# Pseudoscalar mesons at finite temperature in a separable Dyson-Schwinger model

**D.** Horvatić<sup>*a*</sup>, D. Klabučar<sup>*a*</sup>, D. Blaschke<sup>*b*,*c*,*d*</sup>, A. E. Radzhabov<sup>*c*</sup>

<sup>a</sup>Theoretical Physics Department, University of Zagreb, Croatia
<sup>b</sup>University of Rostock, Germany
<sup>c</sup>JINR Dubna, Russia
<sup>d</sup>University of Wroclaw, Poland

# Outline

- Introduction and motivation
- Dyson-Schwinger approach to quark-hadron physics
- Separable model at T = 0
- Separable model at  $T \neq 0$
- Results for pseudoscalar mesons at T = 0
- Results for pseudoscalar mesons at  $T \neq 0$
- Summary

# **Introduction and motivation**

- RHIC results: hot QCD matter has very intricate properties ... & still no direct signal of deconfinement
- Lattice (& other):  $J/\Psi$  and  $\eta_c$  stay bound till  $\sim 2T_{cri}$ , maybe higher ... + similar indications about light-quark mesons = motivation to study *bound-state equations*
- RHIC's STAR collab.: 'A compelling, "smoking gun" signal for production of a new form of matter needed!'
- E.g., a change in symmetries obeyed by the strong interaction: the restoration of the chiral and  $U_A(1)$  symmetry  $\longrightarrow$  a good understanding of the *light pseudoscalar nonet* is needed

## **Dyson-Schwinger approach to quark-hadron physics**

- the bound state approach which is nopertubative, covariant and chirally well behaved (e.g., GMOR relation:  $\lim_{\tilde{m}_q \to 0} M_{q\bar{q}}^2/2\tilde{m}_q = -\langle \bar{q}q \rangle / f_\pi^2$ )
  - direct contact with QCD through ab initio calculations
  - phenomenological modeling of hadrons as quark bound states (e.g., here)
- coupled system of integral equations for Green functions of QCD
- ... but ... equation for n-point function calls (n+1)-point function ...  $\rightarrow$  cannot solve in full the growing tower of DS equations
- → various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)

### **Dyson-Schwinger approach to quark-hadron physics**

• Gap equation for propagator  $S_q$  of dressed quark q



Homogeneous Bethe-Salpeter (BS) equation for a Meson  $q\bar{q}$  bound state vertex  $\Gamma_{q\bar{q}}$ 



#### **Gap and BS equations in ladder truncation**

$$S_f(p)^{-1} = i\gamma \cdot p + \widetilde{m}_f + \frac{4}{3} \int \frac{d^4q}{(2\pi)^4} g^2 D_{\mu\nu}^{\text{eff}}(p-q)\gamma_\mu S_f(q)\gamma_\nu$$

$$\rightarrow S_f(p) = \frac{1}{i \not p A_f(p^2) + B_f(p^2)} = \frac{-i \not p A_f(p^2) + B_f(p^2)}{p^2 A_f(p^2)^2 + B_f(p^2)^2} = \frac{-i \not p + m_f(p^2)}{p^2 + m_f(p^2)^2}$$

$$\lambda(P^2)\Gamma_{f\bar{f'}}(p,P) = -\frac{4}{3} \int \frac{d^4q}{(2\pi)^4} D^{\text{eff}}_{\mu\nu}(p-q)\gamma_{\mu}S_f(q+\frac{P}{2})\Gamma_{f\bar{f'}}(q,P)S_f(q-\frac{P}{2})\gamma_{\nu}$$

- Euclidean space:  $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}$ ,  $\gamma^{\dagger}_{\mu} = \gamma_{\mu}$ ,  $a \cdot b = \sum_{i=1}^{4} a_i b_i$
- P is the total momentum
- meson mass is identified from  $\lambda(P^2 = -M^2) = 1$
- $D_{\mu\nu}^{\text{eff}}(k)$  an "effective gluon propagator" modeled !

