Fermionic Molecular Dynamics for Nuclear Structure and Reactions

Thomas Neff, GSI Darmstadt

HISS 'Nuclear Theory and Astrophysics Applications' Dubna, Russia

Aug 7-17, 2007

Overview Introduction Unitary Correlation Operator Method Fermionic Molecular Dynamics Cluster degrees of freedom, Reactions

Introduction

Nuclear Degrees of Freedom

Many-body Methods

Two-Nucleon System

Nucleon-Nucleon Interaction

• Introduction

Nuclear Degrees of Freedom

• Introduction

Nucleons as effective Degrees of Freedom

cm-coordinates and spins

- at low energies nuclei can be described as a system of nucleons
- nucleons are not point-like particles, proton radius $\sqrt{r_p^2} \approx 0.89$ fm
- nucleon-nucleon force is something like the van-der-Waals force between atoms

• Introduction

Quest for a unified Description of Nuclei

Introduction

Exotica: Special Challenges

Dubna, Aug 07-17 2

- Introduction Two-Nucleon System (Relative Motion)
 - Couple Spin and Isospin

$$|S, M_S\rangle = \sum_{m_{s1}, m_{s2}} C \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & |S| \\ m_{s1} & m_{s2} & |M_S\rangle \\ |\frac{1}{2}, m_{s1}\rangle \otimes |\frac{1}{2}, m_{s2}\rangle, \qquad S = 0, 1$$

$$|T, M_T\rangle = \sum_{m_{t1}, m_{t2}} C \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & |T| \\ m_{t1} & m_{t2} & |M_T\rangle \\ |\frac{1}{2}, m_{t1}\rangle \otimes |\frac{1}{2}, m_{t2}\rangle, \qquad T = 0, 1$$

Spin/Isospin Singlet, Triplet

• Couple Orbital Angular Momentum with Spin

$$\left\langle \mathbf{r} \middle| \alpha, (LS)JM; TM_T \right\rangle = \sum_{M_L, M_S} C \begin{pmatrix} L & S & J \\ M_L & M_S & M \end{pmatrix} \phi_{\alpha}(r) Y_{LM_L}(\hat{\mathbf{r}}) \left| S, M_S \right\rangle \otimes \left| T, M_T \right\rangle$$

• Antisymmetry

$$(S,T) = (0,1) \text{ or } (1,0)$$
 \longrightarrow $L = 0, 2, 4, \dots$ Even channels $(S,T) = (0,0) \text{ or } (1,1)$ \longrightarrow $L = 1, 3, 5, \dots$ Odd channels

Introduction

Nucleon-Nucleon Force

Realistic Interactions

- describe NN phaseshifts $(\chi^2/datum \approx 1)$
- describe deuteron properties
- short-range (high-momentum) and off-shell behavior not constrained by data
- nucleon-nucleon force not completely constrained

Some Realistic Interactions

- Bonn-Potentials (based on meson-exchange)
- Argonne V18 (local, phenomenological ansatz)
- Potentials based on
 Chiral Perturbation Theory

• (almost) local interaction in coordinate space

$$V(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{p}_{1}, \mathbf{p}_{2}, \sigma_{1}, \sigma_{2}, \tau_{1}, \tau_{2}) = V(r) + V^{\sigma}(r)\sigma_{1} \cdot \sigma_{2} + V^{\tau}(r)\tau_{1} \cdot \tau_{2} + V^{\sigma\tau}(r)\sigma_{1} \cdot \sigma_{2}\tau_{1} \cdot \tau_{2} + C^{\sigma\tau}(r)\sigma_{1} \cdot \sigma_{2}\tau_{1} \cdot \tau_{2}\mathbf{L}^{2} + V^{\sigma\tau}_{l^{2}}(r)\mathbf{L}^{2} + V^{\sigma\tau}_{l^{2}}(r)\mathbf{L}^{2} + V^{\sigma\tau}_{l^{2}}(r)\mathbf{L} \cdot \mathbf{S} + V^{\tau}_{l^{2}}(r)\mathbf{L} \cdot \mathbf{S} + V^{\tau}_{l^{2}}(r)\mathbf{L} \cdot \mathbf{S} + V^{\tau}_{l^{2}}(r)\tau_{1} \cdot \tau_{2}(\mathbf{L} \cdot \mathbf{S})^{2} + V^{\tau}_{l^{2}}(r)(\mathbf{L} \cdot \mathbf{S})^{2} + V^{\tau}_{l^{2}}(r)\tau_{1} \cdot \tau_{2}S_{12} + V^{\tau}_{t}(r)\tau_{1} \cdot \tau_{2}S_{12} + C^{\sigma\tau}_{t^{2}}(r)\tau_{1} \cdot \tau_{2}S_{12} + C^{\sigma\tau}_{t^{2}}(r)\tau_{1}^{2}(r)\tau_{$$

