Neutrino Cosmology

Richard Battye Jodrell Bank Centre for Astrophysics University of Manchester

VIIIth Pontecorvo Neutrino Physics School Romania, September 2019

Plan of Lecture

- Standard cosmological model & CMB
- Cosmic Neutrino Background (CNB)
- Sterile neutrinos and extra relativistic dof
- Impact of neutrinos on observables
- Present status of constraints : Planck 2018
- Future prospects

Neutrino Cosmology : a good reference

NEUTRINO COSMOLOGY

Julien Lesgourgues Gianpiero Mangano Gennaro Miele Sergio Pastor

CAMBRIDGE

Natural units

 $1 \,\text{GeV} = 1.6 \times 10^{-10} \,\text{J}$ $1 \,\text{GeV} = 1.16 \times 10^{13} \,\text{K}$ $1 \,\text{GeV} = 1.78 \times 10^{-27} \,\text{Kg}$ $1 \,\mathrm{GeV}^{-1} = 6.58 \times 10^{-25} \,\mathrm{sec}$ $1 \,\text{GeV}^{-1} = 1.97 \times 10^{-16} \,\text{m}$

Section 1

Standard cosmology model & Cosmic Microwave Background (CMB)

FRW universe

• Homogenous and isotropic spacetimes : k=0,±1

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - \frac{kr^{2}}{R^{2}}} + r^{2}d\Omega^{2} \right]$$
 R = curvature radius

Einstein equations and conservation equations

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu} \qquad \nabla_{\mu}T^{\mu\nu} = 0$$

$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{k}{R^{2}a^{2}} + \frac{1}{3}\Lambda$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P) + \frac{1}{3}\Lambda$$

$$0 = \dot{\rho} + 3H(\rho + P)$$

Basic equation to solve !

$$\dot{a} = H_0 \left[\frac{\Omega_{\rm r}}{a^2} + \frac{\Omega_{\rm m}}{a} + \Omega_{\rm k} + \Omega_{\Lambda} a^2 \right]^{\frac{1}{2}}$$

 Ω_r = Radiation density

- Ω_m = Matter density
 - Ω_k = Curvature density
- Ω_{Λ} = Dark energy density

Solution for matter and radiation

Conformal time : $dt = ad\eta$ allows a parametric solution

$$\begin{aligned} a(\eta) &= \sqrt{\Omega_{r}}H_{0}\eta + \frac{1}{4}\Omega_{m}(H_{0}\eta)^{2} \\ H_{0}t &= \frac{1}{2}\sqrt{\Omega_{r}}(H_{0}\eta)^{2} + \frac{1}{12}\Omega_{m}(H_{0}\eta)^{3} \\ H_{0}\eta \ll 1 \quad \rightarrow \quad a(t) \propto t^{1/2} \quad \text{-Radiation era} \\ H_{0}\eta \gg 1 \quad \rightarrow \quad a(t) \propto t^{2/3} \quad \text{-Matter era} \end{aligned}$$

Time of equal-matter radiation

calculated by setting $a_{eq} = \Omega_r / \Omega_m$ in the previous expressions

Solution for matter and Λ

matches onto the matter radiation solution for H₀t small

Initial perturbations

- Assumed to be generated during inflation
 - exponential expansion due to a hypothetical scalar field
- Adiabatic/Curvature and nearly scale invariant

$$P(k) = A_{\rm S} \left(\frac{k}{k_{\rm pivot}}\right)^{n_{\rm S}}$$

 $n_s \approx 1$, $k_{pivot} = 0.015 h^{-1} Mpc$

Inflation expected to flatten the universe

- Ω_k≈0

Photon decoupling

 $T_{dec} \approx 0.3 eV$, $z_{dec} \approx 1089$ and $t_{dec} \approx 380,000$ years

Surface of last scattering

Standard Cosmological Model : Summary

GEOMETRY & GRAVITY MATTER CONTENT $\rho = \rho_{\rm r} + \rho_{\rm b} + \rho_{\rm c} + \rho_d$ $ds^2 = dt^2 - a^2(dr^2 + r^2 d\Omega^2)$ $P = \frac{1}{3}\rho_{\rm r} - \rho_{\rm d} \qquad \begin{array}{c} {\rm COLD\,\,DM} \\ {\rm BARYONS} \end{array}$ $\left(\frac{\dot{a}}{a}\right)^2 = H^2 = \frac{8\pi G}{3}\rho$ RAD COSMOLOGICAL CONSTANT $\dot{\rho} = -3H(\rho + P)$ 7 PARAMETERS INITIAL PERTURBATIONS H_0 HUBBLE'S CONSTANT $P_i(k) = A_{\mathsf{S}} \left(\frac{k}{k_{\mathsf{D}}}\right)^{n_{\mathsf{S}}}$ $\rho_{\rm r}, \rho_{\rm b}, \rho_{\rm C}$ MATTER DENSITIES TODAY INITIAL $A_{\rm S}, n_{\rm S}$ ASSUMED SCALAR PERTURBATIONS CURVATURE PERTS OPTICAL DEPTH τ

