
Density functional methods: 
from nuclei and nanosystems to astrophysics

V.O. Nesterenko

Joint Institute for Nuclear Research, Dubna, Moscow region, Russia

Helmholtz International School

Nuclear Theory and Astrophysical Applications

Dubna, August 7-17, 2007 



Content: 

Lecture 1:
- density functional theory 
- nuclear functional with Skyrme forces:

- structure
- t-odd densities 
- fitting procedure, variety of forces 

Lecture 2:
- time-dependent version (TD-DFT)
- application of Skyrme functional: nuclei, astrophysics 
- Kohn-Sham functional for electronic systems
- nuclear Skyrme functional vs electronic KS functional

Problem solving seminar:
Dipole modes (E1, scissors M1) in various systems: 
nuclei, atomic clusters, quantum dots, Bose-Einstein condensate



Density functional theory (1): phylosophy

Basic idea:
To replace a complicated interacting many-body problem:
by much easier effective single-particle problem
which gives the same density of particles ( , )n r t
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Does exist any universal scheme for construction of 
- static mean-field hamiltonian

- dynamical response hamiltonian ? 
Can this scheme take into account  correlations ? 

YES!
This is Density 
Functional Theory

(not HF / TDHF)
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Density functional theory (2): advantages

Universal: one of the basic methods of modern theoretical physics:
- atomic nuclei,
- atomic clusters,
- atoms, molecules, 
- various nanosystems,
- quantum transport,
- . . . . .

Simple, not time consuming, realistic results

Self-consistent:                  and  
are derived from one and the same source (initial functional) 
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Idea of density functionals is quite old:
e.g.  Thomas-Fermi functional (1928)

However, real DFT advent was much later:

- Skyrme functional for nuclear systems

- Kohn-Sham functional for electron systems

This is because of:
- nucleons: simple systems, complex forces,
- electrons: complex systems, simple forces 

T.H.R. Skyrme, 1956
D. Vauterin and D.M. Brink, 1972

P. Hohenberg and W. Kohn, 1964
W. Kohn and L.J. Sham, 1965 



DFT iceberg
Nuclear systems

Electron 
systems

atoms, 
molecules, clusters, 
various nanosystems,
quantum transport, …

Morality: even  working only with nuclei, we should pay attention to DFT in general 
and its last developments for electronic systems  (Kohn-Sham functional)

(lecture of Jolos, second part of my lecture)



Functional: simple example
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DFT: ( )E ρ Energy of the system as a functional of the particle density



Main  methods in nuclear structure physics:

Shell model 

Relativistic model

Skyrme forces

Gogny forces

(+) Correlations!
(-) small s-p basis, for light and medium nuclei 

In terms of mesons
Correct treatment of spin-orbit. Int.

Contact (zero-range) interaction.
Simple treatment.

Finite-range interaction

DFT

Universal:  all nuclear chart,  nuclear and neutron matter,
exotic nuclei (superheavy, drip-line, …)



Skyrme functional: basic points
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Skyrme forces
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Isoscalar – isovector Skyrme functional: 

Neutron-proton Skyrme functional:
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Isoscalar – isovector Skyrme functional:
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Skyrme functional: two options

Two alternative TD-DFT Skyrme schemes:

1) from Skyrme two-body forces:  only t-even densities

2) as bilinear form of densities and their first and second
derivatives : both t-even and t-odd densities

Do we really need in TD-DFT t-odd densities? 

, , Jρ τ

, , , , ,TJ jσρ τ

T.H.R. Skyrme, 1956
D. Vauterin, D.M. Brink, 1972

Y.M. Engel, 1975
J. Dobaczewski, J. Dudek, 1995



Skyrme functional for atomic nuclei
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Y.M. Engel et al, NPA 249, 215 (1975).
J. Dobaczewski and J. Dudek, 

PRC, 52 1827 (1995).
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Which densities do we need?

