{sun} (observations in Demorest et al 2010, Antoniadis et al. 2010)
- Observable in radio, IR, optical, UV, X-rays, gamma
- Many NSs (~2000) are observed as pulsars (very regular radio emission) \rightarrow rotation periods seconds to milliseconds
- Some are found in binary systems
- Stellar structure solely determined by high-density matter EoS, in particular mass-radius relation (typical radii \sim 10-15 km)
- EoS not known stellar structure not known (\rightarrow we rely on theoretical prescriptions of high-density matter)

Recall: stellar structure given by Tolman-Oppenheimer-Volkoff eqs.

For nonrotating NSs (or sufficiently slow rotation)

Stellar structure and thus M-R relation fully determined by EoS $P(\epsilon)$

$$
\frac{dM}{dr} = 4\pi r^2 \epsilon
$$
\n
$$
\frac{dP}{dr} = -\frac{GM\epsilon}{r^2} \left(1 + \frac{P}{\epsilon c^2}\right) \left(1 + \frac{4\pi r^3 P}{Mc^2}\right) \left(1 - \frac{2GM}{c^2r}\right)
$$

Coupled system of ODEs – integrate outwards starting with given central density/pressure until $P=0 \rightarrow r(P=0)=R$ $M(R) = M$

M: gravitational mass < M⁰ rest mass (baryonic mass) R: circumferential radius

> Integrate starting from different central densities \rightarrow M(rho 0), R(rho 0)

Neutron stars in binaries

Neutron stars in binaries

Lattimer 2012

- About 10 NS-NS systems known (at least one star being a pulsar)
- Some masses very accurately measured
- Systems are fairly symmetric, masses cluster around 1.3 1.4 Msun
- But Low number statistics nobody can exclude bias
- Also other types of binaries including one NS are known, e.g. with white dwarf companion
- But no NS-black hole binary known yet

Why do NSs merge?

• Gravitational waves:

 \rightarrow indirect evidence for the existence of GWs

Weisberg et al. 2010

Completely equivalent to the observed merger of two black holes

First direct observation of gravitational waves by Advanced Ligo network - Autumn 2015 Abbott et al 2016

GWs lead to inspiral

- Orbital motion generates GWs, which carry away energy !!
- energy is extracted from orbit \rightarrow decay of the orbit
- Assuming orbiting point particles with orbital separation a (Kepler's law - Newtonian):

$$
L_{GW} = \frac{32}{5} \frac{G^4}{c^5} \frac{M^3 \mu^2}{a^5} \qquad \qquad \Omega^2 = \frac{GM}{a^3}
$$

with
$$
M := M_1 + M_2 \qquad \mu := \frac{M_1 M_2}{M}
$$

Increase of orb. frequency !

$$
\text{Integrate} \rightarrow \text{merger time:} \qquad \tau = \frac{5}{256} \frac{c^6}{G^3} \frac{1}{\mu}
$$

Decay of the orbit: $\dot{a} = -\frac{64}{5} \frac{G^3}{c^5} \frac{\mu M^2}{a^3}$

For circular orbits

Observed systems

- Typical orbital period: hours ! (\rightarrow current emission too weak / frequency outside sensitivity window of ground-based detectors)
- Typical (intrinsic) rotation period: 100 ms (of pulsar), (relatively slow)
- Typical time until merging $=$ inspiral time: 100 Myrs (or much longer)
- Hubble time: \sim 10¹⁰ yrs

 \rightarrow NS binaries may merge (again: low number statistics; rate estimate difficult later)

Formation of NS binaries

Standard evolutionary channel: (variations possible, many things still unclear)

- Binary of massive stars (both > 8 M_{sun}), recall many stars in binaries
- More massive component explodes as SN after a few millions (recall more massive stars evolve faster)
- Secondary evolves and fills Roche lobe \rightarrow mass overflow
- NS moves in common envelope (dynamical friction) \rightarrow reduction of orbital separation (crucial for small orbital separations and thus merging), energy deposition in envelope
- Secondary explodes as supernova

Complications: star formation, binary formation, kicks by explosions, common-envelope phase hard to model, outcome of explosion (NS vs. BH), …, possibly other formation channels: CE before first explosion, dynamical captures in star clusters, ...

