

Type Ia supernovae

Friedrich Röpke

Max-Planck-Institut für Astrophysik, Garching

W. Hillebrandt, S. Woosley, M. Reinecke, M. Gieseler, C. Travaglio, M. Stehle,P. Mazzali, J. Niemeyer, W. Schmidt, S. Blinnikov, E. Sorokina, S. Sim, M. Fink,R. Pakmor

Outline

1st lecture

- supernovae in astronomy
- ► Type Ia supernovae: general scenario
- Modeling Type Ia supernova explosions

2nd lecture

- numerical implementation
- type Ia supernova simulations
- initial parameters
- nucleosynthesis
- reproducing the SN Ia sample
- implications for cosmology

SNe Ia as "cosmological lighthouses"

- very bright objects
- almost uniform peak luminosity
- best distance indicators out to z~1

empirical calibration systematics? evolutionary effects?

HISS Dubna, 08/08—10, 2006

SN Ia cosmology

dominating dark energy form...what is its nature?

HISS Dubna, 08/08—10, 2006

Modeling: objectives and approach

Numerical implementation

operator splitting: treat hydrodynamics and nuclear burning separately

Hydrodynamics

- Euler's equations: system of hyperbolic equations
- Eulerian approach: discretized on a computational grid
- ▶ finite volume approach: compute fluxes of mass, momentum, energy over interfaces of computational grid cells → update of cell mean values (conservative by construction)
- computation of fluxes requires extrapolation of cell means to boundaries and solution of Riemann's problems there \rightarrow linear extrapolation: "Godunov scheme"
- ► PPM "piecewise parabolic method" (Colella & Woodward, 1984) → parabolic extrapolation (high resolution shock capturing method) → here: PROMETHEUS implementation (Fryxell & Müller, 1989)

Numerical implementation

WD matter equation of state

- arbitrarily degenerate and relativistic gas of electrons
- ideal gas (Maxwell-Boltzmann) of nuclei
- radiation following Stefan-Boltzmann law
- electron-positron pair creation/destruction

Nuclear reactions

- correct treatment would require large nuclear reaction network but even rather small reduced networks are way too expensive to run concurrently with hydro simulation
- coarse description: include five species only (C, O, Mg, Ni, α)
- material crossed by flame is burned into
 - ▶ NSE (here: mixture of Ni and α depending on ρ and T) if $\rho_{\text{fuel}} > 5 \times 10^7 \text{ g cm}^{-3}$
 - \blacktriangleright intermediate mass elements (here: Mg) if ρ_{fuel} > 1 \times 10^7 g cm^{-3}
- the corresponding difference of nuclear binding energy is released \rightarrow sufficient to describe the dynamics
- recently added (with S. Woosley, UCSC): parametrized treatment of electron captures

Simulating the relevant scales

• Gibson scale $s_{lam} = v' \rightarrow$ below turbulence does not affect flame propagation

Numerical implementation

explosion model (Reinecke et al., 1999, 2002) → Large Eddy Simulation approach

- ▶ flame model: WD $\sim 10^8$ cm structure of flame ~ 1 mm \rightarrow not resolvable \rightarrow modeled as discontinuity between fuel and ashes
- level set method

- ► flame not resolved → How to prescribe flame propagation velocity?
- Theory of turbulent combustion: in flamelet regime flame speed determined by turbulent motions

Numerical Implementation

- ► Large Eddy Simulation (LES) approach
- Subgrid-scale turbulence model (Niemeyer et al., 1995; Schmidt et al., 2005)

HISS Dubna, 08/08—10, 2006

Friedrich Röpke, MPA

SN Ia simulation code

- build on the POMETHEUS implementation (Fryxell & Müller, 1989) on a moving computational grid
- subgrid-scale turbulence modeling
- level set flame tracking algorithm
- simplified description of burning
- monopole gravity solver
- efficiently MPI parallelized (benchmarking: scales well up to 4000 processors)
- used on various architectures:
 - ▶ IBM Power 4/5 Regatta (Computer Center Garching)
 - ► IBM Power 5 HPCx (Edinburgh)
 - Cray XT3/4 Jaguar (Oak Ridge Nat'l Lab)
 - MareNostrum (Barcelona)
 - various Linux clusters

SN Ia explosion model

Deflagration model: example

Isotropic ignition

high-resolution model (Röpke et al., 2007, ApJ in print), multi-spot ignition:

1024³ computational cells, 500.000 CPU hours on IBM regatta

t=0009s

High-resolution simulation

Röpke et al., 2007

Nuclear Reactions

- simplifed description of nuclear reaction (5 species: C, O, Mg, Ni, α) in explosion dynamics
- \blacktriangleright postprocessing step (Travaglio et al., 2004) with \sim 150 000 tracer particles in full-star simulations

Results

- asymptotic kinetic energy: 0.81 Bethe
- ▶ hydro: 0.61 M_{\odot} of iron group elements, 0.43 M_{\odot} of intermediate mass elements
- \blacktriangleright postprocessing step \rightarrow 0.33 $\rm M_{\odot}$ of $\rm ^{56}Ni$
- leads to synthetic light curves consistent with weaker normal SNe Ia

Compositon of explosion ejecta

Röpke et al., 2007

Results

do the spectra agree with observations?
 → test the chemical structure of the ejecta
 consistent in inner part; discrepancies in outer layers

Deflagration model

Successes

- yields explosion
- based on fundamental physical principles
- no tunable parameters except for initial conditions (flame ignition configuration)
 - reasonable agreement with weaker examples of normal SNe Ia

Shortcomings

- do not reproduce brighter SNe Ia (>0.7 M_{\odot} of ⁵⁶Ni)
- composition of outer layers in disagreement with those expected for brighter SNe Ia

Questions

- Do pure deflagrations account for a sub-class of SNe Ia (Phillips et al., 2006)?
- Do they represent the first (and for some objects dominant) building block of an extended model?