Single-particle density matrix:
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- Some kind of gradient expansion  (important for non-uniform systems)
- Combinations of densities in the functional must:

a) be time-even, 
b) fulfill local gauge (Galilean) invariance 

Formal arguments:

Other densities are first and second derivatives of basic densities      :,sρ
basic densities

their momenta
(first derivatives)

their kin. energies
(second derivatives)

Functional involves all possible  bilinear combinations of the basic
densities and their first and second derivatives.,sρ



( )ρ ℑ∇ ⋅ + ⋅ ∇×s j2ρτ − j

t-odd densities come only in specific combinations with t-even densities:

from Galilean invariance

Hence no new parameters
in the functional!

2ℑ⋅ −Ts

Local gauge (Galilean) invariance

1

exp }' { ( )
N

j
j

i rϕ
=

Ψ = Ψ∑
Local gauge transformation

is real function( )rϕ

So Galilean invariance allows to introduce t-odd densities 
without new parameters!

Functionals without t-odd densities do not hold Galilean invariance!

Strong formal arguments 
in favor of t-odd densities

So, we need t-odd densities to :
- take into account first and second derivatives 
of the basic densities,

- to hold Galilean invariance. 
No new parameters.

( ) boostp r
rϕ ⋅=

Galilean transformation

boos tp cons t=



Influence of T-odd densities on giant resonances (P.-G. Reinhard)

Physical arguments (1):



Physical arguments (2):

- Spin M1 mode: 

-Toroidal E1 mode:

- … 

Some collective modes naturally need t-odd densities:

s

j



DFT formalism: static ground state (1)
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DFT formalism: static ground state (2)

In fact we use Kohn-Sham procedure though Kohn-Hohenberg theorem was
not yet proved for nuclei

0
ˆ [ ]j J h J SEα αφ → → →

- solutions by iterations

0
ˆ [ ] ( ) ( )j j jh J r rα φ ε φ=

Schredinger eq. 

However, for description of 
- g.s. of odd-A  and odd-odd nuclei
- nuclear dynamics 

we need time-odd densities as well 

Time-odd densities do not contribute to the g.s. of even-even nuclei
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Fitting procedure (1) 

Nowadays the following sequence of fitting steps is used:

• Symmetric nuclear matter to reproduce  

Skyrme forces: 11 parameters:

0 0 1 1 2 2 3 3 4 4, ' , , ' , , ' , , ' , , ' ,b b b b b b b b b b α0 0 1 1 2 2 3 3 4 4, , , , , , , , , ,t x t x t x t x t x α or

- One can obtain a huge number of different parametrizations
- Reasonable fitting strategy is very important 

See, e.g. E. Chabanat et al, 
NPA, 627 710(1997)

0ρ
e∞

K

m*/m

- saturation density

- binding energy per nucleon

- incompressibility
- isoscalar effective mass

2) Asymmetric nuclear matter to reproduce

0 3, ,t t α
combination of 

1 1 2 2, , ,t x t x

sa - symmetry energy

- isovector effective mass

3) Pure neutron matter to reproduce EOS

4) Fine tuning: Binding energies and r.m.s. radii of selected doubly  magic nuclei.
Spin-orbital splitting of the neutron p-shell in 208Pb

Important for exotic 
drip-line nuclei*

1 /m m



Fitting procedure (2)

In spite of a generally common fitting strategy, every Skyrme force is usually fitted 
with a certain bias:

As a rule, the fitting is done for:
- the ground state (isoscalar properties), E0, E2 GR  
- E1,  giant resonance (isovector properties) 

Force  

SkT6 (1984),  SkSC,  MSk (2000)

SkM* (1982)

SLy6 (1997)

SkI3 (1995)

- nuclear masses (MSk: 1719 nuclei)
( m*/m = 1.00 - 1.05)

To describe:

- isotope shift of r.m.s. radii in neutron 
rich Pb region
( m*/m = 0.58)

- isovector properties of nuclear matter
( m*/m = 0.69)

- isoscalar E2 giant resonance,
fission barriers 
( m*/m = 0.79)



Tables for main Skyrme forces

Force      
[MeV]        

SkT6   0.161    -15.96   237       1.00        0.00      1.00        30.0
SkM*   0.160   -15.77    217       0.79        0.53      0.65        30.0
SLy6   0.159   -15.92    231       0.69        0.25      0.80        32.0
SkI3    0.158    -15.98   259       0.58        0.25      0.80 34.8

*
1m /mkK0ρ

-3[fm ]

*
0m /m

e∞

[MeV] [MeV]

syma

*
0m /m - isoscalar effective mass *

1m /m - isovector effective mass

k     - sum rule enhancement factor 

syma - symmetry energy coeff.

