Fermionic Molecular Dynamics

FMD Wave Functions

Nucleon-Nucleon Interaction

Mean-Field Calculations

Projection After Variation and Variation After Projection

Wave Functions

Fermionic

Slater determinant

$$\left|Q\right\rangle = \mathcal{A}\left(\left|q_{1}\right\rangle \otimes \cdots \otimes \left|q_{A}\right\rangle\right)$$

• antisymmetrized A-body state

Molecular

single-particle states

$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp\left\{-\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2a_{i}}\right\} \otimes \left|\chi^{\uparrow}_{i}, \chi^{\downarrow}_{i}\right\rangle \otimes \left|\xi\right\rangle$$

- Gaussian wave-packets in phase-space (complex parameter b_i encodes mean position and mean momentum), spin is free, isospin is fixed
- width a_i is an independent variational parameter for each wave packet
- superposition of two wave packets for each single particle state

Gaussian Wave Packets

• Wave Packet

$$\langle \mathbf{x} | a, \mathbf{b} \rangle = \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b})^2}{2a} \right\}$$

• Norm

$$\langle a, \mathbf{b} | a, \mathbf{b} \rangle = \left(2\pi \frac{a^* a}{a^* + a} \right)^{3/2} \exp\left\{ -\frac{(\mathbf{b}^* - \mathbf{b})^2}{2(a^* + a)} \right\}$$

• Mean Position, Mean Momentum

$$\frac{\left\langle a, \mathbf{b} \, \big| \, \underline{x} \, \big| \, a, \mathbf{b} \, \right\rangle}{\left\langle a, \mathbf{b} \, \big| \, a, \mathbf{b} \, \right\rangle} = \frac{a^{\star} \mathbf{b} + a \mathbf{b}^{\star}}{a^{\star} + a}, \qquad \frac{\left\langle a, \mathbf{b} \, \big| \, \underline{k} \, \big| \, a, \mathbf{b} \, \right\rangle}{\left\langle a, \mathbf{b} \, \big| \, a, \mathbf{b} \, \right\rangle} = i \frac{\mathbf{b}^{\star} - \mathbf{b}}{a^{\star} + a}$$

• Variance of Position and Momentum

$$\frac{\left\langle a, \mathbf{b} \left| \left(\underline{x} - \left\langle \underline{x} \right\rangle \right)^{2} \left| a, \mathbf{b} \right\rangle \right\rangle}{\left\langle a, \mathbf{b} \left| a, \mathbf{b} \right\rangle \right\rangle} = 3 \frac{a^{\star} a}{a^{\star} + a} \qquad \frac{\left\langle a, \mathbf{b} \left| \left(\underline{k} - \left\langle \underline{k} \right\rangle \right)^{2} \left| a, \mathbf{b} \right\rangle \right\rangle}{\left\langle a, \mathbf{b} \left| a, \mathbf{b} \right\rangle \right\rangle} = 3 \frac{1}{a^{\star} + a}$$

Gaussian Wave Packets and Harmonic Oscillator

- Slater determinant invariant under linear transformation of single-particle states
- Harmonic Oscillator wave functions can be obtained by linear combinations of Gaussians
- Create s- and p-wave Harmonic Oscillator wave functions with two slightly shifted Gaussians

$$\lim_{\Delta \to 0} \frac{1}{2} \left(\left\langle x \middle| a, +\Delta \right\rangle + \left\langle x \middle| a, -\Delta \right\rangle \right) = \left\langle x \middle| a, 0 \right\rangle$$

$$\lim_{\Delta \to 0} \frac{1}{2\Delta} \left(\left\langle x \middle| a, +\Delta \right\rangle - \left\langle x \middle| a, -\Delta \right\rangle \right) = x \left\langle x \middle| a, 0 \right\rangle$$

Time-dependent

Time-dependent variational principle

$$\delta \int dt \frac{\left\langle Q \left| i \frac{d}{dt} - \hat{H} \right| Q \right\rangle}{\left\langle Q \left| Q \right\rangle} = 0$$

Time-independent

Ritz variational principle

$$\delta \frac{\left\langle Q \left| \hat{H} - \hat{T}_{cm} \right| Q \right\rangle}{\left\langle Q \left| Q \right\rangle} = 0$$

- minimize expectation value with respect to all the parameters $q_k = \{c_k, a_k, \mathbf{b}_k, \chi_k\},\ k = 1 \dots A$

- need analytical gradients $\frac{\partial}{\partial q_i} \frac{\left\langle Q \middle| \hat{H} - \hat{T}_{cm} \middle| Q \right\rangle}{\left\langle Q \middle| Q \right\rangle}$

describe heavy-ion reactions

Rev. Mod. Phys. **72** (2000) 655

Nucl. Phys. **A745** (2004) 3

• FMD

Non-Orthogonal Basis

• Slater determinant is the antisymmetrized product state

$$|Q\rangle = \mathcal{A}(|q_1\rangle \otimes \cdots \otimes |q_A\rangle)$$
$$= \frac{1}{A!} \sum_{\mathcal{P}} (-1)^{\mathcal{P}}(|q_{\mathcal{P}(1)}\rangle \otimes \cdots \otimes |q_{\mathcal{P}(A)}\rangle)$$

