Astrophysical Constraints on the Nuclear Matter Equation of State

Helmholtz International Summerschool Nuclear Theory and Astrophysical Applications Dubna, 07. - 17.08 2007 Thomas Klähn

Argonne National Laboratory

thomas.klaehn@googlemail.com

Part 1: Neutron Stars - Masses and Radii

Part 2: Consistence with modern Equations of State

Overview

- ➤ relativistic mean field (RMF): Walecka
- parameterisation of realistic models
- ➤ neutron star constraints (last session)
- ➤ symmetric matter: flow constraint
- ➤ cooling neutron stars: direct Urca
- ➤ quark matter phase transition

Meson	I^{π}	T	S	M[MeV]
π^0, π^{\pm}	0-	1	0	140
σ	0+	0	0	≈ 500
K^0, K^{\pm}	0-	1/2	± 1	495
η	0-	0	0	550
$ ho^0, ho^\pm$	1-	1	0	770
ω	1-	0	0	780
δ	0+	1	0	900

Field theoretical formulation: Lagrangian and Path Integral for Partition Function

$$\begin{split} \mathcal{Z}_{gk}(T,V,\{\mu_i\}) &= \int [d\overline{\Psi}][d\Psi] \exp \left\{ \begin{array}{l} \int\limits_{0}^{\beta=1/T} d\tau \int d^3 \vec{x} \left(\mathcal{L}_0 + \mathcal{L}_I + \mu_p \Psi_p^+ \Psi_p + \mu_n \Psi_n^+ \Psi_n \right) \right. \\ \mathcal{L}_0(\tau, \vec{x}) &= \overline{\Psi}(\tau, \vec{x}) \left(i\gamma_\mu \partial_\mu - m_N \right) \Psi(\tau, \vec{x}) \\ \mathcal{L}_I(\tau, \vec{x}) &= j_{\omega_\mu}(\tau, \vec{x}) \frac{G_\omega}{2} j_{\omega_\mu}(\tau, \vec{x}) - j_\sigma(\tau, \vec{x}) \frac{G_\sigma}{2} j_\sigma(\tau, \vec{x}) \\ j_\sigma(\tau, \vec{x}) &= \overline{\Psi}(\tau, \vec{x}) \Psi(\tau, \vec{x}) \\ j_{\omega_\mu}(\tau, \vec{x}) &= \overline{\Psi}(\tau, \vec{x}) \gamma_\mu \Psi(\tau, \vec{x}) \Psi = \left(\begin{array}{c} \psi_n \\ \psi_p \end{array} \right); \quad \psi_n = \left(\begin{array}{c} u_{n, \uparrow} \\ u_{n, \downarrow} \\ v_{n, \uparrow} \\ v_{n, \downarrow} \end{array} \right) \\ Antineut. \\ \mu_n = \mu_p & \rightarrow \text{ symmetric nuclear matter} \\ \mu_n \neq 0; \ \mu_p = 0 & \rightarrow \text{ pure neutron matter} \\ \mu_n = \mu_p + \mu_{e^-} & \rightarrow \text{ neutron star matter} \left(\beta \text{-equilibrium} \right) \end{split}$$

Evaluation of the Path Integral: Hubbard-Stratonovich trick

$$\exp\left(-\left(\overline{\Psi}\Psi\right)\frac{G_{\sigma}}{2}\left(\overline{\Psi}\Psi\right)\right) = \left(\det G_{\sigma}^{-1}\right)^{\frac{1}{2}}\int [d\sigma]\exp\left(\frac{\sigma^2}{2G_{\sigma}} + \sigma\overline{\Psi}\Psi\right)$$

Effective action quadratic \implies Gaussian Path Integral

$$\mathcal{S} \equiv \int_0^\beta d\tau \int d^3 \vec{x} \left\{ \overline{\Psi}(\vec{x},\tau) \left(-\gamma_0 \frac{\partial}{\partial \tau} + i \vec{\gamma} \vec{\nabla} - m_N + \gamma_0 \mu + \sigma - \gamma_0 \omega_0 \right) \Psi(\vec{x},\tau) + \frac{\sigma^2}{2G_\sigma} - \frac{\omega_0^2}{2G_{\omega_0}} \right\}$$