*
1

1
m /m=

1+k

Nuclear matter values:

- saturation density 0ρ
E/A

E/A

- binding energy per nucleon

K - incompressibility

-3
0 0.16 0.005 fmρ = ± / 16.0 0.2 MeVE A = − ± 210 20 MeVK = ±



Variety of Skyrme parametrizations

We have now

~ 100 different Skyrme forces
and 

no one universal!

though only few of them are widely recognized and used:

SkT6,  SkM*,  SLy4,  SLy6,  SkP,  SGII,  SkI3,  

Nevertheless there is indeed very urgent problem to construct  
an Universal Nuclear Energy Density Functional! 



New initiative in nuclear theory: UNEDF

- US Department of energy, December 2006: project UNEDF
- Inside SciDAC (Scientific discovery through Advanced Computing)
- 1st cycle: lattice QCD (2000)

2nd cycle: UNEDF(2006), 3 million dollars per year for 5 years (2 –nucl. phys, 1- comp.)

UNEDF:
- 30- 40 researchers from US, Belgium, France, Japan, Poland
- 16 US groups from various universities 
- project is opened for researchers from other countries 

Goal: to build
Universal Nuclear Energy Density Functional (UEDF)

www.unedf.org

Supervisor G. F. Bertsch
(University of Washington)

Motivation:
- building reactors
- great DFT success in condensed matter physics and chemistry

NP should repeat condensed matter’s success.

Microscopic functionals, Skyrme, Gogny, relativistic.



Ab initio theory as a fundamental level.
B: Functionals based directly on the microscop.
Hamiltonian.

A: Microscopic calculations for nuclear properties
which cannot be determined experimentally.

Strategy:

A

B

C: DFT extensions, first of all in dynamics!

C

D

D: low-energy nuclear reactions, fission

There has been hardly any 
systematic study of 
nuclear properties

need in better codes,
parallel processing, …
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Progress in density functional theory (DFT) for electronic systems

- Kohn, Sham (1965): mean field equations for valence electrons

- Levy (1979): degenerate ground state 

- Hohenberg, Kohn (1964): theorem for non-degenerate ground state

- Runge, Gross (1984): time-dependent DFT: TD-DFT 

- Vignale, Kohn (1996): current TD-DFT 

- Gunnarsson, Lundqvist (1976)  : xc for spin densities and

- Mermin (1965) : theorem  for temperature 

σ ↓ σ ↑

Nanosystems



TD-DFT for electron systems: recent suspects

In 

Van Leeuwen, Int. J. Mod. Phys., B15, 1969 92001)
J. Schirmer and A. Dreuw, PRA, 75, 022513 (2007)  

the theorem of Runge and Gross was critically reexamined
and  stated to be invalid.

Reasons: 
- undefined phase factors corrupt  RG action integral functionals
- pp- hh-channel was not included. This creates problems for 

non-local external potentials 

This point is still under discussion.



What about t-odd densities in TD-DFT for electron systems?

Can we learn something useful for nuclear physics
from electron DFT/TD-DFT? 

[ ] [ ] [ ]e kin Coul e xc eE T E Eρ ρ ρ= + +

Kohn-Sham functional for electronic systems:
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KS (4): KS equations for electronic mean field

W. Kohn and L.J. Sham, Phys. Rev., 140 (1965) A1133
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Kohn-Sham equations:

- quasi-vanishing
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- solutions by iterations
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3 14
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- ionic density

- KSE reduce the correlated
many-body problem to a 
self-consistent mean-field
problem of Hartree type 



Why Kohn-Sham and Skyrme functional have so different structure?