• Antisymmetrization operator is a projection operator

$$\mathop{\mathcal{A}\!\mathcal{A}}_{\sim} \mathop{\mathcal{A}}_{\sim} = \mathop{\mathcal{A}\!}_{\sim}$$

• Many-Body Overlap

$$\left\langle Q \left| Q \right\rangle = \left(\left\langle q_{1} \left| \otimes \cdots \otimes \left\langle q_{A} \right| \right) \mathcal{A}^{\dagger} \mathcal{A} \left(\left| q_{1} \right\rangle \otimes \cdots \otimes \left| q_{A} \right\rangle \right) \right)$$

$$= \left(\left\langle q_{1} \left| \otimes \cdots \otimes \left\langle q_{A} \right| \right) \mathcal{A} \left(\left| q_{1} \right\rangle \otimes \cdots \otimes \left| q_{A} \right\rangle \right) \right)$$

$$= \left(\left\langle q_{1} \left| \otimes \cdots \otimes \left\langle q_{A} \right| \right) \frac{1}{A!} \sum_{\mathcal{P}} (-1)^{\mathcal{P}} \left(\left| q_{\mathcal{P}(1)} \right\rangle \otimes \cdots \otimes \left| q_{\mathcal{P}(A)} \right\rangle \right)$$

$$= \det \left(\left\langle q_{k} \left| q_{l} \right\rangle \right)$$

Evaluation of Matrix Elements

non-orthogonal basis, use inverse overlap matrix

One-Body Matrix Elements

$$\frac{\left\langle Q \left| \mathcal{Q}^{[1]} \right| Q \right\rangle}{\left\langle Q \left| Q \right\rangle} = \sum_{k,l}^{A} \left\langle q_{k} \left| \mathcal{Q}^{[1]} \right| q_{l} \right\rangle \mathbf{o}_{lk}$$

Two-body operators

$$\frac{\left\langle Q \left| Q^{[2]} \right| Q \right\rangle}{\left\langle Q \left| Q \right\rangle} = \frac{1}{2} \sum_{k,l,m,n}^{A} \left\langle q_{k}, q_{l} \right| Q^{[2]} \left| q_{m}, q_{n} \right\rangle (\mathbf{o}_{mk} \mathbf{o}_{nl} - \mathbf{o}_{ml} \mathbf{o}_{nk})$$

$$\mathbf{o} = \mathbf{n}^{-1} = \left(\left\langle \left. q_i \right| q_j \right\rangle \right)^{-1}$$

Interaction Matrix Elements

(One-body) Kinetic Energy

$$\left\langle q_{k} \left| \begin{array}{c} T \\ \end{array} \right| q_{l} \right\rangle = \left\langle a_{k} \mathbf{b}_{k} \left| \begin{array}{c} T \\ \end{array} \right| a_{l} \mathbf{b}_{l} \right\rangle \left\langle \chi_{k} \left| \chi_{l} \right\rangle \left\langle \xi_{k} \left| \xi_{l} \right\rangle \right\rangle$$

$$\left\langle a_k \mathbf{b}_k \, \Big| \, \underline{T} \, \Big| \, a_l \mathbf{b}_l \, \right\rangle = \frac{1}{2m} \left(\frac{3}{a_k^{\star} + a_l} - \frac{(\mathbf{b}_k^{\star} - \mathbf{b}_l)^2}{(a_k^{\star} + a_l)^2} \right) R_{kl}$$

(Two-body) Potential

fit radial dependencies by (a sum of) Gaussians

$$G(\mathbf{x}_1 - \mathbf{x}_2) = \exp\left\{-\frac{(\mathbf{x}_1 - \mathbf{x}_2)^2}{2\kappa}\right\}$$

perform Gaussian integrals

$$\alpha_{klmn} = \frac{a_k^* a_m}{a_k^* + a_m} + \frac{a_l^* a_n}{a_l^* + a_n}$$

$$\rho_{klmn} = \frac{a_m \mathbf{b}_k^* + a_k^* \mathbf{b}_m}{a_k^* + a_m} - \frac{a_n \mathbf{b}_l^* + a_l^* \mathbf{b}_n}{a_l^* + a_n}$$

$$R_{km} = \left\langle a_k \mathbf{b}_k \, \middle| \, a_m \mathbf{b}_m \right\rangle$$