Fourier representation: $\Psi(\vec{x},\tau) = \sqrt{\frac{T}{V}} \sum_{n} \sum_{\vec{p}} e^{i(\vec{p}\vec{x}+\omega_n\tau)} \Psi_n(\vec{p})$, with $\omega_n \equiv \pi T(2n+1)$

$$\int_{0}^{\beta} d\tau \int d^{3}\vec{x} \,\overline{\Psi}(\vec{x},\tau) \left(-\gamma_{0} \frac{\partial}{\partial \tau} + i\vec{\gamma}\vec{\nabla} - m_{N} + \gamma_{0}\mu + \sigma - \gamma_{0}\omega_{0}\right) \Psi(\vec{x},\tau)$$

$$= \beta \sum_{n} \sum_{\vec{p}} \overline{\Psi}_{n}(\vec{p})(-\gamma_{\mu}p_{\mu} - m_{N}^{*})\Psi_{n}(\vec{p}) = \sum_{n} \sum_{\vec{p}} \overline{\Psi}_{n}(\vec{p})G^{-1}[\sigma,\omega_{0}]\Psi_{n}(\vec{p})$$

Effective mass $m_N^* = m_N - \sigma$, chemical potential $\mu^* = \mu - \omega_0$ and quasiparticle propagator

$$G^{-1}[\sigma,\omega] = -\beta(\gamma_{\mu}p_{\mu} + m_{N}^{*}) , \ p_{0} = i\omega_{n} - \mu^{*}$$

Evaluate fermionic Path Integral and mean field approximation:

$$\begin{aligned} \mathcal{Z}_{gk}(T,V,\{\mu_i\}) &= \mathcal{N}\prod_{n,\vec{p}} \int [d\overline{\Psi}_n] [d\Psi_n] [d\sigma] [d\omega_0] \exp\left\{\sum_{n,\vec{p}} \overline{\Psi}_n G^{-1}[\sigma,\omega_0] \Psi_n + \frac{\sigma^2}{2G_{\sigma}} - \frac{\omega_0^2}{2G_{\omega_0}}\right\} \\ &= \int [d\sigma] [d\omega_0] \exp\left\{Tr \ln G^{-1}[\sigma,\omega_0] + \frac{\sigma^2}{2G_{\sigma}} - \frac{\omega_0^2}{2G_{\omega_0}}\right\} \\ &= \exp\left\{Tr \ln G^{-1}[\overline{\sigma},\overline{\omega}_0] + \frac{\overline{\sigma}^2}{2G_{\sigma}} - \frac{\overline{\omega}_0^2}{2G_{\omega_0}}\right\} \end{aligned}$$

Stationarity condition: $\partial \ln Z_{gk} / \partial \overline{\sigma} = \partial \ln Z_{gk} / \partial \overline{\omega}_0 = 0$ corresponds to

 $\overline{\sigma} = -G_{\sigma}Tr G[\overline{\sigma}, \overline{\omega}_0] = G_{\sigma}n_s , \quad \overline{\omega}_0 = -G_{\omega}Tr \gamma_0 G[\overline{\sigma}, \overline{\omega}_0] = G_{\omega}n .$

Thermodynamics: $\Omega(T, V, \mu) = -T \ln \mathcal{Z}_{gk} = -pV$

$$p(\mu,T) = \frac{1}{2}G_{\omega}n^{2} - \frac{1}{2}G_{\sigma}n_{s}^{2} + 4T\int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left[\ln\left(1 + e^{-\beta(E^{*} - \mu^{*})}\right) + \ln\left(1 + e^{-\beta(E^{*} + \mu^{*})}\right)\right]$$
$$n = 4\int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \left[f_{-}(E^{*}) - f_{+}(E^{*})\right], \ n_{s} = 4\int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \frac{m_{N}^{*}}{E^{*}} \left[f_{-}(E^{*}) - f_{+}(E^{*})\right]$$

Quasiparticle properties $E^* = \sqrt{\vec{p}^2 + m_N^{*2}}, \ m_N^* = m_n - G_\sigma n_s, \ \mu^* = \mu - G_\omega n$.

