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Introduction

Global data on neutrino oscillations
various neutrino sources and vastly different energy and distance scales:

sun reactors atmosphere accelerators

Homestake,SAGE,GALLEX KamLAND, D-CHOOZ SuperKamiokande MINOS, T2K, NOvA
SuperK, SNO, Borexino RENO, DayaBay IceCube

I global data fits nicely with the 3 neutrinos from the SM

I “anomalies” (at 2-3 σ) which do not fit the 3-flavour picture:
LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar
neutrino spectrum

T. Schwetz (KIT) Statistical Methods 2 / 118



Introduction

3-flavour neutrino parameters

I 3 masses: ∆m2
21, ∆m2

31, m0

I 3 mixing angels: θ12, θ13, θ23

I 3 phases: 1 Dirac (δ), 2 Majorana (α1, α2)

neutrino oscillations
absolute mass observables
lepton-number violation (neutrinoless double-beta decay)
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Introduction

Neutrino mass states and mixing
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Introduction

Three-flavour oscillation parameters

I each oscillation parameter is determined by several (classes of)
experiments

I especially true for not-so-well determined parameters

I interplay of different data sets ⇒ global analyses

I NuFit collaboration: www.nu-fit.org
with M.C. Gonzalez-Garcia, M. Maltoni, et al.

I latest paper: Esteban, Gonzalez-Garcia, Hernandez-Cabezudo, Maltoni,
Schwetz, JHEP 1901 (2019) 106 [1811.05487]

I latest version: 4.1 (as of July 2019)
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Introduction

Global 3-flavour fit
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Introduction

Global 3-flavour fit
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I robust determination
(relat. precision at 3σ):

θ12 (14%) , θ13 (8.9%)
∆m2

21 (16%) , |∆m2
3`| (7.6%)

I broad allowed range for θ23 (24%),
non-significant indications for
non-maximality/octant

I ambiguity in sign of ∆m2
3` →

mass ordering (3.2σ preference for NO)
I preference for 180◦ . δCP . 360◦
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Introduction

Absolute neutrino mass
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I Endpoint of beta spectrum: m2
β =

∑
i |U2

ei |m2
i = m2

β(∆m2
i1, θ1i ,m0)

I Cosmology:
∑

=
∑

i mi =
∑

(∆m2
i1,m0)

I Neutrinoless double beta-decay: mee = |
∑

i U2
eimi | = mee(∆m2

i1, θ1i ,m0, αi )
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Introduction

These lectures:
Basic problems in statistics

Parameter estimation
Goodness of fit

Confidence intervals
frequentist
Bayesian intervals
Parameter marginalization

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2
Systematical errors in χ2 analyses

Hypothesis testing
Frequentist
Bayesian model selection
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Basic problems in statistics

Basic problems in statistics
We have

I a set of observables xi
I a model (theory) making predictions for those observables,
I and the model may depend on parameters: θα.

Now we want to address questions like the following:
I Does the model provide a “good” description of the data?

(“model testing” or “goodness-of-fit”)
I What are the parameter values θ̂α that provide the best description of

the data, assuming this model is correct? (“parameter estimation”)
I Assuming the model is correct, what is the “acceptable” range for the

parameters? (“acceptance regions” or “confidence intervalls”)
I Suppose we have two different models (hypotheses), which one of the

two gives a “better” description of the data? (“hypothesis testing”)
T. Schwetz (KIT) Statistical Methods 11 / 118
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Basic problems in statistics

In statistics a “model” predicts the p.d.f. for the observables: f (~x ; ~θ)
(in physics we often call already the mean value “prediction” and implicitly
assume Gaussian or Poisson distribution)

Example
I given set of oscillation parameters θ:
I “predicted number” of νe appearance events in T2K N(θ)
I read: the number of events is expected to be Poisson distributed with

the Poisson mean given by N(θ)
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Basic problems in statistics

Statistic

A “statistic” is any function depending on random variables: T (xi )

I We are free to consider any statistic to address those questions.