$$\left\langle a_k \mathbf{b}_k, a_l \mathbf{b}_l \, \Big| \, \mathcal{G} \, \Big| \, a_m \mathbf{b}_m, a_n \mathbf{b}_n \, \right\rangle = R_{km} R_{ln} \left(\frac{\kappa}{\alpha_{klmn} + \kappa} \right)^{3/2} \exp \left\{ -\frac{\rho_{klmn}^2}{2(\alpha_{klmn} + \kappa)} \right\}$$

analytical formulas for matrix elements

• Operator Representation of V_{UCOM}

$$\begin{split} \mathcal{C}^{\dagger}(\tilde{I} + \tilde{Y})\mathcal{C} &= \tilde{I} & \text{one-body kinetic energy} \\ &+ \sum_{ST} \hat{V}_{c}^{ST}(r) + \frac{1}{2} \Big(p_{c}^{-2} \hat{V}_{p^{2}}^{ST}(r) + \hat{V}_{p^{2}}^{ST}(r) p_{r}^{-2} \Big) + \hat{V}_{p^{2}}^{ST}(r) \hat{I}^{2} \\ & \text{central potentials} \\ &+ \sum_{T} \hat{V}_{ls}^{T}(r) \hat{I} \cdot \hat{\mathbf{s}} + \hat{V}_{p^{2}ls}^{T}(r) \hat{I}^{2} \hat{I} \cdot \hat{\mathbf{s}} \\ & \text{spin-orbit potentials} \\ &+ \sum_{T} \hat{V}_{l}^{T}(r) \hat{S}_{12}(\mathbf{r}, \mathbf{r}) + \hat{V}_{lrp_{\Omega}}^{T}(r) p_{r} \hat{S}_{12}(\mathbf{r}, \mathbf{p}_{\Omega}) + \hat{V}_{lll}^{T}(r) \hat{S}_{12}(\mathbf{l}, \mathbf{l}) + \\ \hat{V}_{lp_{\Omega}p_{\Omega}}^{T}(r) \hat{S}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) + \hat{V}_{l^{2}lp_{\Omega}p_{\Omega}}^{T}(r) \hat{I}^{2} \hat{S}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) \\ & \text{tensor potentials} \end{split}$$

Nucl. Phys. A745 (2004) 3

Phenomenological Correction to V_{UCOM}

Effective two-body interaction

- FMD model space can't describe correlations induced by residual medium-long ranged tensor forces
- use longer ranged tensor correlator to partly account for that
- add phenomenological two-body correction term with a momentum-dependend central and (isospin-dependend) spin-orbit part
- fit correction term to binding energies and radii of "closed-shell" nuclei (⁴He, ¹⁶O, ⁴⁰Ca), (²⁴O, ³⁴Si, ⁴⁸Ca)
- develop a new correction term that is checked against (small scale) No-Core Shell Model calculations

projected tetrahedral configurations are about 6 MeV lower in energy than "closed-shell" configurations

Perform Variation

Minimization

- minimize Hamiltonian with respect to all single-particle parameters q_k

$$\min_{\{q_k\}} \frac{\left\langle Q \left| \hat{H} - T_{cm} \right| Q \right\rangle}{\left\langle Q \left| Q \right\rangle}$$

- this is a Hartree-Fock calculation in our particular singleparticle basis
- mean-field may break the symmetries of the Hamiltonian

Dubna, Aug 07-17 2

 $ho^{(1)}(\mathbf{r})\left[
ho_{0}
ight]$

44

Mean field

Beyond Mean-Field

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore inversion, translational and rotational symmetry by projection on parity, linear and angular momentum

Variation After Projection (VAP)

- effect of projection can be large
- perform Variation after Parity Projection VAP^π
- perform VAP in GCM sense by applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimize the energy in the projected energy surface
- "real" VAP is possible for p-shell nuclei

Multiconfiguration Calculations

• **diagonalize** Hamiltonian in a set of projected intrinsic states

$$\left\{ \left| Q^{(a)} \right\rangle, \quad a = 1, \dots, N \right\}$$

$$P_{\widetilde{\boldsymbol{\mathcal{P}}}}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \, \exp\{-i(\mathbf{\underline{P}} - \mathbf{P}) \cdot \mathbf{X}\}$$

$$P_{MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega \ D_{MK}^{J}^{\star}(\Omega) \ R(\Omega)$$

$$\sum_{K'b} \left\langle Q^{(a)} \left| \begin{array}{c} HP^{J^{\pi}}_{\sim \ KK'} P^{\mathbf{P}=0} \left| Q^{(b)} \right. \right\rangle \cdot c^{(i)}_{K'b} = \\ E^{J^{\pi}(i)} \sum_{K'b} \left\langle Q^{(a)} \left| \begin{array}{c} P^{J^{\pi}}_{\sim \ KK'} P^{\mathbf{P}=0} \left| Q^{(b)} \right. \right\rangle \cdot c^{(i)}_{K'b} \end{array} \right.$$