Estimated rates

TABLE VI: Estimates of NS-NS inspiral rates.

Rate model	R_{low}	$R_{\rm re}$	$R_{\rm high}$	$R_{\rm max}$
		$MWEG^{-1}$ Myr^{-1} $MWEG^{-1}$ Myr^{-1} $MWEG^{-1}$ Myr^{-1} $MWEG^{-1}$ Myr^{-1}		
Extrapolation: Model 6 of Kim et al. $[33]^a$	16.9	83.0	292.1	
Extrapolation: Model 14 of Kim et al. $[33]^a$	$1.0\,$	3.8	13.2	
Extrapolation: Model 15 of Kim et al. $[33]^a$	43.1	223.7	817.5	
O'Shaughnessy et al. pop. synth. $[18]^{b}$	5	30	300	
Voss & Tauris pop. synth. $[34]^{c}$	0.54	1.5	17	
Belczynski et al. pop. synth.: model A of $[35]^d$		12		
Belczynski et al. pop. synth.: model B of $[35]^d$		7.6		
Belczynski et al. pop. synth.: model C of $[35]^d$		68		
Nelemans pop. synth. $[36]$ ^e	0.5	25	1250	
"Double-core" scenario: Dewi et al. $[37]$ ^f	0.91	12.10		
With ellipticals: de Freitas Pacheco et al. $[23]$ ^g		34		
Supernova Ib/Ic limit $[16]^{h}$				3900

Abadie et al. 2010

(Most) computed via population synthesis modeling all effects in some way

NS merger rate only roughly known: ~ 10 ... 100 events per Myr in our Galaxy \rightarrow ~40 detections with Ad. LIGO/Virgo

Alternative estimates: observed population of NS binaries, rate of short gamma-ray bursts, nucleosynthesis \rightarrow all roughly agree on the order of magnitude !!

Overview merger stages

Inspiral dynamics

Ingredients: Newtonian point-particle dynamics + Quadrupole formula

$$
L_{GW} = -\frac{dE_{binary}}{dt}
$$

Sufficient for most of the inspiral phase except for last cycles (later)

$$
\Omega^2 = \frac{GM}{a^3} \qquad \qquad \Omega_{GW} = 2\Omega
$$

Define chirp mass: $\mathcal{M} := \mu^{3/5} M^{2/5}$

With total mass M and reduced mass μ

GW amplitude:
$$
\bar{h}_{xx}^{TT} = -2^{1/3} \frac{\mathcal{M}^{5/3} \Omega_{GW}^{2/3}}{r} \cos[\Omega_{GW}(t-r)]
$$

For given instantaneous GW / orbital frequency

Inspiral dynamics

Ingredients: Newtonian point-particle dynamics + Quadrupole formula

$$
L_{GW} = -\frac{dE_{binary}}{dt}
$$

Sufficient for the most of inspiral phase except for last cycles (later)

$$
\Omega^2 = \frac{GM}{a^3} \qquad \qquad \Omega_{GW} = 2\Omega
$$

Frequency / orbital evolution:

$$
\dot{a} = -\frac{64}{5} \frac{G^3}{c^5} \frac{\mu M^2}{a^3} \qquad \Leftrightarrow \qquad \dot{\Omega}_{GW} = \frac{12 \times 2^{1/3}}{5} \mathcal{M}^{5/3} \Omega_{GW}^{11/3}
$$

Chirp mass determines amplitude and frequency evolution !!!