Section 2

Cosmic Neutrino Background (CNB)

Fermi-Dirac Statistics : g_i dof

Relativistic and zero chemical potential

$$\rho_{i} = \frac{7}{8} \times \frac{\pi^{2}}{30} g_{i} T_{i}^{4}$$
Density
$$n_{i} = \frac{3}{4} \times \frac{\zeta(3)}{\pi^{2}} g_{i} T_{i}^{3}$$
Numbe
$$s_{i} = \frac{7}{8} \times \frac{2\pi^{2}}{45} g_{i} T_{i}^{3}$$
Entropy

er density

/ density

• Relativistic and non-zero chemical potential

$$n_i - n_{\overline{i}} = \frac{1}{6} g_i T_i^3 \left[\frac{\mu_i}{T_i} + \frac{1}{\pi^2} \left(\frac{\mu_i}{T_i} \right)^3 \right]$$

Thermal equilibrium

• At high temperature all particles in eqm

$$g = g_{\mathsf{B}} + \frac{7}{8}g_{\mathsf{F}} = 106.75$$

- for the standard model
- Key neutrino reactions

$$e^+ + e^- \leftarrow \rightarrow \nu_i + \bar{\nu}_i$$

for i = e, μ , τ with cross section

$$\langle \sigma v \rangle \sim G_{\rm F}^2 T^2$$

 $\hat{}_{\rm Fermi \ constant \ = \ 1.16 \ x \ 10^{-5} \ {\rm GeV^{-2}}}$

Instantaneous neutrino decoupling

• Particle Interactions decouple when $\Gamma_v \sim H$

Subsequently, no interactions with thermal bath comprising of photons and e[±]

Electron-positron annihilation

- At T=0.5MeV e[±] annihilation takes place
- Entropy from e[±] left in the thermal bath

-> increase in γ temp relative to ν

$$g_S T^3|_{\text{before}} = g_S T^3|_{\text{after}}$$
$$\rightarrow \frac{11}{2} T_{\nu}^3 = 2T_{\gamma}^3$$
$$\rightarrow T_{\nu} = \left(\frac{4}{11}\right)^{\frac{1}{3}} T_{\gamma}$$

Increase in temp for CMB

Cosmic radiation density

 $\rho_{\rm r} = \frac{\pi^2}{30} \left(2T_{\gamma}^4 + \frac{7}{8} \times 6T_{\nu}^4 \right) \approx 1.681 \rho_{\gamma}$ $\rightarrow \Omega_{\rm r} = \frac{1.681 \times \frac{\pi^2}{15} T_{\gamma}^4}{\frac{3H_0^2}{2\pi G}}$ $\rightarrow \Omega_r h^2 \approx 4.2 \times 10^{-5}$

Density of massive neutrinos

$$\rho(T) = \sum_{i} m_{i} n_{i} = \left(\sum_{i} m_{i}\right) \times \frac{3}{4} \times \frac{2\zeta(3)}{\pi^{2}} T^{3}$$

$$\rightarrow \quad \Omega_{\nu} = \frac{\rho(T_{\text{CMB}})}{\frac{3H_0^2}{8\pi G}}$$

 $\rightarrow \Omega_{\nu}h^2 = \frac{\sum_i m_i}{94.1 \,\mathrm{eV}}$

Non-instantaneous decoupling - and QED corrections

• Decoupling and e⁺/e⁻ annihilation overlap!