[•] FMD

• FMD

Angular Momentum Projection

Intrinsic State

- the intrinsic state is in general not an angular momentum eigenstate
- it is a superposition of angular momentum eigenstates

$$\left|Q\right\rangle = \sum_{JM\alpha} \left|Q; JM\alpha\right\rangle c_{JM\alpha}, \qquad \underbrace{J}^{2}\left|Q; JM\alpha\right\rangle = J(J+1)\left|Q; JM\alpha\right\rangle, \qquad \underbrace{J}_{z}\left|Q; JM\alpha\right\rangle = M\left|Q; JM\alpha\right\rangle$$

Angular Momentum Projection Operator

$$P_{\sim MK}^{J} = \frac{2J+1}{8\pi^2} \int d^3 \Omega D_{MK}^{J}^{\star}(\Omega) R(\Omega)$$

- Rotation Operator $\underline{R}(\Omega)$ rotates the wave function with the Euler angles $\Omega = (\alpha, \beta, \gamma)$
- Wigner *D*-matrix

$$D_{MK}^{J}(\Omega) = \left\langle JM \left| \mathcal{R}(\Omega) \right| JK \right\rangle = \left\langle JM \left| e^{iJ_{z}\alpha} e^{iJ_{y}\beta} e^{iJ_{z}\gamma} \right| JK \right\rangle = \exp\{-iM\alpha\} d_{MK}^{J}(\beta) \exp\{iM\gamma\}$$

• not a true projection operator

$$(\underline{P}_{\mathcal{M}K}^{J})^{\dagger}\underline{P}_{\mathcal{M}'K'}^{J'} = \delta_{J,J'}\delta_{M,M'}\underline{P}_{KK'}^{J}$$

Angular Momentum Projection

*K***-mixing**

• angular momentum eigenstates are linear combinations of projected states with different K

$$\left| \mathbf{Q}; JM\alpha \right\rangle = \sum_{K} P_{MK}^{J} \left| \mathbf{Q} \right\rangle c_{K}^{J\alpha}$$

• solve the generalized eigenvalue problem to get the eigenstates

$$\sum_{K'} \left\langle Q \left| \left(P_{MK}^{J} \right)^{\dagger} H P_{\widetilde{\omega} M K'}^{J} \right| Q \right\rangle c_{K'}^{J\alpha} = E^{J\alpha} \sum_{K'} \left\langle Q \left| \left(P_{\widetilde{\omega} M K}^{J} \right)^{\dagger} P_{\widetilde{\omega} M K'}^{J} \right| Q \right\rangle c_{K'}^{J\alpha}$$

• as the Hamiltonian commutes with rotations this simplifies to

$$\sum_{K'} \left\langle Q \left| HP_{\widetilde{k}K'}^{J} \left| Q \right\rangle c_{K'}^{J\alpha} = E^{J\alpha} \sum_{K'} \left\langle Q \left| P_{\widetilde{k}K'}^{J} \left| Q \right\rangle c_{K'}^{J\alpha} \right. \right.$$

Axial Symmetry

• if $|Q\rangle$ is an eigenstate of J_z the integrations over α and γ become trivial and only the β integration remains

Center-Of-Mass Problem

• Hamiltonian does not couple internal and center-of-mass motion

 $H = H_{internal} + T_{cm}$

- in product states (Slater determinants) the internal motion is entangled with the center-ofmass motion
- zero-th order correction: always use internal operators $H_{internal} = H T_{cm}$...
- in the special case where all widths a are equal the wave function factorizes in the internal wave function and the center-of-mass wave function

$$\langle \mathbf{x}_1, \ldots, \mathbf{x}_A | Q \rangle = \Phi_{\text{internal}}(\xi_1, \ldots, \xi_A) \Phi^a_{\text{cm}}(\mathbf{X})$$

with coordinates $\xi_i = \mathbf{x}_i - \mathbf{X}$ and $\mathbf{X} = \frac{1}{A} \sum_i \mathbf{x}_i$

- in the general case we project the wave function on total momentum $\mathbf{P} = 0$ with the projection operator

$$P_{\widetilde{\boldsymbol{\mathcal{P}}}}^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3 X \, \exp\{-i(\mathbf{\underline{P}} - \mathbf{P}) \cdot \mathbf{X}\}$$

The projected wave function is then given as

$$\langle \mathbf{x}_1,\ldots,\mathbf{x}_A | P^{\mathbf{P}} | Q \rangle = \frac{1}{(2\pi)^3} \int d^3 X e^{i\mathbf{P}\cdot\mathbf{X}} \langle \mathbf{x}_1 - \mathbf{X},\ldots,\mathbf{x}_A - \mathbf{X} | Q \rangle$$