=> primary parameter to be measured in GW detection

Inspiral dynamics

- Starting from some orbit: inspiral proceeds faster and faster
- \bullet Increase of frequency and increase of amplitude \Rightarrow chirp-like signal

- Only prior to merging source enters the sensitivity band of ground-based detectors
- Events within \sim 200 Mpc

Abott et al. 2017

• Equivalent for BH mergers - and in fact already measured !!!!

What can we learn from the inspiral?

What can we learn from inspiral I

Posterior Probability Densities for $1.4M_{\odot}/1.4M_{\odot}$ System Rodriguez et al 2014 Note: mass ratio, spins, … enter only at higher post-Newtonian order → harder to measure • Equivalent for BH mergers

What we learn from the chirp mass?

Chirp mass practically precisely measured

under assumption that no information on intrinsic system parameters are available:

$$
M_{\text{chirp}} = (M_1 M_2)^{3/5} (M_1 + M_2)^{-1/5}
$$

$$
M_{\text{tot}} = M_1 + M_2 \quad q = M_1 / M_2
$$

From core-collapse simulations: lowest NS mass ~1.2 Msun (e.g. Ertl et al. 2015)

=> for typical mass range of NS-NS binaries $(2 \times -1.35 \text{ M} \text{sin})$: total binary mass well measured

Bauswein et al 2015

Inspiral and EoS constraints

What can we learn from the inspiral II

- Finite-size effects (deviations from point-particle behavior) enter the waveform at higher post-Newtonian order, e.g. play a role at higher orbital frequencies / in the very last cycles (evolution of phase)
- Description of these effects (within post-Newtonian theory, effective onebody descriptions guided by simulations) and construction of template bank active field of research

FIG. 10. Top panel: The phase departures from point-particle Taylor-T4 due to post-Newtonian tidal contributions. From highest to lowest, the lines indicate EOS 2H, H, HB, B, and Bss. Bottom panel: The phase departures due to hybrid wave-

What can we learn from the inspiral II

- Waveforms incl. finite-size effects are described by tidal deformability (how a star reacts on an external tidal field)
- Offer possibility to constrain EoS because tidal deformability depends on EoS

$$
\Lambda \equiv \frac{2}{3} k_2 \left(\frac{R}{M}\right)^5
$$

- Corresponding to \sim 10 % error in radius R for nearby events (<100Mpc) (e.g. Read et al. 2013)
- Note: faithful templates to be constructed

R/M compactness (EoS dependent)

 k_2 tidal love number (EoS dependent)

Computing the love number/tidal deformability

Extension of a standard TOV solver (i.e. numerically an integration of coupled ODEs):

Ansatz for the metric including a l=2 perturbation

$$
ds^{2} = -e^{2\Phi(r)} [1 + H(r)Y_{20}(\theta, \varphi)] dt^{2}
$$

+ $e^{2\Lambda(r)} [1 - H(r)Y_{20}(\theta, \varphi)] dr^{2}$
+ $r^{2} [1 - K(r)Y_{20}(\theta, \varphi)] (d\theta^{2} + \sin^{2}\theta d\varphi^{2})$ Following Hinderer et al. 2010

Integrate standard TOV system: And additional eqs. for perturbations:

$$
e^{2\Lambda} = \left(1 - \frac{2m_r}{r}\right)^{-1},
$$

\n
$$
\frac{d\Phi}{dr} = -\frac{1}{\epsilon + p} \frac{dp}{dr},
$$

\n
$$
\frac{dp}{dr} = -(\epsilon + p) \frac{m_r + 4\pi r^3 p}{r(r - 2m_r)},
$$

\n
$$
\frac{dm_r}{dr} = 4\pi r^2 \epsilon.
$$

$$
\frac{dH}{dr} = \beta \qquad (11)
$$
\n
$$
\frac{d\beta}{dr} = 2\left(1 - 2\frac{m_r}{r}\right)^{-1} H \left\{-2\pi \left[5\epsilon + 9p + f(\epsilon + p)\right]\right\}
$$
\n
$$
+\frac{3}{r^2} + 2\left(1 - 2\frac{m_r}{r}\right)^{-1} \left(\frac{m_r}{r^2} + 4\pi rp\right)^2\right\}
$$
\n
$$
+\frac{2\beta}{r} \left(1 - 2\frac{m_r}{r}\right)^{-1} \left\{-1 + \frac{m_r}{r} + 2\pi r^2(\epsilon - p)\right\}.
$$
\n(11)

