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Methods for Nuclear Many-body Problem

A = 3 Solution of Faddeev equation

A = 4 Faddeev-Yakubowski method

Up to A=12 Green’s Function Monte Carlo (GFMC)
Up to A=16 No-core Shell Model (NCSM)

A >16 Many methods exist
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Methods for Nuclear Many-body Problem

A = 3 Solution of Faddeev equation

A = 4 Faddeev-Yakubowski method

Up to A=12 Green’s Function Monte Carlo (GFMC)
Up to A=16 No-core Shell Model (NCSM)

A >16 Many methods exist

Truncation in model space or correlations needed!
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Shell Structure, Valence Space
and Residual Interaction

Interacting Shell Model

H = Ho+ Hyeo = 3,(E+ U2) + § 55 (035 — 20:835)

Mean-field potential
Hartree-Fock, Woods-Sazon,
. Harmonic Oscillator
bf7/2
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' 0p1 /2™ shell gaps (magic numbers):
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Shell Structure
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Traditional Shell Model Approach

@ Choose a proper model space, i.e. define the valence
single-particle states, e.g., for the sd-shell:
Lsy /2, 0ds 2, Od3 5 oOrbits.

@ Construct Slater determinants |®) to span the many-body
Hilbert space. Often one employs conserved quantities to
economize: M-states, projections (such as J and T eftc.)

@ Construct Hamiltonian matrix H;; = (®;|H|®;)

@ Diagonalize the Hamiltonian matrix to find eigenvalues and
eigenvectors. for example, Lanczos algorithm.
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Computational Resources vs. Dimensionalities

[ ] N, N,
1oo=(2) (W)
Sl e o Total # of Sater Det.
A N A N D,, ~ 10° (ANTOINE)
Sl o D; ~ 107 (NATHAN)
102 - =T "N\
10° 2‘53‘03‘540
Y4
shell # of single-particle states nucleus M = 0 states
p 6 1o 84
sd 12 BSi 9.4 x 10*
fp 20 80Zn 2.0 x 10°
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Progress in traditional SM
calculations:

p-shell: 10? dim. (1960s)
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calculations:

p-shell: 10> dim. (1960s)
sd-shell 10° dim. (1980s)
fp-shell 10° dim. (1990s)

7=50

Beyond fp-shell is far too
=18 =T large for traditional SM!
— olll Uso
.. B
= "
T MN=28
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Model Spaces: Progress in Years

Progress in traditional SM
calculations:

p-shell: 10> dim. (1960s)
sd-shell 10° dim. (1980s)
fp-shell 10° dim. (1990s)

7=50

Beyond fp-shell is far too
=18 =T large for traditional SM!
— il Uso
. i Compare to recent SMMC
= =5 B calculations:
i " N=20
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Model Spaces: Progress in Years

Progress in traditional SM
calculations:

p-shell: 102 dim. (1960s)
- sd-shell 10° dim. (1980s)
z=s0 [, o fp-shell 10° dim. (1990s)

¥ Beyond fp-shell is far too
=38 -1 large for traditional SM!

™ el Compare to recent SMMC
e calculations:

N=g fp — gds-shell 10?® dim.
S
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How big?

ENIAC

How Fast?
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Dimensionalities vs. Computational Power
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Theoretical Background

SMMC as an Alternative

@ Canonical averages of observables in model spaces that
are prohibitively large for direct diagonalization

@ Ground state expectation values in the limit of 7 — 0
@ Thermal and rotational properties of nuclei

@ Dynamical response of the system, strength functions
@ Well-suited for level density calculations

@ Straightforward implementation on parallel machines
@ Often one has to deal with sign problem

ESI
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A Brief History of SMMC

History of SMMC goes back to the pioneering paper:

G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986)

Late 90’s and early 2000’s have seen great progress in nuclear structure calculations particularly for fp-shell nuclei.

[S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep.278, 1 (1997)].

More recently ...

Extended the AFMC calculations of level densities to higher temperatures and excitation energies, Y.
Alhassid, G.F. Bertsch and L. Fang, 2003

Electron capture rates on nuclei and implications for stellar core collapse, K. Langanke et. al., 2003
SMMC in the pn-formalism, C. Ozen and D. Dean, 2005

Implementation of exact spin-projection, Y. Alhassid, S. Liu and H. Nakada, 2006

AFMC applied to thermal properties of nanoparticles, Y. Alhassid, L. Fang and S. Schmidt, 2007

Spin- and parity-resolved level densities, Y. Kalmykov C. Ozen, K. Langanke, G. Martinez-Pinedo,
P. von Neumann-Cosel, and A. Richter, 2007.

Cem Ozen Introd
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SMMC in a Nutshell

Motivation

@ We would like to calculate:

U= — R)=151 (1=1)
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~l—

@ Two-body part of A causes all the trouble!
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@ Two-body part of H causes all the trouble!
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Theoretical Background

SMMC in a Nutshell

Motivation

@ We would like to calculate:

)

~l—

@ Two-body part of H causes all the trouble!
For one-body &, physics is easy since:

e=PH|sD) = |sD)

— The idea is to linearize i ]
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SMMC in a Nutshell

Hubbard-Stratonovich Transformation

Hamiltonian of the form & = O + 1VO? can be linearized readily:

with i = €® + sVo O and
e BB = \[BIVL 120 45=3BIVIo? =i 1 ifv<o
27 — o0 s = . .
i ifv>0
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SMMC in a Nutshell

Hubbard-Stratonovich Transformation

Hamiltonian of the form & = O + 1VO? can be linearized readily:

with i = €® + sVo O and

e=Bf = \[BIV] foo doe—3BIVIo? ,—ph 7{ 1 ifv<o
™ — 00 s = .

i ifVv>0

A typical Hamiltonian has many O,
— Generalize the Gaussian identity — Hubbard-Stratonovich
transformation:

& ah 1 Ne &
Z =Trll = Tre P —Tr [eiABH} — /:D[U]G(O')Ton'
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SMMC in a Nutshell

Hubbard-Stratonovich Transformation

Hamiltonian of the form & = O + 1VO? can be linearized readily:

with i = €® + sVo O and

e=Bf = \[BIV] foo doe—3BIVIo? ,—ph 7{ 1 ifv<o
™ — 00 s = .

i ifVv>0

A typical Hamiltonian has many O,
— Generalize the Gaussian identity — Hubbard-Stratonovich
transformation:

& ah 1 Ne &
Z =Trll = Tre P —Tr [eiABH} — /:D[U]G(O')Ton'

where U, = [N, e 251
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SMMC in a Nutshell

Observables

<Q> Te[Qe— 5] fD[a]Go<ﬁ>gTrﬁg _ JDlo]Wo (2) oo
Tre—BH JD[o]GsTrUs /Dlo]Wsd4

_ Trl, - i
o, = \TrUJ Monte-Carlo sign

W, = G,|TrU,| weight function

Q)0 = |T[?UU|] observables
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SMMC in a Nutshell

Observables

<Q> Te[Qe— 5] fD[a]Go<ﬁ>gTrﬁg _ JDlo]Wo (2) oo
Tre—BH JD[o]GsTrUs /Dlo]Wsd4

_ Trl, - i
o, = \TrUJ Monte-Carlo sign

W, = G,|TrU,| weight function

A o
(Q2)o = |T[rUU|] observables («— as in non-interacting problem)
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Theoretical Background