Skyrme functional:

- No xc-term,

- Form of the basic interaction 
is unknown, 
correlations and exchange 
are put to  parameters

Kohn-Sham functional:

- Has xc-term,

- Includes well known
basic (Coulomb) interaction,
correlations and exchange 
are introduced as separate
corrections to basic  interaction

- wide set of densities

, , ,, , j TJ σρ τ
- Mainly the basic electron density          

but,
the others can be also introduced.

eρ

The current j may be the basic density
in TD-DFT  if the system is strictly 
non-uniform!

G. Vignale, W.Kohn, PRL, 77 2037 (1996).



Time-dependent DFT(1)
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Time-dependent formulation:
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Linear regime: small time-dependent 
perturbation

Mean field hamiltonian: 
static g.s. + time-dependent response 
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2) Determination of time evolution  
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Calculation scheme:

1) Determination of static orbitals for the g.s.



After getting               ,

we can determine the density

and various oscillating characteristics, 
e.g. dipole moment  in time domain

( , )j r tφ
2( , ) | ( , ) |ρ φ=∑ j

j

r t r t

0( ) ( ) ( , )ρ= Ω∫ L
LD t drr Y r t

( ) ( )ωω = ∫ i tD dte D t

Fourier transformation into frequency domain gives

TD-DFT formalism (2)



TD-DFT can be also formulated in terms of:
- matrix RPA,
- separable RPA,
- strength function,
- ….  

- There are TD-DFT codes for spherical nuclei 

- Only a few TD-DFT codes for deformed nuclei:
- P.-G. Reinhard (Erlangen, Germany): 
full RPA with Skyrme forces, axial nuclei

- Dubna: self-consistent separable RPA, 
with Skyrme forces, axial nuclei

- S. Peru (Bruyères-le-Châtel, France) :    
RPA with Gogny forces, axial nuclei

- two weeks of calculation
for one nucleus,  

-systematic calculations are
impossible

- 20 minutes of calculation
for one nucleus,  

-systematic calculations are 
welcome

TD-DFT formalism (3)



Separable self-consistent RPA (SRPA)

( ( , )) ,E J r t Hα = Ψ Ψ

( , ) { ( , ), ( , ), }J r t r t j r tα ρ∈ …

0

2

' '

( , ) ( ) ( , )

ˆ ˆ[ ] ( ) [ ] ( , ) ( )

res

J J J J

h r t h r h r t

E E
J r J r t J r

J J Jα α α
α ααα α α

δ
δ δ δ
δ δ δ= =

= +

= +∑ ∑

( , ) ( ) ( , )J r t J r J r tα α αδ= +

Time-dependent formulation:

ˆ( , ) | |α α=< Ψ Ψ >J r t J T-even and T-odd 
densities

Linear regime: small time-dependent 
perturbation

Mean field hamiltonian: 
static g.s. + time-dependent response 

Now we have to specify the perturbed many-body wave function Ψ

( ) ( ) | | ( ) 0 | | 0α α αδ = Ψ Ψ −J t t J t J The only unknowns



SRPA (2)

Macroscopic step:

Microscopic step:
ˆ( ) {1 ( ) )} 0Th ph ph

ph

t c t A+Ψ = + ∑
( ) i t i t

ph ph phc t c e c eω ω+ − −= +

Perturbed w.f. via Thouless theorem:

' ' '
, ' 1

ˆ ˆ ˆ ˆ{ }κ η
=

+⇒ ∑
K

res kk k k kk k k
k k

V X X Y Y

Joining step:

Perturbed w.f. via scaling:

1

1

ˆ ˆ ˆ ˆˆ ˆ,

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ,

k k k k

k k ph k k k

Q Q TQ T Q

P i H Q P TP T P

+ −

+ −

= =

= = = −
( ) cos( )

( ) sin( )
k k

k k

q t q t

p t p t

ω
ω

=
=

' '
'

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) { ( ) ( ) } 1/ 2 { ( ) ( ) }κ δ η δ= − + = +∑ ∑res k k k k kk k k kk k k
k kk

h t q t X p t Y X t X Y t Y

1
ˆˆ( ) exp{ ( ) }exp{ ( ) }| 0 ,

K

k k k kk
t q t P p t Q

=
Ψ = − −∏

both ( ), 0Ψ t are Slater determinants 

'kk 'kk

ˆ ˆ ˆ ˆ( )| ( )| , ( )| ( )|δ δ δ δ= =k sc k Th k sc k ThX t X t Y t Y tBoth scaling and Thouless w.f.