EoS to be provided $\varepsilon(p)$ (K(r) given by H(r))

Note: Although multidimensional problem – computation in 1D since absorbed in Y20

Computing the love number/tidal deformability

Numerical integration outwards until stellar surface r=R

 $y = \frac{R\beta(R)}{H(R)}$ Define compactness C=M/R with M=m(R) and

Love number is now given by (from comparison to asymptotic metric):

$$
k_2 = \frac{8C^5}{5} (1 - 2C)^2 [2 + 2C(y - 1) - y]
$$

$$
\times \left\{ 2C[6 - 3y + 3C(5y - 8)]
$$

$$
+ 4C^3 [13 - 11y + C(3y - 2) + 2C^2(1 + y)]
$$

$$
+ 3(1 - 2C)^2 [2 - y + 2C(y - 1)] \ln(1 - 2C) \right\}^{-1}
$$

=> Love number is a pure "TOV property"

And can be obtained for a given EoS as function of central density or mass

Love number

Hinderer et al. 2010 For fixed compactness k_2 depends on EoS => tidal deformability is not a unique function of compactness for different EoSs

Tidal deformability vs radius

1.35 Msun stars with many different EoS, Bauswein 2015 unpublished, max dev. 314 meters

Tidal deformability

- Combining many detections at different distances / SNRs, astrophysically realistic random distribution of sources
- Note systematic errors on top of statistical error
- Many events allow to roughly discern EoSs

$$
\lambda(m) = (2/3)k_2(m)R^5(m)
$$

Agathos et al 2015 Number of detected events

EoS constraints from postmerger phase (discussion based in hydro-simulation results)

Dynamics

- We should focus on 1.35-1.35 Msun systems (most common)
- Investigating different EoSs (affecting the outcome)
- Typical outcome: **hot, massive, differentially rotating NS merger remnant**
- Even if Mtot, binary $>$ Mmax or max. mass of uniformly rotating NS (\sim 1.2*Mmax)

42 out of 47 models lead to the formation of a differentially rotating NS (only one accepted EoS leads to prompt collapse)

Rest-mass density, equatorial plane, 1.35-1.35 Msun, Shen EoS

Simulation: snapshots

Rest-mass density evolution in equatorial plane: 1.35-1.35 M $_{_{\sf sun}}$ Shen EoS

• (Smooth Particle Hydrodynamics; conformal flatness condition for Einstein eqs.)

Gravitational-wave spectrum

Pronounced peak in the kHz range as a robust feature of all models forming a differentially rotating NS

 f_{peak} as the strongest feature of the postmerger phase characterizes GWs

h via quadrupole formula (also more sophisticated extraction mechanisms)

Set of simulations \rightarrow f peak for different EoS

representative sample of EoSs

Gravitational waves – EoS survey

Triangles: strange quark matter; red: temperature dependent EoS; others: ideal-gas for thermal effects

Bauswein et al. 2012

Gravitational waves – EoS survey

Triangles: strange quark matter; red: temperature dependent EoS; others: ideal-gas for thermal effects Bauswein et al. 2012

Remarks: Radius measurement via postmerger phase

- Very small scatter allows very accurate radius detection (= simultaneous mass and radius measurement)
- Similar relations for other binary masses and asymmetric systems
- Recall: masses are measurable from inspiral \rightarrow choose the relation to convert f_{peak} to radius