I for each of the questions from the previous slide we can use a
different statistic

I in practice often “χ2” (more precisely, a least-squares statistic) is
used to address all of them (sometimes this leads to confusion)

I a very important statistic is the likelihood

T. Schwetz (KIT) Statistical Methods 13 / 118



Basic problems in statistics

Frequentist statistics

I the only random (statistical) quantities are data
I there is no way to assign a probablitiy to a model or its parameters
I a model parameter has an unknown but fixed true value

Example: the mass of an apple or the mass of the Higgs

- the apples in a shop will have some distribution in mass, we can
assign a p.d.f. for the mass of an apple

- the mass of the Higgs is a fundamental parameter of the SM, it has a
fixed (but unknown) value. (The same is true for the electron mass,
neutrino mass, mixing angles...)

I in the frequentist approach we can make only probability statements
about the outcome of an experiment (if it were repeated many times)
under the hypothesis of a model
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Basic problems in statistics

Bayesian inference

I consider the p.d.f. predicted in a given model as conditional p.d.f. for
given parameters f (~x |~θ)

I we can specify our prior subjective belief on the distribution of the
parameters before the experiment is performed: “prior” π(~θ), and use
Bayes theorem to obtain a “posterior” p.d.f. for the parameters, given
observed data:

f (~θ|~xobs) ∝ f (~xobs|~θ)π(~θ)

I observations “update” our degree of belief of the parameters

I can also be generalized to statements about the model as a whole
(Bayesian model comparison)
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Basic problems in statistics

The likelihood

I a “model” predicts the p.d.f. for the observables: f (~x ; ~θ)
I The likelihood function is the p.d.f. for the observables evaluated at

the actuall outcome of an experiment, viewed as a function of the
parameters of the model L(~θ) ≡ f (~xobs ; ~θ)

I If there are n statistically independent measurments xi and each
follows the distribution f (x ; ~θ), the joint p.d.f. factorizes and

L(~θ) =
n∏

i=1
f (xobs

i ; ~θ)

I Example: energy spectrum - unbinned LH - histogram, binned LH

Note: the likelihood is not a p.d.f. for the model parameters ~θ
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Basic problems in statistics

likelihood versus χ2

I Example: consider observables xi with multivariate Gaussian
distribution:

f (x; µ(θ),V ) = 1√
(2π)n|V |

exp
[
−1
2(x − µ(θ))T V−1(x − µ(θ))

]

I The experiment has obtained the measurments xobs, then up to an
irrelevant constant the logarithm of the likelihood is

logL(θ) = −1
2(xobs − µ(θ))T V−1(xobs − µ(θ))

I the “χ2” is related to the likelihood by

χ2(θ) = −2 logL(θ) = (xobs − µ(θ))T V−1(xobs − µ(θ))

I caveat: not true if V (θ)
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Basic problems in statistics

likelihood versus χ2

The relation

χ2(θ) = −2 logL(θ)

is often used as a general definition of χ2, also if
I the p.d.f. of x is not Gaussian
I if unbinned data is used for the likelihood

(a least-square statistic such as “χ2” requires binned data)
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Basic problems in statistics Parameter estimation

Parameter estimation

The parameters which maximize the likelihood (minimize χ2) can be used
as “estimators” for the (unknown) true values of the parameters:

logLmax = logL(θ̂) = max
θ

logL(θ)

χ2min = χ2(θ̂) = min
θ
χ2(θ)

I θ̂ is sometimes called the “best fit point”, or
“maximum likelihood estimator”

I θ̂ is a random variable (a statistic), because it is a function of the data
I in some sense maximum likelihood estimators are “optimal”

converge towards the true values in the large sample limit

T. Schwetz (KIT) Statistical Methods 19 / 118



Basic problems in statistics Parameter estimation

Minimization problem

I if the parameter dependence µ(θ) is linear (or sufficiently linear):
solve the system of equations

∂χ2

∂θα
= 0

I in non-linear situations the minimization has to be done numerically -
can be very non-trivial (multi-dimensional parameter space, local
minima, physical boundaries,...)

T. Schwetz (KIT) Statistical Methods 20 / 118



Basic problems in statistics Goodness of fit

Goodness of fit
Q: How well does a model explain the data?

Example
I An experiment measures 10 observables xi .

I The model predicts that xi should be Gaussian distributed with known
mean µ and variance σ (no free parameter in the model).