Further reading, e.g.,

Kapusta: 'Finite temperature field theory'

Glendenning: 'Compact Stars'

Symmetry Energy

Energy per particle in symmetric ($E_0(n)$) and neutron matter ($E_n(n)$) \rightarrow symmetry energy

(Link to Bethe-Weizsäcker : $E_0(n_0) \approx a_{vol}$, $E_S(n_0) \approx a_{sym}$)

Exploring the Limits - The EoS

Several approaches to describe dense nuclear matter

► relativistic Equations of State at T = 0 K

 \rightarrow

$$\varepsilon(n_n, n_p, n_e, n_\mu) \to \varepsilon_h(n_n, n_p) + \sum_{e,\mu} \varepsilon_i(n_i),$$
$$\mu_i = \frac{\mathrm{d}\varepsilon}{\mathrm{d}n_i}, P = \sum_{n, p, e, \mu} \mu_i n_i - \varepsilon_h - \varepsilon_l$$

► expanding energy per particle in terms of
neutron-proton asymmetry
$$\beta = \frac{n_n - n_p}{n_n + n_p} = 1 - 2x_p, \ n = n_n + n_p$$

$$\frac{B}{A}(n_n, n_p) \to \frac{B}{A}(n, \beta) = E_0(n) + \beta^2 E_S(n)$$

$$\varepsilon_h(n, \beta) = n \frac{B}{A}(n, \beta), \qquad P_h(n, \beta) = n^2 \frac{\partial}{\partial n} \frac{B}{A}(n, \beta),$$

$$\mu_{n,p}(n, \beta) = \left(1 + n \frac{\partial}{\partial n}\right) E_0(n) - \left(\beta^2 \mp 2\beta - \beta^2 n \frac{\partial}{\partial n}\right) E_S(n).$$

Equations of State

 \blacktriangleright Phenomenological (RMF) $NL\rho, NL\rho\delta$ non linear σ terms
(σ self interactions)
 ρ - (and δ -) MesonsDD, D³C, DD-Fdensity dependent couplings ($\Gamma_i \rightarrow \Gamma_i(n)$))KVR, KVORdensity dependent mass of σ -Meson

➤ ab initio

DBHF relativistic Dirac-Brueckner-Hartree-Fock
 free N-N interaction explicitly given
 medium effects: T-Matrix (ladder approximation)

Exploring the Limits - The EoS beyond saturation

$E(n,\beta) = \frac{E_0(n)}{E_0(n)} + \beta^2 \frac{E_S(n)}{E_S(n)} \approx \frac{a_V}{E_S(n)} = \frac{E_S(n)}{E_S(n)} = \frac{E_S(n)}{E_S(n)}$	$\frac{K}{18}\epsilon^2 - \frac{K'}{162}\epsilon^3 + \ldots + \beta^2 \left(J + \frac{L}{3}\epsilon + \ldots\right) + \ldots$
$\epsilon = (n - n_{sat})/n$	$\beta = (n_n - n_p)/(n_n + n_p)$

	$n_{ m sat}$	a_V	K	K'	J	L	m_D/m
	[fm ⁻³]	[MeV]	[MeV]	[MeV]	[MeV]	[MeV] [MeV]	
exp.	0.16 ± 0.01	-16 ± 1	200 - 300		25 - 35		0.6 - 1.0
NLρ	0.1459	-16.062	203.3	576.5	30.8	83.1	0.603
NL $ ho\delta$	0.1459	-16.062	203.3	576.5	31.0	92.3	0.603
DBHF	0.1779	-16.160	201.6	507.9	33.7	69.4	0.684
DD	0.1487	-16.021	240.0	-134.6	32.0	56.0	0.565
D ³ C	0.1510	-15.981	232.5	-716.8	31.9	59.3	0.541
KVR	0.1600	-15.800	250.0	528.8	28.8	55.8	0.800
KVOR	0.1600	-16.000	275.0	422.8	32.9	73.6	0.800
DD-F	0.1469	-16.024	223.1	757.8	31.6	56.0	0.556
		ata	-		n _{sat}		J

0,5

T. Klähn et al., Phys.Rev.C 74, 035802 (2006)

n [fm ⁻³]

-20

0.5

n [fm $^{-3}$]

Exploring the Limits - The EoS beyond saturation

$E(n,\beta) = \frac{E_0(n)}{E_0(n)} + \beta^2 \frac{E_S(n)}{E_S(n)} \approx \frac{a_V}{E_S(n)} + \beta^2 \frac{E_S(n)}{E_S(n)} = \frac{a_V}{E_S(n)} + \frac{a_V}{E_S(n)} = a$	$+ \frac{K}{18}\epsilon^2 - \frac{K'}{162}\epsilon^3 + \ldots + \beta^2 \left(J + \frac{L}{3}\epsilon + \ldots\right) + \ldots$
$\epsilon = (n - n_{sat})/n$	$\beta = (n_n - n_p)/(n_n + n_p)$