( )tΨ must give equal variations:



SRPA (3)

Final RPA equations:
1

' ' '

1
' ' '

{ ( ( ) ) ( )} 0

{ ( ) ( ( ) )} 0

kk kkk k

k k

kk
k

kk kk kk
k

d XX d XY

d YX d

q p

q p YY

κ

η

−

−

− + =

+ − =

∑

∑

where e.g.

*

'

'

*

'
ˆ ˆ| | 0 | | 0

( )
( )

ˆ ˆ| | 0 | | 0

( )
[ ]k k

kk

ph ph

k k

ph

ph X ph Y
d XY

ph X ph Y

ε ω ε ω
=

− +
+∑

det[ ] 0jω =

ˆ ˆ{ | | 0 | | 0 }
1
2

k k
k

ph
ph

k kph X i ph Y
c

q p

ε ω
± = −

±

∑ ∓

[ ]+ − + + += −∑ ph p h ph h p
ph

C c a a c a a

2

'
' '

2

'
' '

ˆ ˆ ˆ( ) [ ] 0 |[ , ]0

ˆˆ ˆ( ) [ ] 0 |[ , ]0

k k

k k

E
X r i J P J

J J

E
Y r i J Q J

J J

α α
αα α α

α α
αα α α

δ
δ δ
δ

δ δ

=

=

∑

∑

1
' '

1
' '

ˆ ˆ0 | [ , ] | 0

ˆˆ0 | [ , ] | 0

kk k k

kk k k

i dr X P

i dr Y Q

κ

η

−

−

=

=

∫
∫

0 ' ' '
'

ˆ ˆ ˆ ˆ1/ 2 { }kk k k kk k k
kk

H h X X Y Yκ η= + +∑
T-even T-odd

RPA spectrum

RPA phonon - Rank of RPA matrix is 4K. 
For giant resonances
usually K=2 is enough.

Very low rank!

V.O. Nesterenko, W. Kleinig, 
J.Kvasil, P.-G. Reinhard,  P. Vesely,
PRC, 66, 044307 (2002),
PRC, 74, 064306 (2006).



SRPA (5)

- N.Van Giai, Ch.Stoyanov, V.V.Voronov, PRC, 57, 1204 (1998)
- A.P.Severyuchin, Ch.Stoyanov, V.V.Voronov, N.Van Giai, PRC, 66,034304 (2002)

Alternative separable RPA methods with Skyrme/Migdal forces: 

(-)) Larger rank of RPA matrix, K=400
(-) No T-odd densities 
(+) No problem with the choise of initial operators

2ˆ( ) | | 0 ( )L X X
LS D Dλμ ν λμ ν

ν
ν ξ ω ωω= < > − =∑

Strength function:

' '
' 2

/ 2

( ) ( ) ( )
1 ˆ[ ] | | 0 ( )

( )

L

L
z i ph X

ph

z F z A z A z

ph D
F z

ββ β β
ββ

ω λμ νε ξ ω ω
π = + Δ= ℑ + < > −

∑
∑

Contribution of residual inter. Unperturbed 2qp strength

22 )2()(2
1

)( Δ+−
Δ=−

ν
ν ωωπ

ωωξ
Lorentz weight

L=0,1,3



How to choose the proper Skyrme force?

