

CBM Physics at SIS-100

NICA/JINR-FAIR Bilateral Workshop "Matter at highest baryon densities in the laboratory and in space" Frankfurt, 2 April 2012

CBM @ FAIR: Tour de force

- Heavy-ion experiment with large acceptance at SIS-100/300
- External beams:
 - up to 35 AGeV (heavy ions)
 - up to 45 AGeV (light ions)
 - up to 90 GeV (protons)
- Investigate strongly interacting matter at high baryon densities: equation of state, 1st order phase transition, critical point
- Identification of hadrons, leptons and photons
- Setups:
 - hadron + electron
 - muon
- Uniqueness: extreme rate capability, rare observables

FAIR: Modularised Start Version

Modules 0 - 3: Start of construction 2011, completion until 2017 Modules 4-6: Start and completion of construction not fixed

The first years of CBM operation will be at SIS-100 with a start setup.

Beam	P _{lab, max}	√s _{NN, max}
heavy ions (Au)	11A GeV	4,7 GeV
light ions $(Z/A = 0.5)$	14A GeV	5,3 GeV
protones	29 GeV	7,5 GeV

Physics case at SIS-100:

- What are the equation of state and the degrees of freedom of strongly interacting matter at densities as present in the cores of neutron stars?
- What are the properties of hadrons in dense matter? Is chiral symmetry restored?
- Does strangeness exist in form of heavy, meta-stable objects?
- How is charm produced close to the threshold, and how does it propagate in cold nuclear matter?

Dense matter

E. Bratkovskaya, W. Cassing

At SIS-100 energies, the density in the centre of nucleus-nucleus collisions exceeds ground state density by factors, for a considerable period of time.

The QCD phase diagram at high baryon densities

Statistical models describe hadronic final state: thermalisation At low μ_b : hadronisation coincides with deconfinement phase transition Relaxation mechanism at lower temperature / high density? "Quarkyonic Phase": confinement, but (partial) chiral symmetry Phase transition guarkyonic - hadronic could act as "thermaliser" at high μ_b

Hadrochemistry of the final state

- At AGS- und SIS18 energies: small number of measured species; low quality of thermal fits
- Desideratum: characterisation of the hadronic final state in 4π with a large number of hadron species
- Systematic measurements in terms of collision energy and system size; measurement also with collisions of heavy nuclei

Multi-strange hyperons

- Hyperon production threshold in p+p
 - Ξ: 3,7 GeV
 - Ω: 7,0 GeV
- Production below threshold in heavyion collisions:
 - multi-step processes (strangeness exchange)
 - $\Lambda K \to \Xi \pi \quad \Lambda \Lambda \to \Xi^- p \quad \Xi K \to \Omega \pi$
 - Multi-particle collisions involving K or $\boldsymbol{\Lambda}$
- sensitive to both baryon density and strangeness
- test of thermalisation!
 - HADES: \(\exists in Ar+KCl not described by SHM\)

S. Wheaton and J. Cleymans, Comp. Phys. Comm. 180 (2009) 84

Flow and the equation of state

density gradient -> pressure -> collective flow

provides access to the equation of state of strongly interacting matter

AGS: Softest point in EOS at 4A GeV?

Transition from stiff to soft EOS at 4A GeV

Indication of phase transition?

protons in mid-central Au+Au

rapidity

Flow: open questions

NICA-FAIR Workshop, Frankfurt, 2 April 2012

1.0

1.2

E_{lab} [GeV]

1.4

1.6

1

0.8

Flow of strange particles

6GeV K_s^0 sideward flow (b < 7fm) 0.2 ★ K⁰_a data ★ K⁰_s data reflected 0.15 --- p RQMD (2.3) ----- K⁰ RQMD (2.3) 0.1 0.05 0 -0.05 -0.1 -0.15 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 $y_{Lab}/y_{c.m.}-1$

P.Chung et al. (E895), Phys. Rev. Lett 85 (2000) 940

• Strange particle flow is sensitive to EOS and in-medium potential

• Pioneering measurements at SIS-18 (FOPI) und AGS (E895): lack description by models (transport)

Systematic, multi-differential flow measurements (systematic as function of collision energy and system size) are prerequisites for further understanding.

Hypernuclei

- nuclei containing one (or more) hyperons
- give access to hyperon-nucleon and hyperon-hyperon potential
- observation in in K⁻ + A collisions (emulsions):

$$K^{-} + n \rightarrow \Xi^{-} + \pi^{-} + K^{+}$$
$$\Xi^{-} + A \rightarrow^{6}_{\Lambda\Lambda} He$$

 only few double hypernuclei observed so far

H. Takahashi et al., Phys. Rev. Lett. 87 (2001) 212502

Hypernuclei in heavy-ion reactions

- interplay of
 - A production: increasing with energy (up to ≈ 40A GeV)
 - fragment production: strongly decreasing with energy
- maximum of hypernuclei production predicted for 7A - 11A GeV (statistical model)
- detection through decay chain, e.g.