• FMD

Center-Of-Mass Problem

• one-body density calculated with Slater determinant

$$p^{(1)}(\mathbf{r}) = \left\langle \Psi \left| \sum_{i} \delta(\mathbf{r}_{i} - \mathbf{r}) \right| \Psi \right\rangle$$

density of internal wave function

V/PAV

VAP

	E_b [MeV]	r _{charge} [fm]	$B(E2) [e^2 \text{fm}^4]$
PAV	52.7	2.39	9.31
VAP	54.8	2.49	15.36
Multiconfig	57.2	2.74	30.39
Ехр	56.5		

V/PAV

VAP *α*

\mathbf{V}^{π}	PA	V	π
--------------------	-----------	---	---

$B(E2) [e^2 \text{fm}^4]$ r_{charge} [fm] E_b [MeV] V/PAV 81.4 2.36 VAP α -cluster 79.1 2.70 76.9 PAV^{π} 88.5 2.51 36.3 VAP 89.2 26.8 2.42 Multiconfig 92.2 2.52 42.8 Experiment 92.2 39.7 ± 3.3 2.47

Multiconfig

• FMD

• Shell-structure versus Cluster states in ¹²C

$\sqrt{\langle r^2 \rangle}$	2.22	2.22	2.40	2.37	2.45	2.42	2.44	2.42
$\left\langle \underbrace{V_{ls}}_{\sim} \right\rangle$	-39.8	-40.2	-12.0	-17.1	-5.8	-8.0	-	-
$\left\langle \begin{array}{c} T \\ \widetilde{L} \end{array} \right\rangle$	212.1	212.1	189.2	186.1	182.8	179.0	213.9	201.4
$\langle H \rangle$	-81.4	-81.5	-77.0	-88.5	-74.1	-85.5	-57.0	-75.9
	intrinsic	projected	intrinsic	projected	intrinsic	projected	intrinsic	projected

spin-orbit force "breaks" clusters cluster states strongly "feel" projection

Helium Isotopes

Lithium Isotopes

Beryllium Isotopes

Carbon Isotopes

Applications

Helium Isotopes

dipole and quadrupole constrai

 intrinsic nucleon densities of VAP states
 radial densities from multiconfiguration calculations

Helium Isotopes

⁶He charge radius: L.-B. Wang et al, Phys. Rev. Lett. **94** (2004) 142501

Applications Lithium Isotopes

quadrupole constra

- intrinsic densities of V^{π} states

Dubna, Aug 07-17 2

Applications Lithium Isotopes

⁶⁻⁹Li charge radii: G. Ewald et al, Phys. Rev. Lett. **93** (2004) 113002

Applications Lithium Isotopes

Applications Beryllium Isotopes •

- intrinsic densities of V^{π} states

> cluster structure evolves with addition of neutrons

Beryllium Isotopes

 intrinsic densities of parity projected V^π states

> cluster structure evolves with addition of neutrons

PAV^{π}

Applications Beryllium Isotopes

¹¹Be positive parity intruder

63

Carbon Isotopes

Carbon Isotopes

states

Applications Carbon Isotopes

•

quadrupole constra

Hoyle State in ¹²C

Astrophysical Motivation

Nuclear Structure

- What is the structure of the Hoyle state ?
- higher lying 0^+ and 2^+ states
- **–** Compare to *α*-cluster model

Phys. Rev. Lett. 98, 032501 (2007)

Hoyle State

Triple α **Reaction**

http://outreach.atnf.csiro.au/education/senior/astrophysics/stellarevolution_postmain.html

• Hoyle State

Microscopic α **-Cluster Model**

$$R_{12} = (2, 4, \dots, 10) \text{ fm}$$
$$R_{13} = (2, 4, \dots, 10) \text{ fm}$$
$$\cos(\vartheta) = (1.0, 0.8, \dots, -1.0)$$

alltogether 165 configurations

Kamimura, Nuc. Phys. A351, 456 (1981)

Basis States

• describe Hoyle State as a system of 3 ⁴He nuclei

 $\left| \Psi_{3\alpha}(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}); JMK\pi \right\rangle = P_{MK}^{J} P^{\pi} \mathcal{A} \left\{ \left| \psi_{\alpha}(\mathbf{R}_{1}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{2}) \right\rangle \otimes \left| \psi_{\alpha}(\mathbf{R}_{3}) \right\rangle \right\}$

Volkov Interaction

- simple central interaction
- parameters adjusted to reproduce α binding energy and radius, $\alpha - \alpha$ scattering data and Hoyle State ground state energy
- \checkmark only reasonable for ⁴He, ⁸Be and ¹²C nuclei

Basis States

- 20 FMD states obtained in Variation after Projection on 0⁺ and 2⁺ with constraints on the radius
- 42 FMD states obtained in Variation after Projection on parity with constraints on radius and quadrupole deformation
- 165 α -cluster configurations
- projected on angular momentum and linear momentum