- NB ν_e decoupling is delayed relative to $\nu_\mu\,\&\,\nu_\tau$

Correction to radiation density : N_{eff}=3.046

 $\rho_{\rm r} = \frac{\pi^2}{30} \left(2T_{\gamma}^4 + \frac{7}{8} \times 2N_{\rm eff} T_{\nu}^4 \right) \approx (1 + 0.227 N_{\rm eff}) \rho_{\gamma}$

• Matter density

94.1 eV -> 93.1 eV
$$\implies \Omega_{\nu}h^2 = \frac{\sum_i m_i}{93.1 \text{ eV}}$$

Limit on the sum of neutrino masses

Summary of basic facts

Decoupling
 $T_{\rm dec} \approx 1 - 3 \, {\rm MeV}$

- Fermi-Dirac Temperature $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\text{CMB}} = 1.945 \text{ K} = 1.676 \times 10^{-4} \text{ eV}/k_{\text{B}}$
- Number Density for each flavour

 $n_{\nu_i} = n_{\overline{\nu}_i} \approx 56 \,\mathrm{cm}^{-3}$

Contribution to the energy density budget

 $\Omega_{\nu}h^2 = \frac{\sum_i m_i}{93.1\,\mathrm{eV}}$

"Standard" value

 $\sum_i m_i = 0.06 \, \mathrm{eV}$

Section 3

Sterile neutrinos and extra relativistic degrees of freedom

Extra relativistic degrees of freedom

Sterile Neutrinos

- Effects governed by two parameters
 - N_{eff} and m_{eff}
- N_{eff}>3 effective number of neutrinos
 - not necessarily an integer: partial thermalization
 - governs contribution to energy density
- m_{eff} impacts perturbations via rel v non-rel
- Specific models link the two parameters

Sterile neutrino models

- FD distribution with T=T_s
 - m = $\Delta N^{-3/4} m_{eff}$
- Dodelson-Widrow model
 - m = $\Delta N^{-1} m_{eff}$

Section 4

Impact of cosmological observables

Power spectrum norm : σ_8

• R.M.S. density contrast in R=8h⁻¹Mpc

$$\sigma_{\mathsf{R}}^{2} = 4\pi \int \frac{dk}{k} k^{3} P(k) [W(kR)]^{2}$$
Filter function for a sphere of radius R

- Value ~1 in fact approx 0.8
- Related to A_s

- plus other cosmological parameters relating large and small scales

Impact on cosmological observables

• Main parameter : $\sum m_{\nu}$

Sensitivity to individual masses is limited but not zero !

Contribution to the energy density

Changes the time of equal-matter radiation

- Evolution of perturbations
 - Neutrinos are "hot" and therefore free stream
 - They do not fall into potential wells until they become non-relativistic

Transition from relativistic to nonrelativisitic

- Early times
 - behave like photons (without Thomson scattering)
- Late time
 - behave like CDM
- Time of transition

$$3\left(\frac{4}{11}\right)^{\frac{1}{3}}(1+z_{\rm nr})T_{\rm CMB}\approx 3T_{\nu}\approx p\approx m$$

 $\rightarrow z_{\rm nr}\approx 1500\left(\frac{m}{1\,{\rm eV}}\right)$

Observables : CMB

Observables : CMB

- where the most reliable constraints come from

Observables : CMB

Sensitivity of CMB to neutrinos

Two main effects on the CMB

• Change in angular diameter $d_{A}(z_{LSS}) = \frac{1}{(1+z_{LSS})H_{0}} \int_{0}^{z_{LSS}} \frac{dz}{E(z)}$ Change in peak positions $E(z) = \sqrt{\Omega_{r}(1+z)^{4} + \Omega_{m}(1+z)^{3} + \Omega_{\Lambda}}$

Impact on

large-scales

ISW effect

$$\frac{\Delta T}{T}|_{\rm ISW} = 2\int d\ell \dot{\Phi} \quad \text{Starts to vary}$$

Observables : matter power spectrum

Free streaming length and effect on matter power spectrum

$$k_{\text{FS}} \approx 0.82 h^{-1} \operatorname{Mpc}\left(\frac{m}{1 \, \text{eV}}\right) \frac{\sqrt{\Omega_{\Lambda} + \Omega_{\text{m}}(1+z)^3}}{(1+z)^2}$$

Impact of massive neutrinos

Probing the matter power spectrum

- Galaxy redshift surveys
- Lensing effects
 - CMB temperature anisotropies lensing
 - Cosmic shear (weak lensing of galaxy shapes)
 - CMB polarization lensing
- Cluster counts

 Using the SZ effect, X-ray or optical
- Redshift space distortions

Ruling out of pure HDM & pure CDM

Section 5

Present status of constraints : Planck 2018

!!! Health Warning !!!

- All cosmological limits on neutrino masses are <u>model dependent</u>
- Standard cosmological limits on all other parameters are sensitive to neutrino history
- At the moment $\sum m_{\nu} = 0.06 \text{ eV}$ is used with 3 equal masses degenerate case
- Probes of LSS are less mature at the moment

Planck 2018 results

Three separate probes of cosmology !