	$n_{ m sat}$	a_V	K	K'	J	J L	
	[fm ⁻³]	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	
exp.	0.16 ± 0.01	-16 ± 1	200 - 300		25 - 35		0.6 - 1.0
NLρ	0.1459	-16.062	203.3	576.5	30.8	83.1	0.603
NL $ ho\delta$	0.1459	-16.062	203.3	576.5	31.0	92.3	0.603
DBHF	0.1779	-16.160	201.6	507.9	33.7	69.4	0.684
DD	0.1487	-16.021	240.0	-134.6	32.0	56.0	0.565
D ³ C	0.1510	-15.981	232.5	-716.8	31.9	59.3	0.541
KVR	0.1600	-15.800	250.0	528.8	28.8	55.8	0.800
KVOR	0.1600	-16.000	275.0	422.8	32.9	73.6	0.800
DD-F	0.1469	-16.024	223.1	757.8	31.6	56.0	0.556
δ_{rel}	22%	2%	36%	±!	17%	65%	33%

Higher order terms are barely constrained!

How to select the 'good' model?

New quality of astrophysical measurements! Constraints from NSs!

Astrophysical Constraints on he Nuclear Matter Equation of State - p.12

Maximum Neutron Star Masses

M(n) correlated to $E_0(n)$

stiff: higher M_{max} at smaller densities

soft: smaller M_{max} at higher densities

M-R Constraints

RXJ1856 black body spectrum: $T_{\infty} = 57 \text{ eV}$ measurement of distance:60 pc (2002)

 \rightarrow photospheric radius:

$1_{\infty} = 01.00$	
60 pc (2002) $ ightarrow$ 117 pc (20)04)
$R_{\infty} = R(1 - R/R_S)^{-1/2}$	$R_S = 2GM$

Mass Radius Constraints					
QPO	: M-R upper limits				
ISCO	: max. mass constraint				
RXJ1856: M-R lower limits					

each region...

- \rightarrow represents a different object
- \rightarrow should be touched at least once

J. Trümper et al., Nucl. Phys. Proc. Suppl. 132, 560 (2004)

D. Barret, J.-F. Olive, M.C. Miller, Mon. Not. Roy. Astron. Soc. 361, 855 (2005)

Elliptic Flow in HIC

Heavy Ion Collisions:

P. Danielewicz et al., Science 298, 1592 (2002)

Flow data constrain EoS up to $n \approx 4n_0$

 \rightarrow finite range of possible P(n) for given n

Flow Constraint

 \rightarrow fulfilled for soft NL ρ ,NL $\rho\delta$, KVR, KVOR, DD-F;

DBHF at low densities; DD, $D^{3}C$ fail

Neutron Star Cooling

Pulsars in SN remnants: 1054 - Crab

1181 - 3C58

Classification of cooling compact stars

Blaschke et al. (2004)

Neutron Star Cooling

Pulsars in SN remnants: 1054 - Crab

1181 - 3C58

Classification of cooling compact stars

Blaschke et al. (2004)

parameter \rightarrow neutron star mass

Direct Urca: $n \rightarrow p + e^- + \bar{\nu}_e$

Direct Urca Process \rightarrow **Rapid Cooling**

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, same for muons: $e \leftrightarrow \mu$ charge neutrality: $n_p = n_e + n_\mu$, i.e. $p_p^3 = p_e^3 + p_\mu^3$ results in

$$x_p \ge x_{DU}(x_e) = [1 + (1 + x_e^{1/3})^3]^{-1}$$
 $x_e = n_e/(n_e + n_\mu)$

► no muons: $x_{DU} = 11.1\%$

► relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

 $E_S(n)$: soft for DU onset at high nNLho, NL $ho\delta$, DBHF :

DU occurs below $2.5 n_0$

Direct Urca Process \rightarrow **Rapid Cooling**

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, same for muons: $e \leftrightarrow \mu$ charge neutrality: $n_p = n_e + n_\mu$, i.e. $p_p^3 = p_e^3 + p_\mu^3$ results in

$$x_p \ge x_{DU}(x_e) = [1 + (1 + x_e^{1/3})^3]^{-1}$$
 $x_e = n_e/(n_e + n_\mu)$

no muons:

$$x_{DU} = 11.1\%$$

▶ relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

 $E_S(n)$: soft for DU onset at high nNLho, NL $ho\delta$, DBHF : DU occurs below 2.5 n_0 $M_{DU} < 1.3 M_{\odot}$