SMMC in a Nutshell

SMMC dissected

Cornerstones of a typical SMMC calculation:

@ Decomposition
Hamiltonian need to be in the quadratic form
(Pandya transformation)

@ Hubbard-Stratonovich transformation

@ Calculation of observables
(Projections if needed)

@ Monte-Carlo integration
(Metropolis algorithm)

ESI
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SMMC in a Nutshell

Decomposing the Hamiltonian

Consider an individual interaction term A = alalaza,

Density decomposition
H= aia3a£a4 — a1a4623 = fallra4(523 + %[al{a37a;a4] + %(al{ag + a;a4)2 f%(a1a3 — a;a4)2
Pairing decomposition
A A 1
H= a{aiamg = %(al{az + azas)? — %(alra; — azaq)® + %[al{a;a3a4].
—~
Note that the commutator terms are one-body operators.
=5

Cem Ozen Introduction to SMMC methods
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SMMC in a Nutshell

Shell-model Hamiltonian

1
H=H +H,= g eaaLaa + 1 g Vagn,(;aLanga(;a7
@ afyd

In the JT-coupled representation, two-body part is written as
1 . 1/2
H = - % ; V(7 kL) [(27 + 12T + 1)(1 + 6;) (1 + 6u)]'/* x

T T\IT ~ N
x (aj ®a;)" @ (G ® a)

00
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SMMC in a Nutshell

Shell-model Hamiltonian

1
H=H +H,= za: e,xaLaa + 1 ;5 Vagn,(;aLanga(;a7
afy

In the JT-coupled representation, two-body part is written as
_ 1 A e 1/2
Hy = — % ; V(i k) [(27 + 1) (2T + 1)(1 4 65)(1 + 6u)]/* x

x [(aT ®a)" @@ oa )”} "
i il k 1

00

€.: single-particle energies
E5SI
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SMMC in a Nutshell

Shell-model Hamiltonian

1
H=H +H,= za: e,xaLaa + 1 ;5 Vagn,(;aLanga(;a7
afy

In the JT-coupled representation, two-body part is written as
1 . 1/2
H = - % ; Vi (ij, kD) [(2 + 1) (2T + 1)(1 4 6)(1 + 6u)]/* x

T T\IT ~ %
x (aj ®a;)" @ (G ® a)

00
€.: single-particle energies

VA (i, kI): two-body matrix elements
JT (l.] ) y E 5 ][
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SMMC in a Nutshell

Pandya Transformation

ﬁz — I% + ﬁi (Pandya transformation)
H = > eapoolad)
ad

H, = ;Z;EK(Z'] ; M pkn (0) pr—ma (j)
ij

| Diagonalize Eg to get Axq, Vka

- 1 Do w(@) 3 (Ghute) + Pu(a))

M>0
- =51

Cem Ozen Introduction to SMMC methods
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SMMC in a Nutshell

Observables Using Matrix Algebra

Trl, and (0), can be evaluated using matrix algebra in the
single-particle space. The grand-canonical trace of U, is
equivalent to a determinant in the single-particle space:

TrU, = det[1 + U,]

Likewise, observables can be dealt with using matrix algebra in
the single-particle space as well:

. TtU, 0 1
(0)y = —2= =1t
TrU, 1+U,

ESI
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SMMC in a Nutshell

Canonical Ensemble: Particle-number projection

One can extract the canocial many-body traces using the
Fourier extraction method:

N,
. A
Py =+ > e ) Particle-number projection
5 m=1
where ¢,, = andm=1,...,N;
1 &
TtU, — Tty U, = N Z e~ nNdet[1 4 €U, ]

S m=1

Note that ¢/"NU, = ¢»U, was used above.
¢ ¢ =S

Cem Ozen Introduction to SMMC methods
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SMMC in a Nutshell

Why Monte Carlo Integration

Consider the following integral
Z x /d3r1 e d3rAe_B i)

Using a mere 10 pt. mesh for each coordinate, this
3A-dimensional integral would require 103 point evaluations.
Let A = 20, that makes 10%° evaluations!

Using a powerful 40 Tflop (= 4 x 10'3 processes/sec.) machine,
computational time would be:
10*” seconds or 10*° times the age of the universe!!!

Sl

Cem Ozen Introduction to SMMC methods
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Monte Carlo Integration

@ Uncertainity in the estimate of the integral decreases as
N~/ independent of the dimension of the problem!

@ In comparison, quadrature errors behave like O(N—2/4)
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Monte Carlo Integration

@ Uncertainity in the estimate of the integral decreases as
N~/ independent of the dimension of the problem!

@ In comparison, quadrature errors behave like O(N—2/4)
Hence, Monte Carlo wins over quadrature for d < 4
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Theoretical Background

Monte Carlo Integration

@ Uncertainity in the estimate of the integral decreases as
N~1/2 independent of the dimension of the problem!
@ In comparison, quadrature errors behave like O(N—2/4)
Hence, Monte Carlo wins over quadrature for d < 4
As an example, recent SMMC calculations we have performed

have 10°-10°-dimensional integrals!
S

Cem Ozen Introduction to SMMC methods
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SMMC in a Nutshell

Monte Carlo Integration

Monte-Carlo integration (Importance sampling):

JDlo]WoXs
fD[U]WU

Sampling according to distribution W is achieved by Metropolis
random walk.
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SMMC in a Nutshell

Monte Carlo Integration

Monte-Carlo integration (Importance sampling):

JDlolWoXo LX)

M
DloIWs W= ﬁ 2 k=1 %o(0)

Sampling according to distribution W is achieved by Metropolis
random walk.
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SMMC in a Nutshell

Monte Carlo Integration

Monte-Carlo integration (Importance sampling):

D[o]Wo X,
[DlolWoXe 1% )y = 3 i Xo()

fD[a]Wa
Sampling according to distribution W is achieved by Metropolis
random walk.
Ay — [DIWe (D)o _ ((Q5)P0)
Thus we obtain (Q2) = TDlTWabs = (®alw L J

ESI
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SMMC in a Nutshell

Generating the Samples: Metropolis Algorithm

Field configurations o1, 03, . .. that are randomly distributed
according to a probability distribution W, can be generated by
repeating the following procedure:
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SMMC in a Nutshell

Generating the Samples: Metropolis Algorithm

Field configurations o1, 03, . .. that are randomly distributed
according to a probability distribution W, can be generated by
repeating the following procedure:

@ Start with some initial configuration o;
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SMMC in a Nutshell

Generating the Samples: Metropolis Algorithm

Field configurations o1, 03, . .. that are randomly distributed
according to a probability distribution W, can be generated by
repeating the following procedure:

@ Start with some initial configuration o;

©@ Move to a trial configuration o,
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SMMC in a Nutshell

Generating the Samples: Metropolis Algorithm

Field configurations o1, 03, . .. that are randomly distributed
according to a probability distribution W, can be generated by
repeating the following procedure:

@ Start with some initial configuration o;

©@ Move to a trial configuration o,

W(o:)

© Calculate the ratio r = W)
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SMMC in a Nutshell

Generating the Samples: Metropolis Algorithm

Field configurations o1, 03, . .. that are randomly distributed
according to a probability distribution W, can be generated by
repeating the following procedure:

@ Start with some initial configuration o;

©@ Move to a trial configuration o,

@ Calculate the ratio r = %Z’i
Q If r > 1 then accept the trial move, i.e., o;11 = o,

Otherwise
accept the trial move with probability r.
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SMMC in a Nutshell

Generating the Samples: Metropolis Algorithm

Field configurations o1, 03, . .. that are randomly distributed
according to a probability distribution W, can be generated by
repeating the following procedure:

@ Start with some initial configuration o;

©@ Move to a trial configuration o,

@ Calculate the ratio r = %Z’i
Q If r > 1 then accept the trial move, i.e., o;11 = o,

Otherwise
accept the trial move with probability r.