Interaction

- FMD interaction based on UCOM interaction with phenomenological twobody correction term fitted to energies and radii of doubly-magic nuclei
- not explicitly tuned for α - α scattering or Hoyle State properties

Comparison

Hoyle State

Comparison

	Exp^1	Exp ²	Exp ³	FMD	α -cluster	'BEC' ⁴	
$E(0_1^+)$	-92.16			-92.64	-89.56	-89.52	
$E^{*}(2_{1}^{+})$	4.44			5.31	2.56	2.81	
$E(3\alpha)$	-84.89			-83.59	-82.05	-82.05	for 0^+_2 and 2^+_2 sta
$E(0_2^+)-E(3\alpha)$	0.38			0.43	0.38	0.26	still unsettled
$E(0_3^+)-E(3\alpha)$	(3.0)	2.7(3)	3.96(5)	2.84	2.81		
$E(2_2^+)-E(3\alpha)$	(3.89)	2.6(3)	6.63(3)	2.77	1.70		
$r_{\rm charge}(0^+_1)$	2.47(2)			2.53	2.54		2^+_2 resonance a
$r(0_{1}^{+})$				2.39	2.40	2.40	1.8 MeV abov
$r(0^+_2)$				3.38	3.71	3.83	treshold include
$r(0_{3}^{+})$				4.62	4.75		NACKE complia
$r(2_{1}^{+})$				2.50	2.37	2.38	
$r(2_{2}^{+})$				4.43	4.02		
$M(E0, 0_1^+ \rightarrow 0_2^+)$	5.4(2)			6.53	6.52	6.45	
$B(E2,2^+_1\rightarrow 0^+_1)$	7.6(4)			8.69	9.16		
$B(E2, 2^+_1 \to 0^+_2)$	2.6(4)			3.83	0.84		

¹ Ajzenberg-Selove, Nuc. Phys. **A506**, 1 (1990)

² Itoh et al., Nuc. Phys. **A738**, 268 (2004)

³ Fynbo et al., Nature **433**, 137 (2005). Diget et al., Nuc. Phys. **A738**, 760 (2005)

⁴ Funaki et al., Phys. Rev. C **67**, 051306(R) (2003)

• Hoyle State

Form factors and Densities

- compare with electron scattering data in Distorted Wave Born Approximation
- elastic form factor described very well by FMD
- transition form factor in first maximum better described by FMD, position of minimum and second maximum better described by cluster model

use intrinsic density

$$\phi(\mathbf{x}) = \sum_{k=1}^{A} \langle \Psi | \delta(\mathbf{x}_k - \mathbf{X} - \mathbf{x}) \rangle$$

Hoyle State Important Configurations

 Calculate the overlap with FMD basis states to find the most important contributions to the Hoyle state

 $\begin{vmatrix} \langle \cdot | 0_{1}^{+} \rangle \end{vmatrix} = 0.30 \quad \begin{vmatrix} \langle \cdot | 0_{1}^{+} \rangle \end{vmatrix} = 0.25 \quad \begin{vmatrix} \langle \cdot | 0_{1}^{+} \rangle \end{vmatrix} = 0.15 \quad \begin{vmatrix} \langle \cdot | 0_{1}^{+} \rangle \end{vmatrix} = 0.08 \quad \begin{vmatrix} \langle \cdot | 0_{1}^{+} \rangle \end{vmatrix} = 0.94 \\ \begin{vmatrix} \langle \cdot | 0_{2}^{+} \rangle \end{vmatrix} = 0.72 \quad \begin{vmatrix} \langle \cdot | 0_{2}^{+} \rangle \end{vmatrix} = 0.71 \quad \begin{vmatrix} \langle \cdot | 0_{2}^{+} \rangle \end{vmatrix} = 0.61 \quad \begin{vmatrix} \langle \cdot | 0_{2}^{+} \rangle \end{vmatrix} = 0.61 \quad \begin{vmatrix} \langle \cdot | 0_{2}^{+} \rangle \end{vmatrix} = 0.61$

FMD basis states are not orthogonal!

Hoyle State Overlap with Cluster Model Space

Calculate the overlap of FMD wave functions with pure α -cluster model space

$$N_{\alpha} = \left\langle \Psi \, \middle| \, P_{3\alpha} \, \middle| \, \Psi \right\rangle$$

Hoyle State Harmonic Oscillator Occupation Numbers

calculate one-body density in harmonic oscillator basis

$$n_{nlj} = \sum_{m} \left\langle \Psi \left| a_{nljm}^{\dagger} a_{nljm} \right| \Psi \right\rangle$$

Dubna, Aug 07-17 2

Hoyle State α -cluster states in the No-Core Shell Model

- compare spectra in NCSM and α -cluster model using the Volkov interaction
- bare interaction used in NCSM calculations
- good agreement for ground state band $(0_1^+, 2_1^+, 4_1^+)$
- very slow convergence for cluster states