Deflagration model

Successes

- yields explosion
- based on fundamental physical principles
- no tunable parameters except for initial conditions (flame ignition configuration)
- reasonable agreement with weaker examples of normal SNe Ia

Shortcomings

- do not reproduce brighter SNe Ia
 (>0.7 M_o of ⁵⁶Ni)
- composition of outer layers in disagreement with those expected for brighter SNe Ia

Questions

- Do pure deflagrations account for a sub-class of SNe Ia (Phillips et al., 2006)?
 - Do they represent the first (and for some objects dominant) building block of an extended model?

Model uncertainties

Delayed detonation model

Idea:

- transition (DDT) to detonation after deflagration phase (Khokhlov, 1991)
- supersonic detonation front burns parts of remaining fuel

Problem:

 DDT mechanism unknown in astrophysical context (e.g. Niemeyer 1999, Oran & Gamezo, 2006)

Deflagration-Detonation Transitions?

- Niemeyer & Woosley (1997) hypothesis: DDT at onset of distributed burning regime
- only instance of drastic change in flame properties
 - LIMITING THRESHOLD FOR TURBULENT VELOCITY u'(L) AT GIVEN DENSITY AND FUEL COMPOSITION u'(L) ρ $(2m a^{-1})$ $(24 10^7 a cm^{-3})$ V(12C) V(12C)

$\frac{u'(L)}{(\mathrm{cm \ s}^{-1})}$	$(\times 10^7 \text{ g cm}^{-3})$	<i>X</i> (¹² C)	X(¹⁶ O)
>0.5 × 10 ⁸	2.3	0.5	0.5
>0.6 × 10 ⁸	1.3	0.5	0.5
>0.8 × 10 ⁸	0.8	0.5	0.5
> 0.25 × 10 ⁸	2.3	0.75	0.25
>0.3 × 10 ⁸	1.3	0.75	0.25
>0.4 × 10 ⁸	0.8	0.75	0.25
> 0.9 × 10 ⁸	2.3	0.25	0.75
>10 ⁸	1.3	0.25	0.75
>10 ⁸	0.8	0.25	0.75

TABLE 1

analysis by Lisewski et al.(2000):

- updated analysis: Woosley (2007): $\rho_{det} = 0.5 1 \times 10^7$ g /cm³ u' $\sim 10^8$ cm/s
- necessary but not sufficient conditions for DDT \rightarrow met in SN Ia models?

Deflagration-Detonation Transitions?

Analysis of turbulent
 velocity flucutations
 as predicted by
 sub-grid scale model
 at the flame front
 for densities
 1...3 × 10⁷ g cm⁻³
 (Röpke 2007, ApJ in print)

Deflagration-Detonation Transitions?

► High-amplitude turbulent velocity fluctuarions (~10⁸ cm s⁻¹) occur at the onset of distributed burning regime on sufficiently large area of flame (~10¹² cm²) (Röpke 2007, ApJ in print)

Problems of Delayed Detonations

- no robust DDT mechanism known in astrophysical context (e.g. Niemeyer 1999)
- detonation cannot cross even tiny regions of ash (Maier & Niemeyer 2006) \rightarrow pockets of unburnt material may remain, needs to burn around complicated deflagration structure
- competition with expansion: does it reach far side when triggered off-center?

Parametrizations (in 3D simulations):

- arbitrarily prescribe position and time for DDT (Gamezo et al. 2005)
- DDT once deflagration flame enters distributed burning regime (Golombeck & Niemeyer 2005)

Delayed detonation model: example

Size (km) : 5342.16 Time (s) : 0.0120128

(Röpke & Niemeyer, 2007)

Delayed detonation model

- varying the number of ignition kernels of the deflagration flame shifts emphasis from deflagration to detonation phase
- elegant way to reproduce scatter in SNe Ia (Röpke & Niemeyer, 2007)

Speculation on the overall picture

"Zorro diagram" (Mazzali et al., Science 2007)

- weak normal SNe Ia deflagrations or deflagration phase dominant
- bright SNe Ia delayed detonations for brightes examples: detonation phase dominant
- sub-luminous: ???

Diversity in 3D models

parameter study with 3d deflagration models (Röpke et al., 2004, 2005)

- Which parameters can account for SN Ia diversity?
 - 1. progenitor's carbon-to-oxygen ratio
 - 2. central density at ignition
 - 3. progenitor's metallicity

Röpke, Hillebrandt & Blinnikov, 2006 -18.3 -19.0 Phillips et al., 1999 -18.2 $M_{\max}(B)$ $M_{\max}(B)$ -18.5 0 -18.1 000 \diamond \diamond ۰_۵ vary Z \diamond -18.0 vary C/O -18.0 vary ρ_c 1.4 1.5 1.7 1.5 1.6 1.4 1.6 1.7 $\Delta m_{15}(B)$ $\Delta m_{15}(B)$

HISS Dubna, 08/08—10, 2006

Deflagration model: example

