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Effects of fast dynamics 
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Effective thermodynamic potential for a 1st order transition 

 In rapidly expanding system 1-st order transition is delayed until the barrier 

between two competing phases disappears - spinodal decomposition 
I.N. Mishustin, Phys. Rev. Lett.  82 (1999) 4779;  Nucl. Phys.    A681 (2001) 56   
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Critical slowing down in the 2nd order 

phase transition 
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In the vicinity of the critical point  
the relaxation time for the order  

parameter diverges - no restoring force  

(Landau&Lifshitz, vol. X,  
Physical kinetics) 
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“Rolling down” from the top of the potential  
is similar to  spinodal decomposition 

(Csernai&Mishustin 1995)  
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Fluctuations of the order parameter  
evolve according to the equation 



Critical slowing down 2 

B. Berdnikov, K. Rajagopal, Phys. Rec. D61 (2000) 

Critical fluctuations have not enough time to build up. One can expect only a factor 2  

enhancement in the correlation length (even for slow cooling rate, dT/dt=10 MeV/fm). 



Dynamical model of chiral phase transition 

Linear sigma model (LσM) with constituent quarks 

  

  

  

 

Thermodynamics of LσM on the mean-field level was studied in 
Scavenius, Mocsy, Mishustin&Rischke, Phys. Rev. C64 (2001) 045202 

Effective thermodynamic potential: 

 

 

 

 

CO, 2nd and 1st order chiral transitions 

 are obtained in T-μ plane.  
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Effective thermodynamic potential 

Here we consider μ=0 system but tune the order of the 

chiral phase transition by changing the coupling  g.  
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Order parameter field vs T 

g=4.5 g=3.3 

crossover 1-st order 

unstable states at 122 MeV<T<132 MeV 

       spinodal instability 



Spectrum of plane-wave excitations 

T=120 MeV 

T=125 MeV 

T=131 MeV 
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Solutions with ω2<0 

indicate  instability 

sound  

waves 

σ-meson 

excitations 
Generally two branches: 1) sound branch  

 

                                        2) sigma branch 
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Chiral fluid dynamics (CFD) 

Fluid is formed by constituent quarks and antiquarks which 

interact with the chiral field via quark effective mass 

CFD equations are obtained from the energy momentum 

conservation for the coupled system fluid+field 

 

I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83 (1999) 3134 

K. Paech, H. Stocker and A. Dumitru, Phys. Rev. C 68 (2003) 044907 
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Calculation of damping termCalculation of damping term  

M. Nahrgang, S. Leupold, C. Herold, M. Bleicher, C84, 024912 (2011) 

The damping is associated with the processes: 

 

 It has been calculated using 2PI effective action 

 
 

Around Tc the damping is due to the pion modes, η=2.2/fm  

,  qq  
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Realistic simulations: Bjorken-like expansion 

Initial state: cylinder of length L in z direction, with ellipsoidal cross  

section  in x-y direction 
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In the vicinity of the c.p. sigma shows pronounced oscillations  

since damping term vanishes   

Supercooling and reheating effects are clearly seen in the 1-st 

order transition.  
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Dynamical evolution of chiral fluid  
1st order transition (g=5.5) 

Reheating  

2-nd order transition (g=3.63) 



Dynamical evolution of sigma fluctuations  

In a single event 

t=5 fm/c 

t=7 fm/c 

T=9 fm/c 



Strength of sigma fluctuations transitionStrength of sigma fluctuations transition  
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Fluctuations are rather weak, effective number of sigmas is small 

Crossover transition (g-3.3)  



Second order transition with critical Second order transition with critical 

point (g=3.63)point (g=3.63)  

Fluctuations are stronger, but no traces of divergence are seen 



Strong first order transition (g=5.5)Strong first order transition (g=5.5)  

Strong supercooling and reheating effects are clearly seen. 

 

Sharp rise of fluctuations after 6 fm/c, when the barrier  

in thermodynamic potential disappears. Effective number of 

sigmas increases by two orders of magnitude! 



Rapid expansion should lead to dynamical 

fragmentation of QGP 

 In the course of fast expansion the system enters spinodal instability when  

 Q phase becomes unstable and splits into QGP droplets/hadron resonances 
Csernai&Mishustin 1995, Mishustin 1999, Rafelski  et al. 2000, Koch&Randrup, 2003 

 

Extreme possibility - direct transition from quarks to hadrons without mixed phase 



Experimental signal of droplets in the 

rapidity-azimuthal angle plane 

Look for event-by-event distributions of hadron multiplicities in  

momentum space associated with emission from QGP droplets. 

Such measurerments should be done in the broad energy range! 



ConclusionsConclusions  

 Phase transitions in relativistic heavy-ion collisions will 

most likely proceed out of equilibrium                                                   

 

 2nd order phase transitions (with CEP) are too weak to 

produce significant observable effects 

 

 Non-equilibrium effects in a1st order transition (spinodal 

decomposition, strong fluctuations of order parameter) 

may help to identify the phase transition 

 

 If large QGP droplets are produced in the 1-st order 

phase transition they will show up in large non-statistical 

multiplicity fluctuations in single events 

 