Measuring the dominant GW frequency

Clark et al. 2014

Model waveforms hidden in rescaled LIGO noise

Peak frequency recovered with burst search analysis

Error \sim 10 Hz

For signals within $~10$ -25 Mpc

=> for near-by event radius measurable with high precision $(-0.01-1/yr)$

- Proof-of-principle study
- $\bullet \rightarrow$ improvements likely, PCA, template based search

Discrimination between prompt collapse and delay/no collapse possible

Shen 1.35-1.35; Clark et al. 2014

Principal component analysis

Improvement compared to morphology-independent search by many 10 % in range(!) (recall impact on rates)

Adopting a "realistic" rate (uncertain) Clark et al 2015

Bauswein et al. 2015

- \bullet f_{peak} is the fundamental quadrupolar fluid mode (f-mode)
- Reexcite f-mode

$$
f_{peak} \sim \sqrt{\frac{M_{tot}}{R_{rem}^3}} \qquad \Rightarrow f_{peak} \sim \sqrt{\frac{M_{tot}}{R_{1.6}^3}}
$$

Secondary GW peaks and oscillation modes

Secondary features of the spectrum

Bauswein et al. 2015

Mode interaction: f2-0

- Radial oscillation mode: f_0 (does not radiate GWs), but seen e.g. in central lapse function (relativistic analog of gravitational potential)
- But couples to fpeak (f-mode) \rightarrow peak at f₂₋₀ = f_{peak} f₀ (and another side peak at higher frequencies $f_{2+0} = f_{peak} + f_0$) Stergioulas et al 2011

Bauswein et al 2015

Secondary GW peak fspiral

- During merging: bulges form at the outer edge of the remnant
- Orbital motion generates GWs at $f_{spiral} = 2 * f_{orbit bulges}$

Bauswein et al 2015

Antipodal bulges (spiral pattern)

Orbital motion of antipodal bulges slower than inner part of the remnant (double-core structure)

Spiral pattern, created during merging lacks behind

Orbital frequency: $1/1ms \rightarrow generates GW$ at 2 kHz !!!

Present for only a few ms / cycles

Bauswein et al 2015

Remarks:

- Presence and strength of secondary peaks depends in particular way on EoS and Mass (fpeak always present) \rightarrow classification system of GW spectra: three different types can be identified
- Also frequencies secondary peaks show EoS and mass dependence (helpful)

Bauswein et al. 2015

Summary: Overview and GWs

- NS binaries are expected to merge (due to GW emission); event rate uncertain but probably observational significant
- Merger phases: inspiral (chirp, increasingly faster) merging postmerger
- GW detectors (already operational) measure binary masses (in particular chirp mass)
- For nearby events: GW inspiral (last cycles) measures tidal deformability to discern different EoSs
- For nearby events: postmerger remnant shows characteristic peaks in GW spectrum
- Main peak by remnant's f-mode scales with radii of non-rotating NS \rightarrow accurate radius measurements possible
- Main peak detectable
- Certain mechanisms generate secondary peaks, e.g. oscillation mode interaction, antipodal deformations

Not covered:

• Collapse behavior \rightarrow determination of maximum mass of non-rotating NSs

Collapse behavior:

Prompt vs. delayed (/no) collapse

Relevant for:

EoS constraints through Mmax measurement

Conditions for short GRBs

Mass ejection

Electromagnetic counterparts powered by thermal emission

Collapse behavior

EoS dependent - somehow M_{max} should play a role

 \rightarrow ... from observations we can determine M_{max}, R_{max}, ρ_{max}

Key quantity: Threshold binary mass M_{thres} for prompt BH collapse

 $k = -$ *Mthres Mmax*

From simulations with different M_{tot}

TOV property of employed EoS

Constrain M_{max}

- ► Measure several NS mergers with different M_{tot} check if postmerger GW emission present
	- \rightarrow M_{thres} estimate
- ► Radius e.g. from postmerger frequency
- ► Invert fit

$$
M_{\rm thres} = \left(-3.38 \frac{GM_{\rm max}}{c^2 R_{\rm max}} + 2.43\right) M_{\rm max}
$$

$$
M_{\text{thres}} = \left(-3.6 \frac{G M_{\text{max}}}{c^2 R_{1.6}} + 2.38\right) M_{\text{max}}
$$

 \rightarrow M_{max}

- ► Note: already a single/few measurement could provide interesting constraints !!!
- \blacktriangleright M_{thres} constraints also from GRB, em counterparts, ...

