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I. INTRODUCTION
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The theory of many-body systems is based on the 
many-particle Schrodinger equation. During more 
than eight decades enormous progress has been 
made in finding approximate solutions of 
Schrodinger’s equation for systems with several 
particles, decisively aided by modern electronic 
computers. However, already one year later after 
publishing first E.Schrodinger paper making a 
beginning of the wave mechanics (1926) Thomas 
and Fermi suggested another approach which can be 
considered as the simplest variant of the Density 
Functional theory. 



This variant is an alternative approach to the 
many particle systems in which the particle density 
distribution    
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rather than many-particle wave function , plays a 
central role. Density functional theory is applied now 
in atomic physics, chemistry, nuclear physics.



Density functional theory makes two kinds of 
contributions to the theory of many-particle systems.

The first is that following the path of the 
Schrodinger equation we are thinking in terms of a 
truncated Hilbert space. However, when sufficiently 
high accuracy is required the huge basis is needed for 
a diagonalization of the Hamiltonian. Many 
components of a total wave function obtained in this 
way have very small weights and we do not know is 
there any physics in these values.



Density functional theory provides a complementary
perspective. It focuses on quantities in the real 3-dimen-
sional coordinate space, principally on the particle density. 
Other quantities of great interest are: the exchange 
correlation density
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which describes how  the presence of a particle at 
point “r” depletes the total density of the other particles 
at the point “ r’ ”;  the linear response function,

which describes a change of total density at point “r” 
due to a perturbing potential at the point “ r’ ” with
frequency 

ω



Construction of an accurate approximation to the 
many-particle wave function ( )rr n
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Let us assume that an approximate wave function Ψ~
is sufficiently accurate if

Consider a system of  N  particles.



Let we have  a very accurate single particle wave 
function ψ sp
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Then for  N=200-300
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For the fully interacting system the situation is 
much worse.



Recording of the total wave function
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Let us take ‘q’ bits for variable. The total number 
of bits for N-particle system is

For N=200 and q=3 (very rough fit)
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The total number of baryons in the accessible universe
is estimated as  1080







































The self—consistent Kohn—Sham 
equations

Soon after the publication of the Thomas-Fermi
theory, Hartree (1928) proposed a set of self-
consistent single-particle equations for the 
approximate description of the electronic structure 
of atoms. The concept was physically very simple.
Every electron was regarded as moving in an effec-
tive single-particle potential



where the first term represents the potential due to
a nucleus of atomic number Z and the second the po-
tential due to the average electronic density
distribution (the negative charge of the electron has
been used for). Thus each electron obeys the single
particle Schrodinger equation



where “j” denotes both spatial as well as spin quantum
numbers. The mean density is given by

where,  in the ground state, the sum runs over the N 
lowest eigenvalues, to respect the Pauli principle.
Equations (1—3) are called the self—consistent
Hartree equations. 



One may start from  the first approximation for

(e.g., from Thomas—Fermi theory), construct VH(r),

solve Eq. (2) for the single—particle wave functions
and recalculate

f
from Eq. (3). Then iterates until a density 
distribution will be the same as the initial one. The 
Hartree equations described atomic ground state 
much better than Thomas—Fermi theory. The dif-
ference between them lay in a different treatment 
of the kinetic energy.



The Hartree differential equation (2) has the form of the
Schrodinger equation for noninteracting electrons mo-
ving in the external potential VH .

For a system of noninteracting electrons the
Hohenberg—Kohn variational principle takes the form

where Is the kinetic energy of the
ground state of noninteracting electrons with density
distribution



The Euler—Lagrange equations embodying the 
fact that the last expression  is stationary with respect 
to variations of which  leave the total number

of electrons unchanged is

where is the exact ground state density for

V(r). Here is a Lagrange multiplyer to
assure particle conservation.



In this soluble, noninteracting case we know that the 
ground state energy and density can be obtained by 
calculating the eigenfunctions and eigenvalues

of noninteracting, single particle equations

yielding



Returning now to the problem of interacting elect-
rons, which had previously been addressed approxi-
mately by the single particle like Hartree equation, 
we deliberately wrote the functional
in the form

where is the kinetic energy functional
for noninteracting electrons.  The last term ,

the so called exchange—correlation energy functio-
nal is defined by Eq. (8).