CMB lensing power spectrum

will focus on TT, EE, TE +low E + lensing results

From Planck Collaboration (2019) : arXiv: 1807.06209v1 to be published in A&A

Planck TT, TE, EE + low E + lensing (ie just CMB) : 68% confidence

From Planck Collaboration (2019) : arXiv: 1807.06209v1 to be published in A&A

Extensions to ΛCDM

Planck TT, TE, EE + low E + lensing (ie just CMB) : 95% confidence

From Planck Collaboration (2019) : arXiv: 1807.06209v1 to be published in A&A Degeneracies with standard parameters

Grey : TT , TE, EE + low E Red : TT, EE, TE + low E + lensing Blue : TT, EE, TE, low E + lensing + BAO

Key degeneracies

From Planck Collaboration (2019) : arXiv: 1807.06209v1 to be published in A&A

Neutrinos v H_0 and σ_8

From Planck Collaboration (2019) : arXiv: 1807.06209v1 to be published in A&A

 $N_{eff} v H_0$ and σ_8 0.84 75 0.83 Riess et al. (2018) $H_0 \,[{\rm km\,s^{-1}\,Mpc^{-1}}$ 0.82 70 0.81 $\mathcal{O}_{\mathcal{O}}^{8}$ 0.80 65 0.79 0.78 60 $N_{eff} = 2.89 \pm 0.19$ 0.77 2.0 2.5 3.0 3.5 4.0 $N_{\rm eff}$

Limits on active neutrinos 2015

TT, TE, EE
$$\sum m_{
u}$$
 < 0.492 eV

TT, TE, EE + Planck lensing $< 0.589 \,\mathrm{eV}$

TT, TE, EE + lensing + ext $< 0.194 \,\mathrm{eV}$

95% upper limits

Limits on active neutrinos 2018 – factor 2 better !

95% upper limits

For different hierarchies

Degenerate

Sterile Neutrinos

Section 6

Future prospects

Stage 4 Cosmology Probes

Stage 4 Cosmology Probes

Future Probes

Future CMB Probes

2026

~2035

Simons Observatory : 2021-2026 (60000 detectors, 2 telescope sizes)

	Parameter	SO-Baseline ^b (no syst)	$\mathbf{SO} ext{-}\mathbf{Baseline}^{c}$	$\operatorname{SO-Goal}^{\operatorname{d}}$	$\operatorname{Current}^{\mathrm{e}}$	Method
Primordial perturbations	$e^{-2\tau} \mathcal{P}(k=0.2/\mathrm{Mpc}) f_{\mathrm{NL}}^{\mathrm{local}}$	$0.0024 \\ 0.4\% \\ 1.8 \\ 1$	$0.003 \\ 0.5\% \\ 3 \\ 2$	$0.002 \\ 0.4\% \\ 1 \\ 1$	$0.03 \\ 3\% \\ 5$	BB + ext delens TT/TE/EE $\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$ kSZ + LSST-LSS
Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$
Neutrino mass	$\Sigma m_{ u}$	$\begin{array}{c} 0.033 \\ 0.035 \\ 0.036 \end{array}$	$0.04 \\ 0.04 \\ 0.05$	$\begin{array}{c} 0.03 \\ 0.03 \\ 0.04 \end{array}$	0.1	$\kappa\kappa$ + DESI-BAO tSZ-N × LSST-WL tSZ-Y + DESI-BAO
Deviations from Λ	$\sigma_8(z=1-2)$	1.2%	2% 2%	1% 1%	7%	$\kappa\kappa + \text{LSST-LSS}$ +SZ-N × LSST-WL
	$H_0 (\Lambda \text{CDM})$	0.3	0 .4	0.3	0.5	$TT/TE/EE + \kappa\kappa$
Galaxy evolution	$\eta_{ m feedback} \ p_{ m nt}$	$2\% \\ 6\%$	3 % 8 %	$2\% \\ 5\%$	50-100% 50-100%	$\begin{array}{l} kSZ + tSZ + DESI \\ kSZ + tSZ + DESI \end{array}$
Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)

Conclusions

- Present safe limit : $\Sigma m_v < 0.24 \text{ eV from}$ CMB+lensing
- Most stringent limit : $\Sigma m_{\rm v}$ < 0.12 eV needs input from other measurements eg BAO
- Future : $\Sigma m_v < 60 \text{ meV}$ (2026) $\Sigma m_v < 15 \text{ meV}$ (~2035)

At this level of precision we can start to think about separating the masses