I If the model is true,

X 2 ≡
10∑

i=1

(xi − µ
σ

)2

follows a χ2-distribution with 10 degrees of freedom: χ210(X 2)
(by definition)
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Basic problems in statistics Goodness of fit

Goodness of fit, example:

I Suppose with the measured xi we obtain X 2
obs = 25.

I We calculate the so-called “p-value”:

p-value =
∫ ∞
25

χ210(z)dz ≈ 0.5%

I Interpretation: “If the model is true and the experiment was repeated
many times, in 0.5% of the cases we would find X 2 ≥ 25.”

I No probability statement on the model, only on the outcome of the
experiment!

T. Schwetz (KIT) Statistical Methods 22 / 118
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Basic problems in statistics Goodness of fit

Goodness of fit including parameter estimation

I An experiment measures n observables xi

I The model predicts that xi should be Gaussian distributed with mean
µi depending on p parameters θα:

µi (θα) i = 1, ..., n; α = 1, ..., p

The variances of xi are σ2i .
I If the model is true,

X 2
min = min

θα

[ n∑
i=1

(xi − µi (θα)
σi

)2]

follows a χ2-distribution with (n-p) degrees of freedom: χ2n−p(X 2)
(see Maltoni,Schwetz,hep-ph/0304176 for a pedagogical proof).
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Basic problems in statistics Goodness of fit

Goodness of fit including parameter estimation
I given an observed value for X 2

min we can calculate the p-value by

p-value =
∫ ∞

X2
min

χ2n−p(z)dz

I Remember that the χ2n distribution has mean n and variance 2n.
Therefore, if the model is true, we expect (“expectation value”)

X 2
min ≈ (n − p)±

√
2(n − p)

(sloppy: X 2
min/d.o.f. ' 1)

I a “good fit” should have a p-value ≈ 50%
I a small p-value [X 2

min � (n − p)] indicates an un-likely outcome
I a p-value close to 100% [X 2

min � (n− p)] may indicate that errors are
estimated too large (model fits data “too good”)
T. Schwetz (KIT) Statistical Methods 24 / 118



Basic problems in statistics Goodness of fit

Monte Carlo method

I It is not guaranteed that X 2
min follows a χ2 distribution with n − p

degrees of freedom.

I In general the distribution has to be calculated by Monte Carlo
methods.
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Basic problems in statistics Goodness of fit

the model predicts a p.d.f. for the observables depending on parameters:
f (xi ; θα), as well as µi (θα) and σi (θα).

1. assume certain true values for θα and use the random number
generator of your computer to generate an “artificial” realisation of
the data xi according to the p.d.f. predicted by the model

2. calculate the least square-statistic for that realisation:

X 2
min = min

θα

[ n∑
i=1

(xi − µi (θα)
σi (θα)

)2]

and store the value in a histogram
3. repeat those two steps many times
4. calculate the least square-statistic for the real observed data X 2

min,obs
5. the p-value is given by the fraction of the artificial data sets for which

you have obtained a larger X 2
min than the observed one

T. Schwetz (KIT) Statistical Methods 26 / 118



Basic problems in statistics Goodness of fit

Monte Carlo method

comments:
I the p-value may depend on the assumed “true values” for θα which

has been used to generate the artificial data realisations.
In frequentist statistics we cannot “marginalize” over the true values.
Need to report the dependence on the true values.

I not restricted to the least-square statistic
in principle one can use any statistic to evaluate the goodness of fit as
long as their distribution can be estimated or calculated by Monte
Carlo (though there may be good or bad ones)
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Basic problems in statistics Goodness of fit

Comments on goodness of fit

I While X 2
min/d.o.f.� 1 indicates a problem with the fit,

X 2
min/d.o.f. ≈ 1 does not guarantee that the fit is “good”.

I E.g., if the number of d.o.f. is large, there may be many data points
which are not very sensitive to the “model” (dilution of the goodness
of fit).

I Further diagnostics is recommended.