four charge dependent and charge asymmetric terms

 $\mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2, \qquad \mathbf{p} = \frac{1}{2}(\mathbf{p}_1 - \mathbf{p}_2)$ $\mathbf{L} = \mathbf{r} \times \mathbf{p}, \qquad \mathbf{S} = \frac{1}{2}(\sigma_1 + \sigma_2)$ $S_{12} = 3(\sigma_1 \cdot \hat{\mathbf{r}})(\sigma_2 \cdot \hat{\mathbf{r}}) - \sigma_1 \cdot \sigma_2$

• Introduction

Green's Function Monte Carlo

Wiringa, Pieper, PRL 89 (2002) 182501

Unitary Correlation Operator Method

Central and Tensor Correlations Unitary Correlation Operator Interaction in Momentum Space

ab initio Calculations

исом Nuclear Force

Argonne V18 (T=0)

spins aligned parallel or perpendicular to the relative distance vector

• strong repulsive core: nucleons can not get closer than $\approx 0.5~fm$

- central correlations

 strong dependence on the orientation of the spins due to the tensor force

tensor correlations

the nuclear force will induce strong short-range correlations in the nuclear wave function

One- and Two-Body Densities

(Diagonal) One-body density

$$\rho^{(1)}(\mathbf{r}) = \sum_{m_t, m_s} \left\langle \Psi \left| \underset{m_s, m_t}{a}^{\dagger}(\mathbf{r}) \underset{m_s, m_t}{a}(\mathbf{r}) \right| \Psi \right\rangle$$

Probability to find a nucleon at position r

(Diagonal) Two-body density

$$\rho_{S,M_{S};T,M_{T}}^{(2)}(\mathbf{r},\mathbf{r}') = \sum_{m_{s},m_{s}'} C \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & S \\ m_{s} & m_{s}' & M_{S} \end{pmatrix} \sum_{m_{t},m_{t}'} C \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & T \\ m_{t} & m_{t}' & M_{T} \end{pmatrix} \langle \Psi | a_{m_{s},m_{t}}^{\dagger}(\mathbf{r}) a_{m_{s}',m_{t}'}^{\dagger}(\mathbf{r}') a_{m_{s},m_{t}}(\mathbf{r}') a_{m_{s},m_{t}}(\mathbf{r}') a_{m_{s},m_{t}}(\mathbf{r}') \langle \Psi | \Psi \rangle$$

$$\rho_{S,M_{S};T,M_{T}}^{(2)}(\mathbf{r}) = \int d^{3}R \ \rho_{S,M_{S};T,M_{T}}^{(2)}(\frac{1}{2}\mathbf{R} + \mathbf{r}, \frac{1}{2}\mathbf{R} - \mathbf{r})$$

Probability to find **two nucleons** at a relative distance r исом Deuteron

Spin-projected two-body density $\rho_{S=1,M_S,T=0}^{(2)}({\bf r})$ (isodensity plot)

 $egin{aligned} M_{m{S}} &= 0 \ rac{1}{\sqrt{2}}(\ket{\uparrow \downarrow} + \ket{\downarrow \uparrow}) \end{aligned}$

"Donut"