#### From the gap and BS equations ...

solutions of the gap equation  $\rightarrow$  the <u>dressed</u> quark mass function

$$m_f(p^2) = \frac{B_f(p^2)}{A_f(p^2)}$$

**propagator solutions**  $A_f(p^2)$  and  $B_f(p^2)$  pertain to <u>confined</u> quarks if

$$m_f^2(p^2) \neq -p^2$$
 for real  $p^2$ 

The BS solutions  $\Gamma_{f\bar{f}'}$  enable the calculation of the properties of  $q\bar{q}$  bound states, such as the decay constants of pseudoscalar mesons:

$$f_{PS} P_{\mu} = \langle 0 | \bar{q} \frac{\lambda^{PS}}{2} \gamma_{\mu} \gamma_{5} q | \Phi_{PS}(P) \rangle$$
  
$$\longrightarrow f_{\pi} P_{\mu} = N_{c} \operatorname{tr}_{s} \int \frac{d^{4}q}{(2\pi)^{4}} \gamma_{5} \gamma_{\mu} S(q + P/2) \Gamma_{\pi}(q; P) S(q - P/2)$$

# **Separable model**

• To simplify calculations, take the separable form for  $D_{\mu\nu}^{\text{eff}}$ :

$$D_{\mu\nu}^{\text{eff}}(p-q) \to \delta_{\mu\nu} D(p^2, q^2, p \cdot q)$$

$$D(p^2, q^2, p \cdot q) = D_0 f_0(p^2) f_0(q^2) + D_1 f_1(p^2) (p \cdot q) f_1(q^2)$$

• two strength parameters  $D_0, D_1$ , and corresponding form factors  $f_i(p^2)$ . In the separable model, gap equation yields

$$B_f(p^2) = \tilde{m}_f + \frac{16}{3} \int \frac{d^4q}{(2\pi)^4} D(p^2, q^2, p \cdot q) \frac{B_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}$$
$$[A_f(p^2) - 1] p^2 = \frac{8}{3} \int \frac{d^4q}{(2\pi)^4} D(p^2, q^2, p \cdot q) \frac{(p \cdot q)A_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}.$$

• This gives  $B_f(p^2) = \tilde{m}_f + b_f f_0(p^2)$  and  $A_f(p^2) = 1 + a_f f_1(p^2)$ , reducing to nonlinear equations for constants  $b_f$  and  $a_f$ .

#### A simple choice for 'interaction form factors' of the separable model:

• 
$$f_0(p^2) = \exp(-p^2/\Lambda_0^2)$$

•  $f_1(p^2) = [1 + \exp(-p_0^2/\Lambda_1^2)]/[1 + \exp((p^2 - p_0^2))/\Lambda_1^2]$ gives good description of pseudoscalar properties if the interaction is strong enough for realistic DChSB, when  $m_{u,d}(p^2 \sim small) \sim$  the typical constituent quark mass scale  $\sim m_\rho/2 \sim m_N/3$ .



#### **DChSB** — *··* **'constituent quark mass generation''**



# **Extension to** $T \neq 0$

- At  $T \neq 0$ , the quark 4-momentum  $p \longrightarrow p_n = (\omega_n, \vec{p})$ , where  $\omega_n = (2n+1)\pi T$  are the discrete ( $n = 0, \pm 1, \pm 2, \pm 3, \dots$ ) Matsubara frequencies, so that  $p_n^2 = \omega_n^2 + \vec{p}^2$ .
- Gap equation solution for the dressed quark propagator

$$S_f(p_n, T) = [i\vec{\gamma} \cdot \vec{p} A_f(p_n^2, T) + i\gamma_4\omega_n C_f(p_n^2, T) + B_f(p_n^2, T)]^{-1}$$

$$= \frac{-i\vec{\gamma} \cdot \vec{p} A_f(p_n^2, T) - i\gamma_4 \omega_n C_f(p_n^2, T) + B_f(p_n^2, T)}{\vec{p}^2 A_f^2(p_n^2, T) + \omega_n^2 C_f^2(p_n^2, T) + B_f^2(p_n^2, T)}$$

• There are now three amplitudes due to the loss of O(4) symmetry, and at sufficiently high  $T \ge T_d$  denominator CAN vanish.  $\longrightarrow$  For  $T \ge T_d$  quarks can be deconfined!

# **Extension to** $T \neq 0$

• The solutions have the form  $B_f = \tilde{m}_f + b_f(T)f_0(p_n^2)$ ,  $A_f = 1 + a_f(T)f_1(p_n^2)$ , and  $C_f = 1 + c_f(T)f_1(p_n^2)$ 

$$a_{f}(T) = \frac{8D_{1}}{9}T\sum_{n}\int \frac{d^{3}p}{(2\pi)^{3}}f_{1}(p_{n}^{2})\vec{p}^{2}\left[1+a_{f}(T)f_{1}(p_{n}^{2})\right]d_{f}^{-1}(p_{n}^{2},T)$$

$$c_{f}(T) = \frac{8D_{1}}{3}T\sum_{n}\int \frac{d^{3}p}{(2\pi)^{3}}f_{1}(p_{n}^{2})\omega_{n}^{2}\left[1+c_{f}(T)f_{1}(p_{n}^{2})\right]d_{f}^{-1}(p_{n}^{2},T)$$

$$b_{f}(T) = \frac{16D_{0}}{3}T\sum_{n}\int \frac{d^{3}p}{(2\pi)^{3}}f_{0}(p_{n}^{2})\left[\widetilde{m}_{f}+b_{f}(T)f_{0}(p_{n}^{2})\right]d_{f}^{-1}(p_{n}^{2},T)$$