Bauswein et al. 2013

Semi-analytic model

reproduces / corroborates collapse behavior

Bauswein et al 2013: numerical determination of collapse threshold through hydrodynamical simulations

Solid line fit to numerical data Crosses stellar equilibrium models:

- prescribed (simplistic) diff. rotation
- many EoSs at T=0
- detailed angular momentum budget !
- => equilibrium models qualitatively reproduce collapse behavior
- even quantitatively good considering the adopted approximations

details of the model

- ► Stellar equilibrium models computed with RNS code (diff. Rotation, T=0, many different microphysical EoS) => turning points => $M_{stab}(J)$
- ► Compared to J(M_{tot}) of merger remnants from simulations (very robust result) \rightarrow practically independent from simulations

Bauswein & Stergioulas 2017

Rapid neutron-capture process

Faber & Rasio 2012

Motivation: rapid neutron-capture process

- Explain formation of heavy elements about half of all heavy nuclei
- Explain observed abundance pattern
	- solar system
	- meteorites
	- stellar atmospheres (extrasolar)
	- in particular in metal-poor stars (i.e. old stars)
- Beyond: explain cosmic, Galactic chemical evolution
- More subtle: understand nuclei and nuclear reactions (experimental data and nuclear theory \rightarrow theoretically predicted abundances should match observations)
- What are the astrophysical productions sites of the different elements? In particular, so-call r-process elements?

Neutron capture processes

High Coulomb barrier \rightarrow capture neutral particle to increase atomic mass

To explain formation of most of the heavy elements Site of the r-process not known

Rapid neutron-capture process

- Neutron capture processes naturally explain abundance peaks (closed neutron shells \rightarrow bottle necks)
- High neutron densities required
- **Particular conditions needed** \rightarrow site(s) not precisely known
- Depending on precise conditions $\frac{2}{5}$ 10²
exact details of r-process differ $\frac{2}{5}$
Fission may be important exact details of r-process differ
- Fission may be important

Observed (s-process subtracted, some isotopes produced by both processes):

Key parameters for successful r-process

Determine the details / success of the r-process (not only in NS mergers) – parameters set by the astrophysical environment

- Electron fraction (Ye) $(=$ proton fraction) measure for the neutron-richness
- Entropy determines neutron/seed ratio
- Fast expansion time scale (to maintain neutron richness)

on top: nuclear physics

- Partially not very well known since very exotic nuclei involved nuclear physics far away from valley of stability (not accessible by experiments – we rely on theoretical models for the reaction rates, ...)
- R-process overall relatively insensitive to nuclear physics

Discussed sites of the r-process

- Neutron-star mergers (and their remnants)
- Neutron star-black hole mergers (and their remnants)
- Dynamical ejecta of prompt exploding O-Ne-Mg core-collapse supernovae
- Neutrino-driven winds from proto-neutron stars (core-collapse supernovae)
- He- shell exposed to intense neutrino flux (during core collapse)
- Quark-novae
- Magneto-hydrodnamic jets of rare core-collapse supernovae

● ...

All have ideas/models some advantages and some disadvantages !

But overall fair to say: that mergers are very hot candidates !

(in particular since recent models of the other hot candidate (core-collapse supernovae) have difficulties to find appropriate conditions (Fischer et al. 2010, Huedepohl et al. 2010, ...))