© Gotostep 1.
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In Summary ...

@ Eigenvalue problem — Quadrature
(combinatorial scaling — N2N;)

ESI



Introduction
Nuclear Shell Model
A Concise Overview of SMMC

Theoretical Background

SMMC in a Nutshell

In Summary ...

@ Eigenvalue problem — Quadrature
(combinatorial scaling — N2N;)

@ Many-body nature — one-body nature in fluctuating fields
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SMMC in a Nutshell

In Summary ...

@ Eigenvalue problem — Quadrature
(combinatorial scaling — N2N;)

@ Many-body nature — one-body nature in fluctuating fields

@ Operators — matrices of dimension Ny x N,
(e.g., U, — Uy,)
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Theoretical Background

SMMC in a Nutshell

In Summary ...

@ Eigenvalue problem — Quadrature
(combinatorial scaling — N2N;)

@ Many-body nature — one-body nature in fluctuating fields

@ Operators — matrices of dimension Ny x N,
(e.g., U, — Uy,)
@ Exact upto controllable discretization and sampling errors

ESI
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Theoretical Background

Sign Problem

Often the sign ¢, = ‘%gg' is not positive for some of the
samples ¢! When (¢, )y — 0, variance in the MC integral

Ay — (Q0)00)
e (o

rapidly becomes too large and the method fails!

Most effective nuclear interactions suffer from the sign problem,
and the problem gets worse at lower temperatures.

ESI
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A Concise Overview of SMMC

Sign problem and Time-reversal Symmetry

It can be shown that if the linearized Hamiltonian £, is
time-reversally symmetric, then eigenvalues of U, come in
complex-conjugate pairs, implying

R Ny/2 . Grand-
Tl = det[1+ U] = ] (1 + ex)(1+€}) > 0. canonical
py case

as a results ¢, = 1 is guaranteed.

Cem Ozen Introduction to SMMC methods
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Theoretical Background Nuclear Shell Model

A Concise Overview of SMMC

Sign problem and Time-reversal Symmetry

It can be shown that if the linearized Hamiltonian £, is
time-reversally symmetric, then eigenvalues of U, come in
complex-conjugate pairs, implying

R Ny/2 . Grand-
Tl = det[1+ U] = ] (1 + ex)(1+€}) > 0. canonical
py case

as a results ¢, = 1 is guaranteed.
What is the condition for i, = h, then?

Cem Ozen Introduction to SMMC methods
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Theoretical Background

Sign Problem and the Time-reversal Symmetry

H always obeys the time-reversal symmetry. Explicitly
N 1 N
H = Zﬁiajai + E ; )\oc{pom pa}
4

where \, are real and ﬁa.: ZU Cii bij- The linearized
Hamiltonian

~

ha(Tn) = Z Eaa:'[ai + Z(Sa)\aaanﬁa + Sa)\aazznﬁa)-
i a

ESI
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Theoretical Background

Sign Problem and the Time-reversal Symmetry

H always obeys the time-reversal symmetry. Explicitly
N 1 N
H = Zﬁiajai + E ; )\oc{pom pa}
4

where \, are real and ﬁa': ZU Cii bij- The linearized
Hamiltonian

~

ha(Tn) = Z Eaa:’[ai + Z(Sa)\aaanﬁa + Sa)\aazznﬁa)-
i a

is time-reversal symmetric

if \, < 0then hy, = h, |

Cem Ozen Introduction to SMMC methods
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Theoretical Background

A Practical Solution to the Sign Problem

An extrapolation method

A given Hamiltonian is decomposed into good and bad parts:

I/'\IG = Zea ai+ = Z)\a{pavpa}

Aa<0

ﬁIB = = Z )\a{Paapa

)\a>0

Construct a new, "sign-free” family of Hamiltonians

H, = f(g)Hg + gHp with f(g < 0) > 0 and H,—, = A
Note that ¢, = 1 for g < 0 by construction.

Y. Alnassid et. al, Phys. Rev. Lett. 72 613, 1994. IS

Cem Ozen Introduction to SMMC methods
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Example to the Extrapolation Method

<H> (Me¥)

= o Calculate

- . then use a polynomial extrapolation to
e, get the physical value (O),—;.

' ] In the case of energy, variational
% a8 Pl principle imposes the extra condition:

14 e d <H > 8
AR _ T d g

g=1 ESI

Cem Ozen Introduction to SMMC methods



Introduction
Nuclear Shell Model
A Concise Overview of SMMC

Theoretical Background

Effective Interactions without the Sign Problem

~

effective nuclear int. =~ collective part + non-collective part
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Introduction
Nuclear Shell Model
A Concise Overview of SMMC

Theoretical Background

Effective Interactions without the Sign Problem

~

effective nuclear int. =~ collective part + non-collective part
! 1
gives good sign gives bad sign
important for level densities  not so important for level density

Example: Pairing+Quadrupole Interaction

5 Aa G
H=Y"caalan— x> (~1)"02u02 , — 7 > Pl (@)Pr—o1 () \
a 7

a,o t;

A i P . dv e

where Q,, is the mass quadrupole operator: 0, = % ZO"HTMYZ‘W[“L ® &,
ab

T ) L. . P i IM=00,T=1

and Pj_, .. () is the seniority pairing operator: Pj,_, , (o) = (-1) {a(,y,: ® aa,,:]

ESI
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Nuclear Shell Model
A Concise Overview of SMMC

Theoretical Background

Stabilizing the SMMC Against the Sign Problem

Shifted Contour Method

Standard SMMC:
A= Yoa €aOa + % Yoa )\a@é

1 N2 _1 2 2
e 28807 1/A257!_/\| /dd e 5ABIAo*—ABso O

Shifted-contour SMMC:
H=3 (ca = Wa)Oa+ 13 Aa(On — 00)?

o SABNDY _ /A2/67‘r>\| /da o A8 (0—5O)2 - ABs(o—sO)AD

E5SI
R. Baer, M. Head-Gordon and D. Neuhauser, J. Chem. Phys. 109 6219, 1998
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Nuclear Shell Model
A Concise Overview of SMMC

Stabilizing the SMMC Against the Sign Problem

Shifted Contour Method

Theoretical Background

5ol 40
\ —_— r ]
—o—"Mg —  Exact Shell Model ]
—=o—="5] =50 = AFMC- Shifted Contour [
—o— Mg, SMMC 2 a
= osil AN P =
S ° B, a2 [ ]
B o4l s = F ]
03 ° \0 e e -
3 ° E al
\ NN & ]
02 \ o 9 80 B
0.1 \\ \o = el
0.0+ T T T T T T T T 1 7)) A O 0 e S i i W

p2 04 06 08 1.0 12 14 16 18 20 22 % 0 OS _l lS e

MeV" H " o =

PIMeV] B MeV?h

Sign problem delayed. Courtesy of G. Stoitcheva
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Theoretical Background

To Be Continued...