Fusion Cross Sections for Oxygen Isotopes

Astrophysical Motivation

Nuclear Structure

- Nucleus-Nucleus Interaction
- Map onto two-body problem
- Fusion Cross-Section

nucl-th/0703030

Pynconuclear Reactions

- pycnonuclear reactions between neutron-rich isotopes are of importance for nucleosynthesis at high density in the deeper layers of accreting white dwarfs and neutron star envelopes
- at these high densities (*pyknos* means compact, dense) the nuclei are positioned on a grid and the fusion cross section is enhanced because of electron screening effects

 FMD calculations provide an independent test for the cross-sections calculated with a Folding model

Michael Wiescher, Leandro R. Gasques

Nucleus-Nucleus Energy Surface

- calculate FMD ground states
- use GCM wave function $|\Psi(\mathbf{R})\rangle = \mathcal{A}\left\{|^{x}O; \frac{1}{2}\mathbf{R}\rangle|^{x}O; -\frac{1}{2}\mathbf{R}\rangle\right\}$
- calculate GCM energy surface

$$E^{L}(R) = \frac{\left\langle \Psi(R\mathbf{e}_{z}) \left| (H - T_{cm}) P_{00}^{L} \right| \Psi(R\mathbf{e}_{z}) \right\rangle}{\left\langle \Psi(R\mathbf{e}_{z}) \left| P_{00}^{L} \right| \Psi(R\mathbf{e}_{z}) \right\rangle}$$

Map onto two-body system

- relative position of two clusters is smeared out in Slater determinant
- transform into RGM basis states $\phi(\xi)$ is internal wave function of oxygen nucleus

$$\langle \boldsymbol{\rho}, \xi_1, \xi_2 | \Phi(\mathbf{r}) \rangle = \mathcal{A} \{ \delta(\mathbf{r} - \boldsymbol{\rho}) \phi(\xi_1) \phi(\xi_2) \}$$

• if the same Gaussian width parameter *a* is used for all single-particle states is used, we can express the GCM state with the RGM basis states

$$|\Psi(\mathbf{R})\rangle = \int d^3r \,\Gamma(\mathbf{R}-\mathbf{r}) |\Phi(\mathbf{r})\rangle \otimes |\Phi_{\rm cm}\rangle$$

with

$$\Gamma(\mathbf{R} - \mathbf{r}) = \left(\frac{\mu}{\pi a}\right)^{3/4} \exp\left(-\mu \frac{(\mathbf{R} - \mathbf{r})^2}{2a}\right), \quad \mu = \frac{A_1 A_2}{A_1 + A_2}$$

and the center-of-mass wave function

$$\left\langle \mathbf{X} \middle| \Phi_{\mathsf{cm}} \right\rangle = \left(\frac{A_1 + A_2}{\pi a} \right)^{3/4} \exp\left(-(A_1 + A_2) \frac{\mathbf{X}^2}{2a} \right)$$

Map onto two-body system

The RGM norm kernel is diagonal asymptotically

$$\langle \Phi(\mathbf{r}) | \Phi(\mathbf{r}') \rangle = n(\mathbf{r}, \mathbf{r}') \stackrel{r, r' \to \infty}{=} [1 + \delta_{ab}(-1)^{L}] \delta(\mathbf{r} - \mathbf{r}')$$

• in order to map onto two-body system transform basis states diagonalize RGM norm kernel

$$\left|\tilde{\Phi}(\mathbf{r})\right\rangle = \int d^3r' \left|\Phi(\mathbf{r}')\right\rangle n^{-1/2}(\mathbf{r}',\mathbf{r}), \qquad \left\langle\tilde{\Phi}(\mathbf{r})\right|\tilde{\Phi}(\mathbf{r}')\right\rangle = [1 + \delta_{ab}(-1)^L]\delta(\mathbf{r}-\mathbf{r}')$$

this procedure takes care of the Pauli forbidden states

Nucleus-Nucleus Potential

• Now fit a local effective potential to the GCM matrix elements

$$\left\langle \Psi(R_i \mathbf{e}_{\mathbf{z}}) \left| P_{00}^L \right| \Psi(R_i \mathbf{e}_{\mathbf{z}}) \right\rangle \stackrel{!}{=} \int dr \, r^2 \, \tilde{\Gamma}_L(R_i; r) \tilde{\Gamma}_L(R_i; r)$$

with

$$H_{\text{eff}}^{L}(r) = \frac{1}{2\mu m_{N}} p_{\text{rel}}^{2} + \frac{L(L+1)}{2\mu m_{N} r^{2}} + V_{\text{eff}}^{L}(r) + V_{C}(r) + E_{1} + E_{2}$$

Adiabatic Effects

- estimate effects beyond the single-channel approximation
- adiabatic energy surface by constraining quadrupole deformation of system
- modify effective potential $V_{\rm eff}$ accordingly