Exchange  effect

Compare to Hartree approximation the Hartree-
Fock approximation leads to an additional, nonlocal
exchange term in the Schrodinger equation but 
does not change the single particle picture, with the 
wave function described in terms of orbitals with 
particular spin and occupation numbers.

Shortly after Dirac proposed that exchange 
effects be included by incorporating a term derived 
from the exchange energy density in a 
homogeneous system



.).(/458.0 uars
Dirac

exc =ε

where  rs is a measure of the interelectronic
distance. The use of the approximate exchange 
potential in addition to the Hartree term was 
suggested by Slater.  The exchange interaction 
means that an electron of a given spin will be 
surrounded by a region where the density of 
electrons with the same spin is reduced. An 
introduction of a local exchange potential 
reproduced HF eigenfunctions and eigenvalues
very well showing that an approximation based on 
the results for a homogeneous system could give a 
satisfactory description.



The above work has been essential to the 
development of modern Density Functional theory. 
As an approximation to the nonlocal exchange 
potential, the simple local approximation provided 
the basis for much of the work on the electronic 
structure of solids.  In poractice, total energy 
calculations require approximations to be made for 
the exchange correlation energy, Exc, and Kohn and 
Sham showed that the local density approximation 
could be applied to the cases of  a slowly varying 
density and very high density.



The Hohenberg—Kohn variational principle 
for interacting electrons now takes the form

The corresponding Euler-Lagrange equations 
for a given total number of electrons has the 
form



where

and



Now the form of Eq. (10) is identical to that of Eq. 
(5) for noninteracting particles moving in the effective 
external potential instead of V( r ), and   

so we conclude that the minimizing density distribution

is given by solving the single particle equa-

tion

with



where Is the local exchange--

correlation potential, depending functionally on the 
entire density distribution as given by Eq. (12).
These self-consistent equations are now called the 

Kohn—Sham equations.



The ground state energy is given by

If one neglects and

the Kohn-Sham equations (13-15) reduce to the 
self-consistent Hartree equations.



The Kohn—Sham theory may be regarded as the 
formal exactification of Hartree theory. With the exact
Exc and Vxc all many body effects are in principle 
included. Clearly this directs attention to the functio-
nal The practical usefulness of

the ground state Density Functional Theory 
depends entirely on whether approximations for the 
functional

could be found which are at the same time sufficiently 
simple and sufficiently accurate.



REMARKS

1. The exact effective single particle potential  

of the Kohn—Sham theory, Eq. ( 14 ), can be 
regarded as that unique, fictitious external potential 
which leads, for noninteracting particles, to the same 
physical density

as that of the interacting particles in the physical 
external potential V( r ). Thus if the physical density 
distribution is independently known (from experiment or 
accurate calculations) Veff and hence Vxc can be 
directly obtained from



2. Because of their linkage to the exact physical 
density the Kohn—Sham single particle wave

functions may be considered as “density 

optimal”, while, of course the Hartree—Fock wave 
functions are “totally-energy-optimal’ in the sense that 
their normalized determinant leads to the lowest 
ground state energy attainable with a single 
determinant. 





































Let us consider the following expansion

























ENERGY DENSITY FORMALISM IN 
NUCLEI

The theorem of Kohn and coworkers was originally 
proved for the case of electron gas. However, its 
extension to more complex fermion systems is 
straightforward. The statement says that the total 
energy of a fermion ensemble can be written as a 
functional of the local density. This is conceptually 
very attractive, in nuclear physics, since it tends to 
replace the complicated expressions of the many—
body problem by a Lagrangian formalism, simpler in 
nature.



The difficulty lies, however, in the fact that there 
is no way of knowing the Lagrangian a priori. Thus, 
although the functional should be universal it can 
only be approximated according to some recipe.

In the very special case of the nuclear matter 
the problem is considerably reduced. The functional 
can be easily constructed by finding a polynomial 
form in successive powers of kF or  density whose 
coefficients are adjusted to fit the binding energy per 
particle E/A calculated from realistic nucleon—
nucleon interaction. Therefore, a natural way of 
writing the functional for actual nuclei consists in 
starting with a volume energy part directly derived 
from nuclear matter and to add surface and 
Coulomb effects.








