So far we have seen a mostly abstract background of the
technique. It is time we continue with some applications
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Thermal Properties of Nuclei
Nuclear Level Density

Applications SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

Thermal Properties of Nuclei

Some Questions

In finite many-body systems, surface effects and associated
quantum fluctuations make the concept of distinct phases a
fuzzy concept.

@ Can one find signatures of phase transitions? Paired to
unpaired, deformed to spherical

@ How are pairing correlations and deformation affected by
temperature?
In particular, how do the quadrupole shape deformations
(which favors low-density of single-particle states around
Fermi level) and pairing collectivity (which tries to restore
spherical symmetry) compete?
Sl
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Thermal Properties of Nuclei
Nuclear Level Density

Applications SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

Pairing Correlations

A measure for BCS-like J = 0, T = 1 pairing correlations in the
ground state is (A},A,» (for protons) where

F N
AL =D PPl
Jjm>0

For genuine correlations one must consider the excess over the
uncorrelated Fermi gas value

(ala) = Ej: 2(2j{|- 1)

wheren; =% ]maJm are the occupation numbers.
GSI
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Nuclear Level Density

Applications SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

Pairing Correlations

pp- or nn-
Al (ias) = \/7[ I ®al M pairing
pn-pairing
1
FA(A7) e —— 1 ®aj,b]JM + [}, ®ajr,,]JM + for T=0
. 2(1 + dap) { B ! 8 ’ } - for T=1

M, . = Z<A;M(jajh)AJM(j&jd)>

M

An often-used, convenient measure of pairing correlations is

=> M,

a>al

Genuine pair correlations are obtained as
Peorr(J) = P(J) — Pur(J) ESI



Thermal Properties of Nuclei
Nuclear Level Density
Applications SMMC in the pn-formalism: Zr and Mo isotopes

Electron Capture and Beta Decay

Thermal Properties of N = 40 Isotones

Nuclei around A ~ 72 are capable of developing large
deformations and strong pairing correlations in their ground

states.
Consider the following N = 40 nuclei:

@ %Nij spherical, weak pairing corr.

@ 79Zn spherical, strong pairing corr.

@ ?Ge shape coexistence

@ 80Zr well-deformed, weak pairing corr.

Cem Ozen Introduction to SMMC methods
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Thermal Properties of Nuclei

Nuclear Level Density

SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

Thermal Properties of N = 40 Isotones

Specific Heat

o

o

Specific Heat
&

3

o

05 i 15 05 1 15
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Specific Heat

@ No peaks observed when P term is off

o

o

Specific Heat
3 &

o

05 i 15 05 1 15
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Specific Heat

@ No peaks observed when P term is off

@ 8Zr has a shoulder signalling deformation
change

o

o

Specific Heat
3 &

o

05 i 15 05 1 15
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Specific Heat

@ No peaks observed when P term is off
@ 8Zr has a shoulder signalling deformation
change

@ Turning P on, enhances pair correlations
72Ge and 7°Zn develop peaks

o

o

Specific Heat
3 &

o

05 i 15 05 1 15
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Specific Heat

@ No peaks observed when P term is off

@ 8Zr has a shoulder signalling deformation
change

@ Turning P on, enhances pair correlations
72Ge and 7°Zn develop peaks

@ Distinction of static vs. dynamic pairing
correlations

o

o

Specific Heat
3 &

o

05 i 15 05 1 15
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Nuclear Level Density

SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

Thermal Properties of N = 40 Isotones

Specific Heat

o

o

Specific Heat
3 &

o

05 i 15 05 1 15
Temperature (MeV)

@ No peaks observed when P term is off
@ 8Zr has a shoulder signalling deformation

change

@ Turning P on, enhances pair correlations

72Ge and 7°Zn develop peaks

@ Distinction of static vs. dynamic pairing

correlations

@ All pairing correlations are destroyed at

sufficiently high T

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
B(E2) Strength

7500

5000

B(E2) (¢’fm")

2500

T (MeV)

B(E2) strenght as a measure of quadrupole deformation
(02) with 0, = 0F) + 0 where 00/ = ¢, 3, Y261, 61)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005. IS
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Thermal Properties of N = 40 Isotones
B(E2) Strength

@ 80Zr goes through a smooth shape
transition

7500

5000

B(E2) (¢’fm")

2500

T (MeV)

B(E2) strenght as a measure of quadrupole deformation
(02) with 0, = 0F) + 0 where O/ = ¢, 3, 122,61, 61)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005. IS
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Thermal Properties of N = 40 Isotones
B(E2) Strength

@ 80Zr goes through a smooth shape

pra— . ‘ transition
Zr 4] .

‘éo‘;ly @ Effect of turning on P turns out to be
= e T 1 negligible. Only in 3°Zr at low T pairing
:f 7 \k\\ﬂ restores symmetry though weakly.
é 5000 N
2 [72Ge wes *

*mzn e
BN
()‘5 Il I‘S
T (MeV)

B(E2) strenght as a measure of quadrupole deformation
(02) with 0, = 0F) + 04 where 00/ = ¢, 3, Y26, 61)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005. IS
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Thermal Properties of N = 40 Isotones
B(E2) Strength

@ 80Zr goes through a smooth shape
transition

2 F = .
r \ @ Effect of turning on P turns out to be
| B ey ] negligible. Only in 80Zr at low T pairing
:% 7 T ] restores symmetry though weakly.
2 7 @ Effect of turning on P in %Ni is
= 2mjlce s - counterintuitive. Pairing scatters nucleons
[ ™Zn W from fp to gds, increased go/, Occupation
SNLT . ‘ along with strong go,> — f5,2 coupling
03 ! 15 enhances deformation.
T (MeV)
B(E2) strenght as a measure of quadrupole deformation
(02) with 0, = 0F) + 04 where 00/ = ¢, 3, Y26, 61)
K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005. ESI
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Thermal Properties of N = 40 Isotones
Pairing strength

FA
Fow %

i . 3
T

k.

= T -
nf N 3

10-Q+P

1
0.5
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Pairing strength

T
(@a)p v ]
: ™ Fza ]
10~ Oep N e . . .
z“ . N - ] @ Pairing correlations enhanced in all cases
aF |2 Tresmen ] with turning on P.
e

k.

= T -
nf N 3

10-Q+P

1
0.5
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Pairing strength

(@a)p v
A
BN . . .
z“ . ] @ Pairing correlations enhanced in all cases
A TR e with turning on P.

k.

@ %Ni has very weak proton pairing,
explaining the corresponding peak in
specific heat.

= T -
nf N 3

10-Q+P

1
0.5
Temperature (MeV)

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.

en Introduction to SMMC met



Thermal Properties of Nuclei
Nuclear Level Density

Applications SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

Thermal Properties of N = 40 Isotones
Pairing strength

BIE Py onil
10~ Oep '.. - . . .
z“ . ] @ Pairing correlations enhanced in all cases
D with turning on P.
2 e
x

@ %Ni has very weak proton pairing,
explaining the corresponding peak in
specific heat.