Calculate Fusion Cross-Section

- solve two-body Schrödinger equation for all *L* with Incoming Wave Boundary Condition (assume that nuclei will fuse when the minimum of the potential is reached)
- therefore only real part of nucleus-nucleus potential is needed
- calculate and sum the penetration probabilities to calculate the fusion cross section

$$\sigma(E) = \frac{\pi}{k^2} \sum_{L=0}^{L_{crit}} [1 + \delta_{12}(-1)^L](2L+1)P_L(E)$$

convert into S-factor

$$S(E) = \sigma(E) E e^{2\pi r}$$

Radiative Capture

³He(α , γ)⁷Be reaction

- cluster model wave functions with FMD ground states
- $\bullet\,$ improve description in the interaction region with FMD states for $^7\mathrm{Be}$

Program

- Implement boundary conditions
- Bound states, resonances and scattering states
- Capture cross section

• Radiative Capture

Wave Functions

$^{3}\text{He} + {}^{4}\text{He} \longrightarrow {}^{7}\text{Be} + \gamma$

- asymptotic states like in a cluster model with FMD states for ³He and ³He
- FMD states for $^{7}\mathrm{Be}$ in the interaction region

Matching to the asymptotic solution

- for scattering and resonance states we have to implement boundary conditions by matching to the Coulomb solution of two point-like nuclei
- if the widths of all Gaussians are equal the relative motion of the two nuclei and the center of mass wave function is given analytically
- in the FMD we use a projection on total linear momentum to get rid of the center of mass problem and introduce a collective variable representation to access the relative wave function

Alberto Cribeiro (GSI), PhD thesis

• Radiative Capture

Collective-Coordinate Representation

Size Measure

- Operator <u>B</u> measures extension of the system $P = \frac{1}{2} \sum_{i=1}^{A} (r(i) - r(i))^{2}$

$$\underset{\sim}{\mathbb{B}} = \frac{1}{A^2} \sum_{i < j = 1} (\underline{x}(i) - \underline{x}(j))^{\frac{1}{2}}$$

Asymptotic Interpretation

Eigenvalues relate to relative distance r

$$\mathbb{E}|\beta\rangle = \beta|\beta\rangle \Rightarrow \beta(r) = \frac{A_1A_2}{A^2}r^2 + \beta_1 + \beta_2$$

Eigenvectors localize in r (localized states)

$$\langle \beta | B^2 | \beta \rangle = \langle \beta | B | \beta \rangle^2$$

Identify Collective Wave Function

$$\Psi(r(\beta)) := \frac{1}{\sqrt{\Delta}} \left\langle \beta \, \Big| \, \Psi \right\rangle$$

Radiative Capture

⁷Be **Bound states and Resonances**

 calculate bound states by matching RGM wave function to Whittaker function

$$u_L(r) \propto W_{-\eta, L+\frac{1}{2}}(2kr)/(kr), \qquad k = \sqrt{-2\mu E}, \eta = (\mu Z_1 Z_2 e^2)/k$$

• calculate resonances by matching to purely outgoing Coulomb solution (Gamow boundary conditions), complex eigenvalue $E_{\rm res} + \frac{i}{2}\Gamma$

$$u_L(r) \propto [G_L(\eta, kr) + iF_L(\eta, kr)], \qquad k = \sqrt{2\mu E}$$

Radiative Capture ³He-⁴He **Phaseshifts**

• determine scattering solutions by matching to Coulomb solutions unit flux scattering wave function

$$\left\langle \mathbf{r} \middle| \Psi \right\rangle = \frac{1}{\sqrt{v}} \sum_{L} \sqrt{4\pi} \sqrt{2L + 1} i^{L} e^{i\sigma_{L}} \left[F_{L}(\eta, kr) + \tan(\delta) G_{L}(\eta, kr) \right] Y_{L0}(\hat{r}) / (kr)$$

Radiative Capture S-Factor

- Capture from $1/2^+,\,3/2^+$ and $5/2^+$ scattering states into $3/2^-$ and $1/2^-$ bound states
- S-Factor for ⁷Be described in the interaction region by single PAV^π configuration (dashed line) or VAP configurations for 3/2⁻ and 1/2⁻ (solid line)

Unitary Correlation Operator Method

- explicit description of short-range central and tensor correlations
- phase-shift equivalent correlated interaction $V_{\rm UCOM}$

Fermionic Molecular Dynamics

- Structure of light nuclei
- Halos and clustering

Cluster Degrees of Freedom

- GCM cluster states naturally described in FMD
- RGM wave function needed to implement boundary conditions for scattering or resonance states
- use for fusion and radiative capture reactions

- A. Cribeiro, R. Cussons, H. Feldmeier, K. Langanke, R. Torabi GSI Darmstadt
- H. Hergert, N. Paar, P. Papakonstantinou, R. Roth Institut für Kernphysik, TU Darmstadt