• where  $d_f(p_n^2, T)$  is given by  $d_f(p_n^2, T) = \vec{p}^2 A_f^2(p_n^2, T) + \omega_n^2 C_f^2(p_n^2, T) + B_f^2(p_n^2, T)$  **Chiral symmetry restoration at**  $T = T_{Ch}$ 



#### **Chiral symmetry restoration at** $T = T_{Ch}$



**Violation of** O(4) **symmetry with** T



# Model results at T = 0

- Model parameter values reproducing experimental data:
- $\tilde{m}_{u,d} = 5.5 \text{ MeV}, \Lambda_0 = 758 \text{ MeV}, \Lambda_1 = 961 \text{ MeV},$   $p_0 = 600 \text{ MeV}, D_0 \Lambda_0^2 = 219, D_1 \Lambda_1^4 = 40 \text{ (fixed by fitting } M_{\pi}, f_{\pi}, M_{\rho}, g_{\rho\pi^+\pi^-}, g_{\rho e^+e^-} \rightarrow \text{predictions}$  $a_{u,d} = 0.672, b_{u,d} = 660 \text{ MeV}, \text{ i.e., } m_{u,d}(p^2), \langle \bar{u}u \rangle \text{)}$
- $\widetilde{m}_s = 115 \text{ MeV}$  (fixed by fitting  $M_K \rightarrow \text{predictions}$  $a_s = 0.657, b_s = 998 \text{ MeV}$ , i.e.,  $m_s(p^2), \langle \overline{s}s \rangle, M_{s\overline{s}}, f_K, f_{s\overline{s}}$ )
- Summary of results (all in GeV) for q = u, d, s and pseudoscalar mesons without the influence of gluon anomaly:

| PS              | $M_{PS}$ | $f_{PS}$ | $-\langle \bar{q}q \rangle_0^{1/3}$ | $m_q(0)$ |
|-----------------|----------|----------|-------------------------------------|----------|
| $\pi$           | 0.140    | 0.092    | 0.217                               | 0.398    |
| K               | 0.495    | 0.110    |                                     |          |
| $S\overline{S}$ | 0.685    | 0.119    |                                     | 0.672    |

## Model results at T = 0





# **Results on** $\eta - \eta'$ **complex at** T = 0

|             | $eta_{\mathrm{fit}}$ | $\beta_{\text{latt.}}$ | Exp.   |
|-------------|----------------------|------------------------|--------|
| $\theta$    | -12.22°              | -13.92°                |        |
| $M_{\eta}$  | 548.9                | 543.1                  | 547.75 |
| $M_{\eta'}$ | 958.5                | 932.5                  | 957.78 |
| X           | 0.772                | 0.772                  |        |
| 3eta        | 0.845                | 0.781                  |        |

- masses are in units of MeV,  $3\beta$  in units of GeV<sup>2</sup> and the mixing angles are dimensionless.
- $\beta_{\text{latt.}}$  was obtained from  $\chi(T=0) = (175.7 \text{ MeV})^4$  using

$$\beta \left(2+X^2\right) = m_{\eta}^2 + m_{\eta'}^2 - 2m_K^2 = \frac{2N_f}{f_{\pi}^2} \chi \qquad (2^{\rm nd} \text{equality} = \text{Witten} - \text{Veneziano relation})$$

with  $X = f_{\pi}/f_{s\bar{s}}$ 

# **Model results at** $T \neq 0$

**●** *T*-dependence of the masses of light mesons:  $\pi, K, s\bar{s}, \sigma$ 



# **Model results at** $T \neq 0$

• *T*-dependence of pseudoscalar decay constants  $f_P$ 



## Model results at $T \neq 0$

$$\blacksquare m_{s\bar{s}}^2 \approx 2m_K^2 - m_\pi^2$$
 due to GMOR



# **Summary**

- Sketched Dyson-Schwinger approach to quark-hadron physics & a convenient concrete model
- Results for dressed quarks and pseudoscalar mesons at T = 0
- Results for dressed quarks and pseudoscalar mesons at  $T \neq 0$