@ Behaviour of decreasing pairing strength
in 7°Zn and 2Ge explains the

: 5 L corresponding peak structures in specific

Temperature (MeV) heat plot

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Thermal Properties of N = 40 Isotones
Pairing strength

F o % .. . .
F N @ Pairing correlations enhanced in all cases
Eoly Sreee ] with turning on P.

Y ———a. e o

"--n»..._..__._‘:‘;-_:

@ %Ni has very weak proton pairing,
explaining the corresponding peak in
specific heat.

@ Behaviour of decreasing pairing strength
in 7°Zn and 2Ge explains the

! o5 L corresponding peak structures in specific

Temperature (MeV) heat plot

@ Rather gentle diassociation of pairs in
80Zr points to dynamic pairing effect.

K. Langanke, D.J. Dean and W. Nazarewicz, Nucl. Phys. A757 360, 2005.
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Nuclear Shapes
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Shape and pairing changes manisfests themselves in different
ways:
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Shape and pairing changes manisfests themselves in different
ways:
@ Superfluid (static pairing)-to-normal transition is associated
with a peak in the specific heat around 7 ~ 0.6 — 0.7 MeV
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Electron Capture and Beta Decay

Thermal Properties of N = 40 Isotones

Shape and pairing changes manisfests themselves in different
ways:

@ Superfluid (static pairing)-to-normal transition is associated
with a peak in the specific heat around 7 ~ 0.6 — 0.7 MeV

@ Deformed-to-spherical transition is fairly gradual. Changes
in dynamic pairing does not manifest a peak in the specific
heat. Hence the notion of a phase transition does not
apply.

Cem Ozen Introduction to SMMC methods
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2Ge — (12,20)  %9Zr — (40, 40)
1Ga — (11,20) "Ge — (12, 23)
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pairing strength
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Pairing Correlations

2Ge — (12,20)  %9Zr — (40, 40)
1Ga — (11,20) "Ge — (12, 23)
Ga — (11,19)  7°As — (13, 23)

@ Accidental pairing in Q.Q-only
case
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Electron Capture and Beta Decay

Pairing Correlations

2Ge — (12, 20)
'Ga — (11, 20)
Ga — (11, 19)

80Zr — (40, 40)
5Ge — (12, 23)
T6As — (13, 23)

@ Accidental pairing in Q.Q-only
case

@ Enhanced pair correlations with
Pipron”

pairing strength
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2Ge — (12, 20)
'Ga — (11, 20)
Ga — (11, 19)

80Zr — (40, 40)
5Ge — (12, 23)
T6As — (13, 23)

@ Accidental pairing in Q.Q-only
case

@ Enhanced pair correlations with
Pipron”

@ Larger pair correlations for even

number of nucleons

pairing strength
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Electron Capture and Beta Decay

2Ge — (12, 20)
'Ga — (11, 20)
Ga — (11, 19)

80Zr — (40, 40)
5Ge — (12, 23)
T6As — (13, 23)

@ Accidental pairing in Q.Q-only
case

@ Enhanced pair correlations with
Pipron”

Larger pair correlations for even

number of nucleons

Compare ">Ge to "'Ga and ">Ge
to PGe

Decoupled fluids

pairing strength
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Pairing Correlations

2Ge — (12,20)  %9Zr — (40, 40) Y
1Ga — (11,20) "Ge — (12, 23)
Ga — (11,19)  7°As — (13, 23)

Accidental pairing in Q.Q-only
case

@ Enhanced pair correlations with
PtP uonu

@ Larger pair correlations for even
number of nucleons

ozr 1
s ~—00_"le Compare ">Ge to "'Ga and ">Ge

e e to *Ge
S 200 Decoupled fluids
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£ s 80Zr being N = Z — relative
%" reduction
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Pairing Correlations

2Ge — (12,20)  %9Zr — (40, 40)
1Ga — (11,20) "Ge — (12, 23)
Ga — (11,19)  7°As — (13, 23)

@ Accidental pairing in Q.Q-only
case

@ Enhanced pair correlations with
Pipron”

@ Larger pair correlations for even

number of nucleons

ozr 1
s ~—00_"le Compare ">Ge to "'Ga and ">Ge

i ‘“ - to 75Ge

Decoupled fluids

pairing strength

80Zr being N = Z — relative
reduction

Faster breaking of genuine pairing

correlations with increasing T
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Electron Capture and Beta Decay

Pairing Correlations

2Ge — (12,20)  %9Zr — (40, 40)
1Ga — (11,20) "Ge — (12, 23)
Ga — (11,19)  7°As — (13, 23)

@ Accidental pairing in Q.Q-only
case

@ Enhanced pair correlations with
Pipron”

@ Larger pair correlations for even

number of nucleons

ozr 1
s ~—00_"le Compare ">Ge to "'Ga and ">Ge

i ‘“ - to 75Ge

Decoupled fluids

80Zr being N = Z — relative
reduction

pairing strength

Faster breaking of genuine pairing
correlations with increasing T

Low T behaviour for odd-number

of nucleon case: blocking
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Pairing Correlations
Specific Heat

2Ge — (12,20)  89Zr — (40, 40)
"Ga— (11,20) 7Ge — (12, 23)
Ga — (11,19)  7°As — (13, 23)
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Specific Heat

2Ge — (12, 20)
Ga — (11, 20)
Ga — (11, 19)

807r —. (40, 40)
5Ge — (12, 23)
T6As — (13, 23)

Thermal Properties of Nuclei

Nuclear Level Density

SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

@ Pronounced peak for even
number of nucleons

— paired-to-unpaired transition
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SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

2Ge — (12, 20)
Ga — (11, 20)
Ga — (11, 19)

807r —. (40, 40)
5Ge — (12, 23)
T6As — (13, 23)

@ Pronounced peak for even
number of nucleons
— paired-to-unpaired transition

20—

10—

Strongly-deformed #Zr has less
pronounced peak
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Ga — (11, 20)
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SMMC in the pn-formalism: Zr and Mo isotopes
Electron Capture and Beta Decay

@ Pronounced peak for even
number of nucleons
— paired-to-unpaired transition

Strongly-deformed #Zr has less

20 . 20
= L pronounced peak
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| e Compare "*Ge to "'Ga
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(even-even vs odd-even)
less pronounced peak in
odd-even case
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Palrmg Correlations

Specific Heat

2Ge — (12,20)  80Zr — (40, 40)

Ga — (11,20) 7Ge — (12, 23)

Ga — (11,19)  °As — (13, 23) @ Pronounced peak for even
number of nucleons
— paired-to-unpaired transition

Strongly-deformed #Zr has less

20 . 20
= L pronounced peak
10 - 10+
| e Compare "*Ge to "'Ga
() = = ()
!

(even-even vs odd-even)
less pronounced peak in
odd-even case

Double-peak structure in "'Ga
not so obvious, needs to be
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Calculation of Nuclear level Densities
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Electron Capture and Beta Decay

Nuclear Level Density

Nuclear level density is the number of nuclear levels per
excitation energy at a given excitation energy

@ Fundamental quantity
for nuclear structure at
finite temperature

@ Essential for low-energy
nuclear reaction rates

@ Essential for
Weak-response at
thermal equilibrium

Cem Ozen Introduction to SMMC methods
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Electron Capture and Beta Decay

Back-shifted Bethe Formula

(Ex) 21 \l/;a—1/4(Ex _ A)_5/462 a(Ex—A)
\V 2O

Pairing and shell effects are simulated by a constant
shift A of the excitation energy.