$$^{5}_{\Lambda\Lambda}H \rightarrow^{5}_{\Lambda}He + \pi^{-} \rightarrow^{4}He + p + \pi^{-} + \pi^{-}$$

A. Andronic et al., Phys. Lett. B 697 (2011) 203

needs measurement of decay topology and identification of fragments

Exotic states

H. Stöcker et al., Nucl. Phys. A 827 (2009) 624c

$$H \to \Lambda + p + \pi^{-}$$
$$(\Xi^{0}p)_{b} \to p + \Lambda$$
$$(\Xi^{0}\Lambda)_{b} \to \Lambda\Lambda$$

- dibaryons proposed since long: "collapsed nuclei", B > 1
- existence or non-existence gives insight into QCD quark dynamics (one-gluon exchange)
- Lightest state: H (uuddss); recently found in in lQCD
 - NPLQCD, PRL 106 (2011) 162001;
 HALQCD, PRL 106 (2011) 162002
- No experimental evidence so far
- In heavy-ion reactions: production through $\Lambda\Lambda$ or Ξ -p coalescence
- multiplicity: prediction by SHM (30A GeV)
- Measurement through weak decay topology; life time some cm
- Search at SIS-100 with precise measurement of decay vertex and high rates looks promising

Vector mesons in dense matter

- Are the hadron properties influenced by the dense medium?
- Can we see an onset of chiral symmetry restoration?
- Measure short-lived vector mesons: decay in dense phase of collisions
- decay into lepton pairs: no interaction with medium

Vector Mesons: SPS and SIS-18

G. Agakishiev et al. (HADES), arXiv:1103.0876v2 [nucl-ex]

HADES: excess yield already observed in Ar+KCl at 1,76A GeV (but not in C+C)

No experimental data between SIS-18 and SPS, where baryon density is highest. Extension of the HADES programme to larger systems and higher energies at SIS-100: HADES@SIS-100 and CBM

Charm production

B. Alessandro et al. (NA50), Eur. Phys. J. C 39 (2005) 335

- probe of early collision stage
- absorption of charmonium as QGP signal
- experience from SPS: need to understand absorption in cold nuclear matter for interpretation of A+A

R. Arnaldi et al. (NA60), Nucl. Phys. A 830 (2009) 345c

Charm in p+A at SIS-100

O. Lynnek et al., Nucl. Phys. A 786 (2007) 183

- charm production cross section near threshold unknown
- pQCD calculations with large uncertainties
- important input for models (transport, SHM)

Measurement of both open charm (D mesons) and hidden charm (charmonium) in p+A collisions at SIS-100 (up to 29 GeV)

Requires micro-vertexing and extreme rates!

Charm in A+A at SIS-100 (?)

- charm in A+A at / near threshold: terra incognita
- high discovery potential, e.g. inmedium modifications of D mesons
- threshold energies:

$$p + p \rightarrow J/\psi + p + p$$
 11.2 GeV

$$p + n \rightarrow \Lambda_c + D^- + p$$
 12.0 GeV

$$p + p \rightarrow D^+ + D^- + p + p$$
 14.9 GeV

Thresholds for J/ψ , Λ_c und D⁻ reachable at SIS-100 with light / medium-sized nuclei (Z/A = 0.5)

Very low multiplicities, extremely challenging measurement

CBM setup at SIS-100

Direct hadrons, hyperons, dibaryons, D mesons, photonic decays of vector mesons HADES: di-electrons (up to Ni+Ni, 8A GeV)

TRD: start version, only tracking, no electron identification by TR

CBM setup at SIS-100

Di-electrons from light vector mesons

CBM setup at SIS-100

HADES STS TOF PSD

Charmomium

MUCH: start version, 3×3 detector layers

CBM sensitivity at SIS-100 energies

NICA-FAIR Workshop, Frankfurt, 2 April 2012

Summary

- The CBM physics programme starts 2018 at SIS-100 with a start version of the experimental setup
- The SIS-100 energy range allows an exiting and competitive experimental programme:
 - hadrons, hyperons, hypernuclei, dibayrons in A+A up to 11A/14A GeV
 - e⁺e⁻ from light vector mesons in
 A+A up to 11A/14A GeV, together with
 HADES
 - D mesons und charmonium in p+A up to 29 GeV
- with large acceptance and high interaction rates
- The full CBM physics potential will be realised at a later stage with operation at SIS-300.

https://www.gsi.de/documents/DOC-2011-Aug-29.html

CBM100 and BM@N

- The nuclotron covers the lower half of the SIS-100 energy range, but will be ready for operation soon.
- With a moderate experimental setup, some parts of the CBM physics can be started with BM@N:
 - High precision tracking device: hyperons, hypernuclei, dibaryons
 - TOF will add charged kaons and increase the sensitivity for rare weak decays
 - Some device for centrality determination (PSD)
 - Reaction plane determination will give access to flow
- Di-electron spectroscopy requires detectors for electron identification
 - Think of HADES operation at Nuclotron? This would extend the physics range of fixed-target nuclotron experiments.