"Dumbbell"

density at small distances suppressed

- central correlations

density depends strongly on spin orientation

tensor correlations

these **short-range Correlations** can not be described with product states (Slater determinants)

Realistic and Effective Nucleon-Nucleon Interactions

Realistic Interactions

- reproduce scattering data and deutron properties
- meson-exchange (Bonn), phenomenological (AV18), χ -PT (Idaho)
- repulsive core and tensor force induce strong short-range correlations

Effective Interactions

- phenomenological effective interactions describe many properties of nuclear systems like energies, radii, spectra successfully using simple many-body wave functions (HF, shell model, microscopic cluster models)
- No-Core Shell Model uses Lee-Suzuki transformation in oscillator basis
- G-matrix and V_{lowk} derive effective interaction in momentum space

Our approach

- derive effective interaction from realistic interaction by explicitly including correlations with unitary correlation operator $C = C_{\Omega}C_r$ formulated in coordinate space
- correlated (effective) interaction

$$\hat{H} = \hat{C}^{\dagger} H \hat{C}$$

UCOM

Unitary Transformation

transform eigenvalue problem

 $H_{\sim} | \hat{\Psi}_n \rangle = E_n | \hat{\Psi}_n \rangle$

with the unitary operator $\underset{\sim}{C}$

$$|\hat{\Psi}_n\rangle = \mathcal{C}|\Psi_n\rangle, \quad \mathcal{C}^{-1} = \mathcal{C}^{\dagger}$$

into the equivalent eigenvalue problem

$$\hat{H} | \Psi_n \rangle = (\underline{C}^{\dagger} \underline{H} \underline{C}) | \Psi_n \rangle = E_n | \Psi_n \rangle$$

finally solve eigenvalue problem in a (small) model space $\{|\Psi_n\rangle, n = 1, ..., N\}$

"pre-diagonalization"

correlator \underline{C} describes short-range correlations that are very similar (for the states in the model space)

correlator \underline{C} admixes component from outside the model space

it does not project on the model space

The Unitary Correlation Operator

Two-Body Correlations

two-body generator

$$C = e^{-iG}, \qquad G = \sum_{i < j} g_{ij}$$

Cluster Expansion

correlated operators $\hat{A} = C^{\dagger}AC$ are no longer operators with definite particle number

 decompose correlated operator into irreducible k-body operators

$$\hat{A} = \hat{A}^{[1]} + \hat{A}^{[2]} + \cdots$$

Two-Body Approximation

$$\hat{T}^{C2} = \hat{T}^{[1]} + \hat{T}^{[2]}, \qquad \hat{V}^{C2} = \hat{V}^{[2]}$$

Correlation range should be smaller than mean distance of nucleons

Correlator C_{\sim}

should conserve translational, rotational and Galilei invariance

cluster decomposition principle should be fulfilled

Spin-Isospin Dependence

nuclear interaction strongly depends on spin and isospin

$$\underbrace{v}_{\sim} = \sum_{S,T} \underbrace{v}_{ST} \prod_{\sim} I_{ST}$$

 different correlations in the respective channels

$$\underset{\sim}{g} = \sum_{S,T} \underset{\sim}{g}_{ST} \underset{\sim}{\Pi}_{ST}$$

correlated interaction in two-body space

$$\hat{v} = \sum_{S,T} \left(e^{ig_{ST}} v_{ST} e^{-ig_{ST}} \right) \prod_{\sim} ST$$

Dubna, Aug 07-17 2

UCOMCentral Correlations

repulsion at short distances

 probability density of nucleons in the repulsive core strongly suppressed

Radial Shift

- correlator shifts nucleons out of core radial shift generated by radial momentum p_r

$$g_r \stackrel{\mathbf{r}}{\Rightarrow} \frac{1}{2} \{ p_r s(r) + s(r) p_r \}, \quad p_r = \frac{1}{i} \left(\frac{1}{r} + \frac{\partial}{\partial r} \right)$$