The parameters a and A are determined from data
or systematics.

Typically: a = 2 ~ 4 [MeV~'] (a = £ for Fermi gas)
Aeven—even = \/Z: Aodd 0, Aodd—odd = —%

In principle, both a and A are not only nucleus dependent but
also energy dependent. ESI
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Nuclear Level Densities

Mass Dependence of a and A

Determination of parameters by fitting SMMC results to the BBF:

g o o e e 2
[ Mn &
Lt :
%
A &3
5 ’:,,' 2},
| 3
4 4
=~ LFe 2
36l )
g £
@ 5L “3 <2
4 4
[co Co g
6 a7 0 R
x EANY.
. - . NAA
%
e v Loy
40525456586 -40525456556(
A A

Observe the smooth variation in a, while A exhibits odd-even staggerin%=
Y.Alhassid, nucl-th/0604069, 2006 =
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Electron Capture and Beta Decay

E(B) = Tr{He PH] [ dE e PEEp(E) Z(3): partition function
- Tr[ePH] Z(B3)
Z(0) : total number of
Z(ﬂ)] /ﬁ -
In|=—/"2| =- d6" E(B states
S0y = E)
In the saddle-point approximation,
eBE+INZ()
p(E) = N0
=27 a5

where 3 = 3(E) is the inverse of E = E([3). =i
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Nuclear Level Density

What about energy dependence of A?

@ The BBF, as we have seen, employs a constant A to
account for important pairing correlations

@ However, with increasing excitation energy these
correlations must be weakened.

@ Ignatyuk introduced energy dependent shifts into the Fermi
Gas formula.

@ Can the enerrgy dependence of A be related to the energy
dependence of the pairing correlations?

Cem Ozen Introduction to SMMC methods
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Nuclear Level Density

Effect of Pairing Component of the Interaction

log rho [1/MeV]

SMMC level density for ?Ge as a function of energy.
K. Langanke, Nucl. Phys. A, 2006. == I
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Nuclear Level Density

Effect of Pairing Component of the Interaction

log rho [1/MeV]

E [MeV]

SMMC level density for 8°Zr as a function of energy.

S
K. Langanke, Nucl. Phys. A, 2006.
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Nuclear Level Density

Effect of Pairing Component of the Interaction

log rho [1/MeV]

E [MeV]

SMMC level density for 8°Zr as a function of energy.
Observe the difference with the case before!
Effects of deformation??

S
K. Langanke, Nucl. Phys. A, 2006.
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Nuclear Level Density

Effect of Pairing Component of the Interaction

log rho [1/MeV]

At moderate energies, pairing correlations which are important at low energies are
no longer important!

K. Langanke, Nucl. Phys. A, 2006. E=SII
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Calculation of statistical nuclear reaction rates requires the
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Empirical approach:
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Parity and Spin Dependence of the Level Density

Calculation of statistical nuclear reaction rates requires the
knowledge of spin and parity-projected distribution of the
nuclear energy levels.

Empirical approach: Assumptions:

1
pon(Ex) = EfJ(E")p(E") uncorrelated, randomly

coupled single-particle

where . L
spins and equilibration
2J +1 =1+ of opposite-parity
= (,.2
Fi(Ey) 202 ¢ states are assumed
o? = Sid JEx and Oy = 2m,AR =5
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SMMC Level Densities: Partial Densities

Let O be a set of quantum numbers we would like to project out.

_ Zg(B) _ Te[Poe ]

Energy of excitations with good quantum numbers Q:
_ _ dinYy(P)
Eg(5) = 8 + E(9)
Corresponding partial level density follows as
(E0) eBEo+InZp()
polkg) = ————
—27T7dE§éﬁ)
where 3 = 3(Ep) is the inverse of Eg = Ep([3). SN
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SMMC Level Densities: Partial Densities

Let O be a set of quantum numbers we would like to project out.

_ Zp(B) _ Ti[PgePH]

Yo(B) = 2(3) © TefA] ZQ: o) =1
Energy of excitations with good quantum numbers Q:
_ _ dinYy(P)
Eg(f) =~ 8 + E(9)
Corresponding partial level density follows as
(E0) eBEo+InZp()
polEg) = —F———
—27T7dE§éﬁ)
where 3 = 3(Ep) is the inverse of Eg = Ep([3). SN
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SMMC Level Densities: Parity Projection?

Projection onto positive (negative) parity states is carried out by
where m = + and P=parity operator

o 1 ~

In the Hubbard-Stratonovich representation

2.5 [P 101+ 7 D, )y

Z(B)  TreSH 2 (Po)w

Grand-canonical trace Tr[PU,] = det(1 + PU,)
where P is diagonal with matrix elements (—1)".

9 H. Nakada and Y. Alhassid, Phys. Rev. Lett. 79, 2939 (1997)
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Parity-projected SMMC Level Densities for fp-shell Nuclei
Even-even case

_

%5
=3
~a
a
=3
/ wotal E ol
7 parity - " parity -
parity + parity +
1
il I R L o ol EL L R N
2 4 6 8 10 12 14 16 18 20 0 2 4 8 10 1 14 16 18 20

E [MeV]

log,(p) MeV'']
.

total
neg. parity
pos. parity

Ll R R R E 1 P NS
0 2 4 6 2 14 16 18 20 0o 2 4 8 10 12 16 18 20

E [MeV]

C. 0., K. Langanke, G. Martinez-Pinedo, D.J. Dean, Phys. Rev. C. 75,064307,2007. I3 === 1L

| L
8 10 1
E_ [MeV]
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Parity-projected SMMC Level Densities for fp-shell Nuclei
Interplay between shell structure and pair breaking

T
58
stl I -
5 " "Fe - - 58
R, o
@ e — - == Fe
£4 e et =) s OO
5 | me——— 5
33 o |
g g
gar R - =S
3 e S
- Sy
yun =
S ==
N e et i ol . .
05 1 L5 05 I 2
T [MeV] I [MeV]

To make negative parity states:
Is it just the occupation of gy, that matters?

c.0., K. Langanke, G. Martinez-Pinedo, D.J. Dean, Phys. Rev. C. 75,064307,2007. =1
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Parity-projected SMMC Level Densities for fp-shell Nuclei
Interplay between shell structure and pair breaking

:Ni ‘ oo Bpg
T e ] e
g 4 “Fe [ = g . AéEF:
g'zf e :
A I o N
fu"/ -
oLEmmmmazaty ¢ I obt | L
0.5 1 15 0.5 1 2
T [MeV] T [MeV]
To make negative parity states:
Is it just the occupation of gy, that matters?
Strong pairing correlations have to be overcome as well!
c.0., K. Langanke, G. Martinez-Pinedo, D.J. Dean, Phys. Rev. C. 75,064307,2007. =1
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Parity-projected SMMC Level Densities for fp-shell Nuclei
Odd-A case

8 . 8
5 65
7+ JgNi 7- -
6 6— i
%5 % 5o 3
= =
= af =~ ak 4
o a
sl ek B
2 — total E — total
) — neg. parity | ) — parity -
— pos. parity 4 parity +
1 1 1- £ 1
0 | | I I I I o | | | (-
2 4 14 16 18 20 0 2 4 4 14 16 18 20

8 0 12
E, [MeV]

Due to the unpaired nucleon, equilibration of positive and negative parity level
level densities is achieved at lower excitation energies compared to
the even-even case.