Consequences: Universality conjecture for $\beta^2 E_S(n)$

Exclude NL ρ , NL $\rho\delta$, DBHF since DU constraint violated ($M_{DU} < M_{typ}$) \rightarrow universal $\beta^2 E_S$

Exploring the Limits: Nuclear Matter beyond Saturation

Model	$M_{ m max} \ge$ 1.9 M_{\odot}	$M_{ m max} \ge$ 1.6 M_{\odot}	$M_{ m DU} \ge$ 1.5 M_{\odot}	$M_{ m DU} \ge$ 1.35 M_{\odot}	4U 1636-536 (u)	4U 1636-536 (I)	RX J1856 (A)	RX J1856 (B)	J0737 (no loss)	J0737 (loss 1%)	SIS+AGS flow constr.	SIS flow+ K^+ constr.	No. of passed strong tests	No. of passed weak tests
NLρ	—	+	_	_	_	—	_	_	_		+	+	1	2
$NL ho\delta$	_	+	_	—	_	—	_	—	_	—	+	+	1	2
DBHF	+	+	_	—	+	+	_	+	_	+	-	+	2	5
DD	+	+	+	+	+	+	_	+	_	—	_	_	3	4
D ³ C	+	+	+	+	+	+	_	+	_	_	_	_	3	4
KVR	0	+	+	+	_	0	_	_	_	+	+	+	3	5
KVOR	+	+	+	+	_	+	_	_	-	0	+	+	3	5
DD-F	+	+	+	+	_	+	_	_	_	+	+	+	3	5
Comp	Complementary scheme with strong (left columns) and weak (right columns) constraints													
	Favo	urite E	soS: D	BHF,	KVR,	KVOR	, DD-F	; Non	e pass	es all o	constra	aints !		

Exploring the Limits - Summary

- ➤ High density EoS testing scheme
 - ★ set of constraints from HIC flow and new astrophysical observations
 - \star complementary tests for $E_0(n)$ and $E_S(n)$
- Present-day conclusions
 - * "soft" $E_S(n)$ (NS cooling, direct Urca)
 - $\star \beta^2 E_S(n)$ shows universal behaviour
 - \star "stiff" $E_0(n)$ at intermadiate densities (maximum masses)
 - \star "soft" $E_0(n)$ at high densities (flow data)
- ➤ Open: transition to quark matter?
 - ★ does quark matter in compact stars contradict observations?
 - * might a phase transition to quark matter <u>solve</u> problems of hadronic EoS (DBHF \rightarrow DU, flow)?
 - $\star\,$ how to prove a possible quark core in NSs?

Quark Matter - NJL-type Model EoS

$$\mathcal{L}[\bar{q},q] = \bar{q} \left(i\partial \!\!\!/ - \hat{m} + \hat{\mu}\gamma^0 \right) q + G_S \left[\sum_{a=0,3,8} (\bar{q}\tau_a q)^2 - \eta_V (\bar{q}\gamma^0 q)^2 + \eta_D \sum_{A=2,5,7} (\bar{q}i\gamma_5\tau_A\lambda_A C\bar{q}^T) (q^T i C\gamma_5\tau_A\lambda_A q) \right]$$

Bosonization (Hubbard-Stratonovich trick) \rightarrow Mean-field approximation

$$\Omega_{MF}(T,\mu) = \frac{1}{8G_S} \left[\sum_{i=u,d,s} (m_i^* - m_i)^2 - \frac{2}{\eta_V} (2\omega_0^2 + \phi_0^2) + \frac{2}{\eta_D} \sum_{A=2,5,7} |\Delta_{AA}|^2 - \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left[E_a + 2T \ln \left(1 + e^{-E_a/T} \right) \right] + \Omega_l - \Omega_0 \right]$$

Dispersion E_a : Eigenvalues of Nambu-Gorkov Propagator

$$\tilde{S}^{-1}(p_0, \vec{p}) = \begin{pmatrix} \not p - \hat{M}(p) - \hat{\mu}^* \gamma_0 & \Delta \gamma_5 \tau_2 \lambda_2 \\ -\Delta^* \gamma_5 \tau_2 \lambda_2 & \not p - \hat{M}(p) + \hat{\mu}^* \gamma_0 \end{pmatrix}$$