Note: possibly different sites (operating simultaneously or at different times (metalicities)), different mass ranges may be produced by different sites

Neutron star mergers and the r-process

- Obviously: only gravitationally unbound material of interest
- Only accessible by numerical simulations (\rightarrow current modeling approaches)
- Important: we need to consider different types of ejecta \rightarrow dynamical and secular ejecta (both can/will contribute) \rightarrow overview

Different ejecta components associated with different stages

- Dynamical ejecta unbound with the first milliseconds (sometimes called "prompt ejecta")
- Secular ejecta $-$ unbound on longer timescales $-$ different effects (requires partially different modeling, e.g. only 2d for long-term simulation, more sophisticated neutrino transport, MHD, …; sometimes called "disk ejecta/outflow")

- neutrino-driven ejecta (neutrinos emitted mostly from the hot central object or torus unbind matter further out)

- viscously driven ejecta, angular momentum transport, MHD effects

- Secular ejecta is expected from both: NS merger remnant (+ torus) and BH + torus system
- Here: mostly focus on the dynamical ejecta
- Note: very similar picture for NS-BH mergers: dynamical + secular ejecta
Dynamical ejecta – different types (ejection mechanisms)

- Contact interface ejecta: shock-heated (hot, entropy)
- Tidal-tail ejecta (cold, low entropy; in particular for asymmetric systems and NSBH)
- (typical numbers for dynamical ejecta mass: 10^{-3} ... 10^{-2} M_{sun})
- (torus mass \sim 0.1 M_{sun} or less, \rightarrow several per cent secular ejecta)

Simulations

Every tenth unbound fluid element

Bauswein et al. 2013

Black: bound; white: unbound (formally) Central lapse: measure for compactness

Ejection dynamics

- Central lapse function (gravitational potential) as tracer of the remnant dynamics
- Lapse low = compact, lapse large = less compact \rightarrow increase = expansion

Stiffness of the EoS

Dasded line: central lapse, solid line: ejecta mass as function of time

Ejecta mass dependencies: EoS

Hotokezaka et al 2013

Asymmetric merger: 1.2-1.5 Msun

 \rightarrow larger tidal component, larger masses

Ejecta velocities

Squares: 1.2-1.5 Msun

Ejecta properties – nuclear network calculations

Robust features: fast expansion, neutron rich (neutrinos increase Y_e, see Wanajo et al. 2014, ...)

Originating from inner neutron crust 10^{14} g/cm3 (initial Y_e very low)

Matter heated to NSE and frozen out at \sim neutron drip $4*10^{11}$ g/cm³

• Ejecta expansion typically followed for a few 10 ms by simulations, then extrapolation (outcome insensitive), homologous expansion well justified

• Post-processing hydrodynamical trajectories with nuclear network

- Properties of ~5000 nuclei (mostly theoretical models)

- Theoretical and experimental reaction rates: beta-decays, neutron captures, photodissosication, multiple-particle reactions (n,2n)

- Neutron-induced fission, spontaneous fission, beta-delayed fission, photofission, beta-delayed neutron emission

- Heating due to beta-decays, fission, alpha decays

• - Note that nuclear physics are uncertain far away from valley of stability, mass model, reaction rates, fission yields

Nucleosynthesis results (dynamical ejecta)

Some recent results: different hydrodynamical models, different nuclear network codes, different NS EoS, different binary systems \rightarrow robust pattern (fission)

See also Freiburghaus et al 1999, Metzger et al. 2010, Roberts et al. 2011,...

Nucleosynthesis of secular ejecta

Just et al. 2014. (merger and disk ejecta)

Mergers produce also the low A r-process elements

(similar for secular ejecta from long-lived NS remnant)

Note on NS-BH systems

- Can produce substantial amounts of dynamical ejecta (depending on system parameters)
- Time scales are similar to NSNS
- Tidal ejection (less affected by neutrinos)
	- \rightarrow very robust r-process, low S, low Ye
	- \rightarrow fission cycling
- Resulting torus-BH
	- \rightarrow secular ejecta as for NSNS Bauswein et al 2014