C. 0., K. Langanke, G. Martinez-Pinedo, D.J. Dean, Phys. Rev. C. 75,064307,2007.
=51
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Nuclear Level Densities

Summary and Outlook

@ For even-even nuclei, low energy regime is dominated by

pairing. Positive-parity level density dominates in this
regime.
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Nuclear Level Densities

Summary and Outlook

@ For even-even nuclei, low energy regime is dominated by
pairing. Positive-parity level density dominates in this
regime.

@ Negative-parity level density is moderated strongly by the
single-particle structure.

@ In the odd-A case, positive and negative-level densities
balance out at lower excitation energies due to the
unpaired nucleon in the odd-A nuclei.

ESI
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SMMC Level Densities: Spin Projection®

M- and J-projected partition functions are defined as

Zu(B) = Tge = 3" (aMleMasmy = " e e

a,J>|M]| a,J>|M|
Z;(B) = Tye M= (aiMle M |aiM) = e s
o e

In general, explicit J-projection is computationally very costly!
However,
Since e—#" is a scalar operator, one can instead use
—BH —BH

Tr]e_BH = Try—ye — Try=jy1€

_ _ ESI
Y. Alhassid, S. Liu and H. Nakada, nucl-th/0607062
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SMMC Level Densities: Spin Projection

Projection onto M-states
where J;=maximal
many-body spin in

J
A 1 ~ b (T model space
P — l(ﬁk(‘]& M)
M=) 1 :Z_J ¢ and ¢y = 273’: where
' k=—Js, ..., J

In the Hubbard-Stratonovich representation

M B Tr [f’M:Je’ﬁﬁ] —Tr [IA’M:J+1€7MI}
zp) Tre—1
_ (R - g oo
<¢0>W
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Spin Distribution of Nuclear Level Densities

55 56 60 60
Fe Fe Co Co
02 T=0.76MeV E,=3.39 MeV.
0.1
o [Prea
T=1.0 MeV E,=6.88 MeV/
0.05
N I/l‘\t.._
- 0 <
N T=1.6 MeV & E,=11.95 MeV E,=11.6 MeV E,=11.89 MeV
0.015 0.02
p
0 T=2.0 MeV 0.00
=2 E,=17.37 MeV E,=16.1 MeV E,=17.71 MeV
By A °
. -
0 448 0 448 o 4y8 12 0.00

0 4 8 0 4,8 0 4 8 12
J J J

Y. Alhassid, S. Liu and H. Nakada, nucl-th/0607062. LS
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Spin Distribution of Nuclear Level Densities
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0° == — I(Ey) Energy dependence of moment of inertia
S

Introduction to SMMC methods



Thermal Properties of Nuclei
Nuclear Level Density
Applications SMMC in the pn-formalism: Zr and Mo isotopes

Electron Capture and Beta Decay

Spin Distribution of Nuclear Level Densities

@ little is known about the spin-cutoff parameter experimentally

SMMC results show that

@ spin-cutoff model does a good job for intermediate and high
energies

@ moment of inertia close to rigid-body value at intermediate and
high energies.

@ spin cut-off model fails to explain odd-even staggering observed
in the even-even nucleus *°Fe for lower values of E,

@ moment of inertia decreases monotonically as E, become
smaller, this suppression is stronger in even-even nucleus °Fe

@ this suppression is correlated with rapid increase in pairing I
— thermal signature of pairing phase transition

Cem Ozen Introduction to SMMC methods
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Spin and Parity Resolved Level Densities

Level densities J™ = 2+ and 2~ extracted from high-resolution E2 and M2
giant resonances compared to HFB and SMMC calculations.

- . E
10°F Nifp,p) @ b “zeR) @
s =g
10°[  iThemba LABS 10°F  iThemba LABS
'; 10% v A ALt = 10°
(] ad a o % 5
= a £ 10
210 2z
2 =
S 40t ey . 5 i
o 10 Ni(e,e”) (b) Q40
P Y e
510 S-DALINAC 210
10 10°
10'F 10°

5 10 15 20 5

20
Excitation Energy (MeV)

10 15
Excitation Energy (MeV)

Y. Kalmykov, C. O., K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel and A.Richter, submitted to PRL.
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Spin and Parity Resolved Level Densities

3F *Ni (a)
J=2
2_
3 T E

1 2 S
R ¢ T j SRR
\. 0 e 1
< 3tz (b)

5 10 15 20
Excitation Energy (MeV)

Experiment: no parity dependence

Y. Kalmykov, C. O., K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel and A.Richter, submitted to PRL.
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Spin and Parity Resolved Level Densities

3F *Ni (a)
J=2
2_
3 T E

1 2 S
R ¢ T j SRR
\. 0 e 1
< 3tz (b)

5 10 15 20
Excitation Energy (MeV)

Experiment: no parity dependence
SMMC: neglected core excitations in >3Nj ???

Y. Kalmykov, C. O., K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel and A.Richter, submitted to PRL.
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Spin and Parity Resolved Level Densities

3F *Ni (a)
J=2
2_
3 T E

1 2 S
R ¢ T j SRR
\. 0 e 1
< 3tz (b)

5 10 15 20
Excitation Energy (MeV)

Experiment: no parity dependence
SMMC: neglected core excitations in 8Ni 2?? (— more work needed)

Y. Kalmykov, C. O., K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel and A.Richter, submitted to PRL.
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Applications

Distribution of Spin and Parity Resolved Level
Densities
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PRELIMINARY |
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063 . BEI2MeV 7=t i
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00017 . B20MeV et J
I | | I I |

Spin distribution of level densities do not discriminate
positive or negative parities at the energies considered.
What happens at lower energies ?

c.O, K. Langanke, work in progress
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SMMC Level Densities

Extending the Theory to Higher Temperatures

10 . . : 10?
,"
30 e ] 10"
10 LI

O 20 210 w

<
° 5
o 10
0L=r - . . 10°

[} 1 2 3 4 0 20 40 60 80
T(MeV) E,(MeV)

Specific heat and level density for 3Fe. (SMMC calc. in fpgo,» Space.)

ZGC Z(ZJ +1) {Zln[l G “)] / de dpln[1 + eﬂ(e”l'“)]}
0

InZy ~ InZ% — BuN — Lin(27((AN)?))
InZ, = InZ, ; + InZy, — InZ, ;
Y. Alhassid, G.F. Bertsch, and L. Fang, Phys. Rev. C68 044322, 2003. =1
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Relaxing the Isospin Symmetry

Motivation

Relaxing the isospin symmetry enables one to treat
Hamiltonians built on different proton and neutron model
spaces.
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Relaxing the Isospin Symmetry

Motivation

Relaxing the isospin symmetry enables one to treat
Hamiltonians built on different proton and neutron model
spaces.