Correlation Function

use correlation function $R_{\pm}(r)$ instead of shift function s(r)

$$\pm 1 = \int_r^{R_{\pm}(r)} \frac{d\xi}{s(\xi)}, \quad R_{\pm}(r) \approx r \pm s(r)$$

Correlated Wave function

$$\left\langle \mathbf{X}, \mathbf{r} \middle|_{\sim r}^{c} \middle| \Phi \right\rangle = \frac{R_{-}(r)}{r} \sqrt{R'_{-}(r)} \left\langle \mathbf{X}, R_{-}(r) \hat{\mathbf{r}} \middle| \Phi \right\rangle$$

Tensor Operators

couple two operators

$$\left\{A^{(j_1)} B^{(j_2)}\right\}_q^{(j)} \equiv \sum_{m_1, m_2} C \begin{pmatrix} j_1 & j_2 & j \\ m_1 & m_2 & q \end{pmatrix} A^{(j_1)}_{m_1} B^{(j_2)}_{m_2}$$

couple spins to a tensor of rank 1

$$S^{(1)} = \frac{1}{2} \left(\sigma^{(1)} \otimes 1 + 1 \otimes \sigma^{(1)} \right)$$

or to a tensor of rank 2

$$S^{(2)} = \left\{ S^{(1)} \; S^{(1)} \right\}^{(2)}$$

 $S_{12}(\mathbf{a}, \mathbf{b}) = 3(\sigma_1 \cdot \mathbf{a})(\sigma_2 \cdot \mathbf{b}) - (\sigma_1 \cdot \sigma_2)(\mathbf{a} \cdot \mathbf{b})$ = $3 \{a^{(1)} b^{(1)}\}^{(2)} \cdot S^{(2)}$ = $3 \sqrt{5} \{(ab)^{(2)} \otimes S^{(2)}\}^{(0)}$

$$S_{12}(\hat{\mathbf{r}}, \hat{\mathbf{r}}) = 3 Y^{(2)} \cdot S^{(2)}$$

but they couple different orbital angular momenta $\langle (L1)JM | S_{12}(\mathbf{a}, \mathbf{b}) | (L'1)JM \rangle \neq 0$ for |L - L'| = 0, 2

tensor operators are scalar operators $\langle JM | S_{12}(\mathbf{a}, \mathbf{b}) | J'M' \rangle \propto \delta_{J,J'} \delta_{M,M'}$

Tensor Correlations

 tensor force admixes higher angular momenta

Perpendicular Shift

- correlator aligns density with spin perpendicular shift generated by $s_{12}(\mathbf{r}, \mathbf{p}_{\Omega})$

$$\underset{\sim}{\underset{\sim}{g_{\Omega}}} \stackrel{\mathbf{r}}{\Rightarrow} \vartheta(r) s_{12}(\mathbf{r}, \mathbf{p}_{\Omega}), \qquad \mathbf{p} = \mathbf{p}_r + \mathbf{p}_{\Omega}$$

$$s_{12}(\mathbf{r}, \mathbf{p}_{\Omega}) = \frac{3}{2} (\boldsymbol{\sigma}_{1} \cdot \mathbf{p}_{\Omega}) (\boldsymbol{\sigma}_{2} \cdot \mathbf{r}) + \frac{3}{2} (\boldsymbol{\sigma}_{1} \cdot \mathbf{r}) (\boldsymbol{\sigma}_{2} \cdot \mathbf{p}_{\Omega})$$

$$\frac{s_{12}(\mathbf{r}, \mathbf{p}_{\Omega})}{\langle (J-1, 1)J |} \frac{|(J-1, 1)J \rangle}{0} \frac{|(J+1, 1)J \rangle}{\langle (J, 1)J |} \frac{|(J-1, 1)J \rangle}{0} \frac{|(J+1, 1)J \rangle}{\langle (J+1, 1)J |}$$

$$\frac{s_{12}(\mathbf{r}, \mathbf{p}_{\Omega})}{\langle (J-1, 1)J |} \frac{|(J-1, 1)J \rangle}{0} \frac{|(J-1, 1)J \rangle}{0} \frac{|(J-1, 1)J |}{\langle (J, 1)J |} \frac{|(J-1, 1)J \rangle}{0} \frac{|(J-1, 1)J \rangle}{0}$$