One should take into account the bias of the force

Force  

SkT6 (1984),  
SkSC,  MSk (2000)

SkM* (1982)

SLy6 (1997) - isovector properties 
of nuclear matter

( m*/m = 0.69)

- isoscal. E2 giant resonance,
fission barriers 
( m*/m = 0.79)

- nuclear masses
( m*/m = 1.00 - 1.05)

s-p spectra

Isoscalar E2 GR,
low-energy vibr. states

isovector E1 GR

It is seen that isoscalar effective mass m*/m is a basic feature to classify
Skyrme forces



Skyrme forces: isoscalar effective mass m*/m

2 2

1 1 2 2 2 2 1 1 *

1 1
{ [ (2 ) (2 ) [ (1 2 ) (1 2 )]}
2 8 8 2q q q

q

t x t x t x t x
m m

τ ρ ρ τ+ + + + + + − + =

For symmetric nuclear matter

/ 2p nρ ρ ρ= =

and so 

1
1 2 22

1
( * / ) 1 [3 (5 4 )]

8
m

m m t t xρ− = + + +

Isoscalar effective mass depends on coordinates in finite nuclei
and constant in nuclear matter. 

Origin of m*/m in Skyrme forces:



Skyrme forces: isoscalar effective mass m*/m

V.O. Nesterenko et al, 
PRC, 70 (2004) 057304

m*/m 1.00 0.79 0.69 0.58

Isoscalar effective mass dramatically 
changes s-p spectrum while keeping 
the same s-p w.f..  

The lower m*/m, the more dilute 
the s-p spectrum



Isoscalar effective mass is related with incompressibility K

Relation of isoscalar and isovector effective masses? *
0 /m m *

1 /m m

W. Satula et al, PRC, 74 (2006) 011301.



Application of SF to finite nuclei: ground state

J.R. Stone, P.-G. Reinhard
Prog. Part. Nucl. Phys., 58 (2007) 587-657.

Deviation between experiment and theory: exp theorO Oδ = −

[ ]BE MeV - binding energy per nucleon

[ ]chr mfm - r.m.s. radius 

[ ]ch mfmσ - surface thickness

[ ]chR mfm - difraction radius

Skyrme forces
BSk1, SkM*, SKI3

1MeV, 0.006%δ ±∼

0.025 fm, 0.003%δ ±∼



Isovector E1 giant resonance



E1 (T=1)resonance in photoabsorption
[dependence on Skyrme force]

0.79
0.53
30

0.69
0.25
32

0.58
025
35

1.00
0
30

*
0m /m=

syma =
k =

exper. 

SRPA

unperturbed 2qp 
(without res. Inter. ) 

E1(T=1) energy decreases with 
in contrast with macrosc. 

theory. Density dependent !
syma

No peculiarities for superheavy
254No 

Dependence of 2qp strength 
and collective shift on *

0m /m
SkM*: artificial right shoulder, 

3-peak structure.
Reason: high k= 0.53 and hence 

too large collective shift. 

Good agreement with experiment
in general. Best for SLy6.

Right flank of E1(T=1) is very 
sensitive to forces. This feature
can be used for their upgrade. 

syma

V.O. Nesterenko, et al, 
PRC,74, 064306 (2006).



E2(T=0) resonance ( exp.:  ( α,α ) , Youngblood,2004 )
Dependence on Skyrme force

*
0m /m=

exper. 

SRPA

unperturbed 2qp 
(without res. Inter. ) 

1.0

0.69

0.79

0.58

Dependence of 2qp strength 
and collective shift on *

0m /m

Best agreement with experiment
for SkT6 and SkM*.
E2(T=0) likes high *

0m /m

Simultaneous description of 
E1(T=1) and E2(T=0) GR 
need Skyrme forces with 
high            (SkM*)  and modest
isovector characteristics (SLy6).

Development of such forces is 
now in progress.

*
0m /m



E1(T=1)and E2(T=0) resonances: 
contribution of time-odd current to residual interaction

2 2
1 1( ) ' ( )s s s

s

b j b jρτ ρ τ− − −∑

without current
with current

Correlations between  time-odd   
impact and effective masses. 
Such correlations are natural
since both factors originate  
from one term of Skyrme functional

Strong effect, especially for low
and high            . 

Regular trend for E2 and
irregular for E1.  

Again right flank is mainly affected.