A typical two-body term i, = 3 V,O? contains O, = 3" Cala;

ij “i
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Relaxing the Isospin Symmetry

Motivation

Relaxing the isospin symmetry enables one to treat
Hamiltonians built on different proton and neutron model
spaces.

A typical two-body term 4, = 3 v, 02 contains O, = Cij.“ajaj
But
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Relaxing the Isospin Symmetry

Motivation

Relaxing the isospin symmetry enables one to treat
Hamiltonians built on different proton and neutron model
spaces.

A typical two-body term 4, = 3 v, 02 contains O, = C;“a,
But

ala, or aja, terms in O, = 3" Cala; — Z and N fluctuates:
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Relaxing the Isospin Symmetry

Motivation

Relaxing the isospin symmetry enables one to treat
Hamiltonians built on different proton and neutron model
spaces.

A typical two-body term 4, = 3 v, 02 contains O, = C;“a,
But
ala, or afa, terms in O, = ¥ C¢ala; — Z and N fluctuates:

ij %i
e*ﬁoa SD>Z,N = |SD/>Z/,N/

Cem Ozen Introduction to SMMC methods
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Relaxing the Isospin Symmetry

Tz-projection

(Z,N) <= (A, T;) must be fixed for the nucleus of interest:
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Relaxing the Isospin Symmetry

Tz-projection

(Z,N) <= (A, T;) must be fixed for the nucleus of interest:

Py = [T d2¢-i9Aci9N (Number projection)

Pr. = [77 48 o=i0T:4i0T: (T_-projection)

z— JO 27
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Relaxing the Isospin Symmetry

Tz-projection

(Z,N) <= (A, T;) must be fixed for the nucleus of interest:

Py — 27r d¢ it it (Number projection)

Pr. = [ 90 0~ 4i0T: (T -projection)

7

TI‘U —det(1+U)—>f07T ,2133 27 gz —i¢A ,—ifT; det( +ei¢ei0TzUU) J
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Applications to * 1%Zr and %2 %Mo Isotope Chains

e Region with very large deformations

e Abrupt onset of shape transitions:

90Zr, 971 (~ spherical) — 997197 (well-deformed)

We performed our calculations on a model space containing
1p1/2,0gq/2 (proton)

1d5/2, 231/2, 1([3/2, Gg";’,ﬂz, Ohll/g (neutron}

orbitals on the 88Sr core.

en Introduction to SMMC met
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Ground-state energies

Ir isotopes Mo Isotopes
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-
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\
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C. O., D.J. Dean, Phys.Rev. C73 014302,2006.
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Binding energies relative to *Sr

Zr isotopes Mo isgtopas
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C. ©., D.J. Dean, Phys.Rev. C73 014302,2006.
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SMMCpn applied on Zr and Mo isotope chains

Binding Energies

Results show overbinding!
A typical related to the methods used in obtaining effective
interactions from meson theory.

4

We make a global monopole correction (due to Zuker):
vinod(ap, ab) = V,(ab, ab) + W@

where W is adjusted to reproduce experimental values,
W = —125keV.
(Note that this procedure would not affect excitation spectrur&
=P | |
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Applications on Zr and Mo isotopes
B(E2) strength and Pairing Correlations

@ Since the 2] state is expected to absorb most of the total
B(E2) strength, the latter can be used as a measure of the
0] — 2] spacing, which should reflect a strong change with
the shape transitions.

Qp(n) = Zi rz'2Y2(0i7 ¢l)

@ Pairing correlations among like nucleons is known to be
important for the ground state properties of the even-even
nuclei. These correlations are expected to be quenched
along the Zr and Mo isotope chains as the transition from
spherical to well-deformed shapes becomes more
pronounced.

Sl
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BCS-like pairing correlations
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Summary and Outlook

@ First novel applications of the SMMCpn code

@ Reproduced ground-state energies calculated by
exact diagonalization.

@ To reproduce nuclear deformations in the mass region
probably requires an extended model space. Further work
needs to be done in this mass region.
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Electron Capture and (3-decay Rates

Late stages of massive stars lifetime are a playground for weak-interaction
processes that play an important role in the fate of the star.

Core-Collapse -
Supemova 1987Ain the
Large Magellanic Cloud -,

'Thé Sqlar Elemental

Abundance Distribution

miass number

Picture from G.W. Hitt and H. Schatz

Isotopic composition in Type la supernoavae is
controlled by e~ -capture

In the core-collapse supernovae pre-collapse
conditions are strongly dependent on e~ -capture
Competition between e~ -capture and 3-decay
rates is very important.

Both ¢~ -capture and 3-decay cause a leak
of energy and entropy through emission of neutrinos
(for p < 10 g cm™3)
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Weak-interaction rates

SMMC has been the naturally suitable method for the
determination of pre-collapse supernova weak-interaction rates.
Because
@ Large dimensions of the problem (fp — gds shells)
@ Requirement of finite temperature treatment due to
astrophysical conditions
Some recent calculations are
for Neutron-rich Ge isotopes:
K. Langanke and G. Martinez-Pinedo, At. Data. Nucl. Data Tables 79 1, 2001.
for A = 65 — 112 nuclei:
K. Langanke and G. Martinez-Pinedo, Rev. Mod. Phys. 75 819, 2003.
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Gamow-Teller Transitions

B-decay vs. Electron capture

(-decay:
Electron capture A(Z7 N) N A(Z + l’N — 1) + e~ + ﬂe
Beta decay o »i20

Electron capture:
A(Z,N)+e —A(Z—-1,N+ 1)+,

Q3 = M; — My + E; — E;

SMMC methods
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Gamow-Teller Transitions

Why so important?

@ Highly energetic electrons in the fully ionized stellar
environment can be captured to GT resonances in the
decaying nucleus.

@ Presence of degenerate electron gas may block the phase
space of the electron from beta decaying nucleus

@ Finite temperature combined with GT transitions to
low-lying states in daughter nucleus may enhance phase
space and therefore beta-decay rates
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Gamow-Teller Transitions
IPM vs. SM at Finite T

neutrons :

protons

Core
| v

From K. Langanke

_

‘— By
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neutrons | protons

U5

Weak Rates for nuclei with A=65—
112 computed usin%the Shell Model
Monte Carlo plus RPA approach
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Electron Capture Rates
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Electron Capture Rates
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Electron capture on nuclei dominates over capture on protons

From K. Langanke
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Electron Capture Rates

@ Previously neglected e~ -capture on nuclei N > 40, Z < 40
were shown to be very important.

@ Correlations with finite temperature effects unblock the GT
transitions.

@ SMMC (for T-dependent occ. numbers) + RPA (for capture
rates) have shown that capture on nuclei dominates
capture on protons.

@ Although (E,,) is less for nuclei than for protons
(~ 40 — 60%), contributions from nuclei cause significant
effect since neutrino-matter interactions scale with the
square of the neutrino energy.
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Outlook

In the next decades SMMC will continue to be the wavefront of
the large-scale shell model calculations, with the alleviation of
the sign problem its impact will probably become even greater.
Efforts will focus particularly on
@ Extending shell model calculations to regions away from
the line of stability
@ Establishing connections with self-consistent mean-field
theory and shell model;
Derivation of a universal Hamiltonian

@ Develop a global theory of nuclear level densities
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