Correlated Wave function

 $\left\langle r \left| c_{\Omega} \right| \varphi; (J, 1)J \right\rangle = \varphi(r) \left| (J, 1)J \right\rangle$ $\left\langle r \left| c_{\Omega} \right| \varphi; (J \neq 1, 1)J \right\rangle = \cos(\theta^{(J)}(r)) \varphi(r) \left| (J \neq 1, 1)J \right\rangle$ $\pm \sin(\theta^{(J)}(r)) \varphi(r) \left| (J \pm 1, 1)J \right\rangle$

 $\theta^{(J)}(r) = 3 \sqrt{J(J+1)} \vartheta(r)$

Tensor Correlated Interaction

Tensor Correlated Operators

Baker-Campbell-Hausdorff

$$c_{\Omega \cong \Omega \cong \Omega}^{\dagger} a c_{\Omega} = e^{i g_{\Omega}} a e^{-i g_{\Omega}} = e^{\mathsf{L}_{\Omega}} a, \quad \mathsf{L}_{\Omega} = \left[g_{\Omega}, \circ \right]_{-}$$

$$s_{12}(\mathbf{l},\mathbf{l}) = 3(\sigma_1 \cdot \mathbf{l})(\sigma_2 \cdot \mathbf{l}) - (\sigma_1 \cdot \sigma_2)\mathbf{l}^2 .$$

$$\bar{s}_{12}(\mathbf{p}_{\Omega},\mathbf{p}_{\Omega}) = 2r^2 s_{12}(\mathbf{p}_{\Omega},\mathbf{p}_{\Omega}) + s_{12}(\mathbf{l},\mathbf{l}) - \frac{1}{2}s_{12}(\hat{\mathbf{r}},\hat{\mathbf{r}})$$

$$\begin{bmatrix} g_{\Omega}, p_r^2 \end{bmatrix}_{-} = i \left(p_r \vartheta'(r) + \vartheta'(r) p_r \right) s_{12}(\mathbf{r}, \mathbf{p}_{\Omega})$$
$$\begin{bmatrix} g_{\Omega}, \left[g_{\Omega}, p_r^2 \right]_{-} \end{bmatrix}_{-} = -2\vartheta'(r)^2 \left[(18 + 6\mathbf{l}^2)\Pi_1 + \frac{45}{2}\mathbf{l}\cdot\mathbf{s} + \frac{3}{2}s_{12}(\mathbf{l}, \mathbf{l}) \right]$$
$$\begin{bmatrix} g_{\Omega}, \left[g_{\Omega}, p_r^2 \right]_{-} \end{bmatrix}_{-} \end{bmatrix}_{-} = 0$$

$$\begin{bmatrix} g_{\Omega}, \Pi_1 \end{bmatrix}_{-} = 0$$

$$\begin{bmatrix} g_{\Omega}, s_{12}(\hat{\mathbf{r}}, \hat{\mathbf{r}}) \end{bmatrix}_{-} = i\vartheta(r) \begin{bmatrix} -24 \Pi_1 - 18\mathbf{l}\cdot\mathbf{s} + 3s_{12}(\hat{\mathbf{r}}, \hat{\mathbf{r}}) \end{bmatrix}$$

$$\begin{bmatrix} g_{\Omega}, \mathbf{l}\cdot\mathbf{s} \end{bmatrix}_{-} = i\vartheta(r) \begin{bmatrix} -\bar{s}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) \end{bmatrix}$$

$$\begin{bmatrix} g_{\Omega}, \mathbf{l}^2 \end{bmatrix}_{-} = i\vartheta(r) \begin{bmatrix} 2\bar{s}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) \end{bmatrix}$$

$$\begin{bmatrix} g_{\Omega}, s_{12}(\mathbf{l}, \mathbf{l}) \end{bmatrix}_{-} = i\vartheta(r) \begin{bmatrix} 7\bar{s}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) \end{bmatrix}$$