No impact at all  for SkT6 with m*/m=1

GR are good to test time-odd effects.
1 1~ , 'b b

*
0m /m *

1m /m



Application of SF to finite nuclei: 
low-energy vibrational states

2+low-energy        states in 
the chain of Sn isotopes 

Δ - 75% reduced 
pairing strength

No calculations for 
low-energy vibrational
states in deformed nuclei
(rare-earth and actinide 
regions)



Equation of state (EOS)

Nuclear matter obeys  thermodynamical relation between pressure P
and Helmholz free energy F = E-TS:

,|T S

F
P

V
∂=
∂

2 ( , )
|I

n I
P n

n
ε∂=
∂

n – density

n pn nN Z
I

A n

−−= = - asymmetry parameter

( , )n Iε - binding energy per particle (important for EOS!) 

for T=0

EOS

I = 0 – symmetric nuclear matter (SNM)
I = 1 – pure neutron matter (PNM)

“Experimental” benchmark: ab initio calculations with realistic potential
A18 +     +UIX*(APR) 
based on Argonne A18 two-body inter.

+ three-body inter. UIX*   

δν

relates preasure and energy/density,
very important for astrophysical
models



Skyrme forces to NM:  binding energy
J.R. Stone, P.-G. Reinhard, 2007

-6 Skyrme forces:
SkM*, SkP, SLy6
SkI3, SkI4, BSk1 

vs

APR results
for SNM, PNM

SNM:
good agreement 
for all forces for
low density, not 

for high density 
PNM:
agreement 
only for SLy6

SLy6 is maybe the best  force for 
drip-line nuclei, neutron stars-3

0 0.16 0.005 fmn = ±

SkM* SkP SLy6

SkI3 SkI4 BSk1

BSk1 (2002) is fitted 
Exclusively to binding 
energies 
( = nuclear masses)

best(-)

(-)



Skyrme forces for NM:  asymmetry
J.R. Stone, P.-G. Reinhard, 2007

2
2

2

( )
sym sym sym

N Z
E a a I

A
−= =

2

2

2 2

2

1
2

2

sym

iv

d
a

dI
n d

dn

ε

ε

=

=

asymmetry coeff:

(-)

(-)

best

SkM*

SkI3 BSk1SkI4

SkP SLy6

The forces SkP, BSk1
give  unphysical results: 
- the g.s.for PNM,
- pressure <0, collapse   

Forces SkP, BSk1
cannot be used  for 
astrophysical 
(maybe drip-line) 
problems

-3
0 0.16 0.005 fmn = ±

Again SLy6 is best



Observables of cold (T=0) neutron stars J.R. Stone, P.-G. Reinhard, 2007



Cold neutron star: maximal gravitational mass vs maximal radius

best

Tolman-Oppenheimer-Volkov equation. 



Most  of Skyrme forces well describe:

- g.s. properties of finite nuclei
- symmetric nuclear matter at saturation density

but only a few Skyrme forces can describe

- SNM at high densities
- pure neutron matter
- basic characteristics of cold neutron stars



J.R. Stone, P.-G. Reinhard, 2007

*
0m /m

syma

*
1

1
m /m=

1+k

0ρ

E/A

K

k

Basic NM values:
LD model vs Skyrme (SkM*, SkP, BSk1, SLy6, SkI3, SkI4) and RMF ( PCF1,NL3,NL-Z) 

- SMF agrees bettter with LD
and hence has better credibility than RMF 

- SMF/RMF strictly deviate for:
- effective masses,  
- saturation densities, 
- asymmetries

- RMF is not flexible in isovector channel,
needs essential modifications 



Summary

DFT, TD-DFT are now basic theoretical tools in physics of
nuclear and electronic systems. 

Optimal compromise between simplicity and realistic results.
Good  perspectives for further progress.

DFT with Skyrme forces is one of the most promising models:
- pretend to describe finite nuclei (+ exotic), nuclear matter, neutron stars, …
- still too many parametrizations, 

though there are already a few quite  reliable forces (SLy6, …)
- useful for astrophysics
- rapid progress