Vector coupling : renormalizes chemical potentials

$$\hat{\mu}^* = \operatorname{diag}_f(\mu_u - G_S \eta_V \omega_0, \mu_d - G_S \eta_V \omega_0, \mu_s - G_S \eta_V \phi_0)$$
$$\eta_V = G_V / G_S, \ \eta_D = G_D / G_S$$

TK et al., nucl-th/0609067

Phase Transition to Quark Matter

➤ traditional: two-phase construction

- "masquerade" problem: quark and hadron eos almost identical!
- ➤ challenge: hadrons as quark bound states

Quark Matter - NJL-type Model EoS

Vector coupling (η_V):

quark matter stiffness \rightarrow high density limit <u>Diquark coupling (η_D) :</u> shifts transition density \rightarrow fine tuning

Flow constraint fulfilled!

mass and radius constraints:

fulfilled for both pure and hybrid NSs possible: QM cores in typical NSs $(1.0...1.5M_{\odot})$ How to distinguish?

Quark Matter - EXO 0748

The EXO constraint 1

3 Observables, 3 Unknowns

 $F_{edd} = \frac{GM}{D^2 \kappa_{es}} \left(1 - \frac{2GM}{R}\right)^{1/2}$ $F_{cool} / \sigma T_c^4 = f_\infty^2 \frac{R^2}{D^2} \left(1 - \frac{2GM}{R}\right)^{-1}$ $z = \left(1 - \frac{2GM}{R}\right)^{-1/2} - 1$

Conclusion 1: Stiff EoS for NS matter Conclusion 2: No quark matter in NS

BUT:

- Conclusion 2: several examples for QM EoS in accordance with EXO²
- redshift measurement (z = 0.35) has not been confirmed³ : 2 \leftrightarrow 3
- However: a measured point in M R plane would be a serious constraint!

¹ F.Özel (2006), ² M. Alford et al.(2007), ³ M. Mendez, priv. comm.

Quark Matter - NJL-type Model EoS

Moment of inertia:

expected to be measured for PSR J0737 (within 10% accuracy)

 \rightarrow sorts out NM EoS, but not QM

Based on macroscopic properties!

Thermal evolution:

DU suppressed in QM

 \rightarrow different cooling behavior

Blaschke et al., ApJ 533, 406 (2000)

Jaikumar et al., PRC 73, 042801 (2006)

Account for microscopic processes!

Quark Matter - Summary

- >> Constraints as a tool to adjust free parameters of effective NJL model
 - $\star \ \text{vector coupling} \rightarrow \text{sufficient stiffness}$
 - $\star~$ diquark coupling \rightarrow fine tuning of critical density
 - $\star \ G_V, G_D$ are model dependent
- Quark matter can not be excluded by high density EoS constraints!
 * if QM exists in NS its EoS is stiff
- ► How to distinguish between pure and hybrid NS configurations?
 - \star macroscopic quantities (M, R, I) \rightarrow masquerade
 - $\star~$ microscopic information needed \rightarrow cooling

Collaborators

- ► Rostock Group: D. Blaschke, H. Grigorian, G. Röpke
- ► Equations of State

$NL\rho,NL\rho\delta$	T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, H.H. Wolter
	Nucl. Phys. A 732 , 24-48 (2004)
DBHF	E.N.E. van Dalen, C. Fuchs, A. Faessler
	Nucl. Phys. A 744 , 227-248 (2004)
DD, D ³ C(, DD-F)	S. Typel
	Phys. Rev. C 71 , 064301 (2005)
KVR, KVOR	E.E Kolomeitsev, D.N.Voskresensky
	Nucl. Phys. A 759 , 373 (2005)
NJL	F. Sandin
	Phys. Rev. D 72 , 065020 (2005)
	artian M.C. Millor, I. Trümpor, A. Ho. E. Mohor

- Astrophysical Expertise: M.C. Miller, J. Trümper, A. Ho, F. Weber
- Further thanks to: M. Alford, J. S. Bielich, A. Drago, K. H. Langanke, N. Scoccola

►→ Supported by

- * DFG, BMBF, Helmholtz Gemeinschaft VH-VI-041 (Germany), GSI
- * US DoE, NSF, Research Corporation, Goddard Space Flight Center (USA)