$$\begin{bmatrix} g_{\Omega}, \bar{s}_{12}(\mathbf{p}_{\Omega}, \mathbf{p}_{\Omega}) \end{bmatrix}_{-} = i\vartheta(r) \begin{bmatrix} (96 \mathbf{l}^2 + 108)\Pi_1 + (36 \mathbf{l}^2 + 153) \mathbf{l}\cdot\mathbf{s} + 15s_{12}(\mathbf{l}, \mathbf{l}) \end{bmatrix}$$

 evaluate e^{L_Ω} in truncated operator space

 use in HF or FMD calculations

Determine Correlation Functions

Central Correlations

Tensor Correlations

 determine s(r) und θ(r) in each spin-isospin channel by minimizing the energy in the two-body system

 $\min_{s(r),\vartheta(r)} \left\langle \phi_{trial}^{ST} \left| \underset{\sim}{C}_{r}^{\dagger} \underset{\sim}{C}_{\Omega}^{\dagger} \underset{\sim}{HC} \underset{\sim}{C}_{C} \underset{\sim}{C}_{r} \right| \phi_{trial}^{ST} \right\rangle$

- correlation functions depend only weakly on the trial wave function
- restrict the range of the tensor correlations in the S = 1, T = 0 channel (parameter I_{ϑ})

UCOM Correlated Two-Body Densities and Energies

central correlator C_r shifts density out of the repulsive core tensor correlator C_{Ω} aligns density with spin orientation

both central and tensor correlations are essential for binding

Nucl. Phys. A713 (2003) 311

Nucleon Momentum Distributions

- correlations induce high-momentum components
- large contributions by tensor correlations
- dependence on the correlation range at the Fermi surface

Correlated Interaction in Momentum Space

correlated interaction is **more attractive** at low momenta

 ${}^{3}S_{1}$ correlated

off-diagonal matrix elements connecting low- and highmomentum states are strongly reduced ${}^{3}S_{1}$ - ${}^{3}D_{1}$ correlated

Phys. Rev. C72 (2005) 034002

Correlated Interaction in Momentum Space

Bogner, Kuo, Schwenk, Phys. Rept. 386 (2003) 1

исом No-Core Shell Model Calculations

- use Jacobi-coordinate NCSM code by Petr Navrátil, LLNL for ³He and ⁴He (don't use Lee-Suzuki transformation)
- dramatically improved convergence compared to bare interaction
- does not converge to exact result for bare interaction due to omitted higher order terms V^[3]_{UCOM}, ...
- study the effect of higher order contributions as a function of tensor correlation range *I*_δ.

исом Tjon Line with NCSM

- choose tensor correlation range $I_{\vartheta} = 0.09$ such that **need for three-body forces is minimized**
- different perspective: don't try to reproduce the results with the bare interaction but consider V_{UCOM} as a realistic potential to describe experiment

HF and MBPT calculations

additional attraction mainly by medium to long range tensor forces long-range correlations appear to be perturbative spherical Hartree-Fock in 12 $\hbar\omega$ harmonic oscillator basis

• UCOM

Hartree-Fock and Many-Body Perturbation Theory

 $E_{HF} + E^{(2)}$ $E_{HF} + E^{(2)} + E^{(3)}$ spherical Hartree-

 $E_{\rm HF}$

Fock in 12 $\hbar\omega$ harmonic oscillator basis

additional binding mainly due to medium to long range tensor forces long-range correlations appear to be perturbative

problems with saturation indicate need for three-body forces

- NCSM calculations with "bare" $V_{\rm UCOM}$ and Lee-Suzuki effective interaction derived from $V_{\rm UCOM}$ show consistent convergence pattern
- Binding energy close to experiment
- Spectra with V_{UCOM} are of similar quality than with other modern NN forces

исом NCSM ¹⁰В

calculations by Petr Navrátil, LLNL

- correct level ordering without three-body forces
- binding energy not too far from experiment