I E.g., divide data in sub-sets (without looking at the actual outcome
of the experiments) and check for consistency
Maltoni,Schwetz,hep-ph/0304176

I Pull diagram.
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Basic problems in statistics Goodness of fit

Dijet mass spectra and fits in CMS
• Global background fits used in both regions

7

x = mjj/
p

s
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Basic problems in statistics Goodness of fit

Ex.: global fit with many data points
19

10-4 10-3 10-2 10-1
10-1

100

101

sin2 2��e

�
m

2
[e

V
2
]

Disappearance
Free Fluxes

Fixed Fluxes

Appearance
( w/o DiF)

99.73% CL

2 dof

FIG. 7. Appearance versus disappearance data in the plane spanned by the e↵ective mixing angle

sin2 2✓µe ⌘ 4|Ue4Uµ4|2 and the mass squared di↵erence �m2
41. The blue curves show limits from

the disappearance data sets using free reactor fluxes (solid) or fixed reactor fluxes (dashed), while

the shaded contours are based on the appearance data sets using LSND DaR+DiF (red) and LSND

DaR (pink hatched). All contours are at 99.73% CL for 2 dof.

two additional free parameters.
We would now like to quantify the tension between di↵erent subsets of the global data

that is evident from fig. 5. We first note that combining all data sets we find a goodness-of-fit
for the global best fit point around 65%, see table VI. This good p-value does not reflect the
tension we found because many data points entering the global fit have only little sensitivity
to sterile neutrino oscillations, thus diluting the power of a goodness-of-fit test based on
�2/dof.

A more reliable method for quantifying the compatibility of di↵erent data sets is the
parameter goodness-of-fit (PG) test [92], which measures the penalty in �2 that one has to
pay for combining data sets, see appendix A for a brief review of this test. If the global
neutrino oscillation data were consistent when interpreted in the framework of a 3 + 1
model, any slicing into two statistically independent data sets A and B should result in an
acceptable p-value from the PG test. To illustrate an inconsistency in the data, it is however
su�cient to demonstrate that at least one way of dividing it leads to a poor value. Here,
we choose to split the data into disappearance data encompassing the oscillation channels
(–)

⌫ e !
(–)

⌫ e and
(–)

⌫ µ ! (–)

⌫ µ, and appearance data covering the
(–)

⌫ µ ! (–)

⌫ e channel. Note that
it is important to chose data sets independent of their “result”. For instance, dividing data
into “evidence” and “no-evidence” samples would bias the PG test.

The tension between appearance and disappearance data is shown graphically in fig. 7.
The figure illustrates the lack of overlap between the parameter region favoured by ap-
pearance data (driven by LSND and MiniBooNE) and the strong exclusion limits from
disappearance data. The tension persists independently of whether reactor fluxes are fixed
or kept free, and whether the LSND DaR or DaR+DiF samples are used. The corresponding
results from the PG test are shown in the last two columns of table VI. To evaluate the

eV-sterile neutrino oscillations
Dentler et al., 1803.10661

χ2min/dof = 1141/1159

p-value = 64%

divide data into appearance and disappearance data, and consider “prize
to pay” by the combination [Maltoni,Schwetz,hep-ph/0304176]:

χ2PG = χ2min,glob − χ2min,app − χ2min,dis

χ2-distribution with P dof, P = # of params in common to the two sets

⇒ χ2PG/dof = 28.9/2, p-value = 5.3× 10−7
T. Schwetz (KIT) Statistical Methods 30 / 118
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Confidence intervals

I Suppose you have a model depending on some parameters θ

I The goodness of fit of your model is good and you come to the
conclusion that the model fits the data well.

I You also obtained best fit values of the parameters θ̂

I Now we want to address the question:
what is the “acceptable range” for the parameters?

→ confidence interavals (CI)

T. Schwetz (KIT) Statistical Methods 32 / 118



Confidence intervals

Confidence intervals

What is the precise meaning of statements as:

mH = 125.09± 0.21(stat.)± 0.11(syst.)GeV

or plots like this:
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Figure 1. Global 3⌫ oscillation analysis. Each panel shows the two-dimensional projection of the

allowed six-dimensional region after marginalization with respect to the undisplayed parameters.

The di↵erent contours correspond to 1�, 90%, 2�, 99%, 3� CL (2 dof). The normalization of reactor

fluxes is left free and data from short-baseline reactor experiments are included as explained in the

text. Note that as atmospheric mass-squared splitting we use �m2
31 for NO and �m2

32 for IO.

The regions in the four lower panels are obtained from ��2 minimized with respect to the mass

ordering.

– 4 –

1σ, 90%, 2σ, 99%, 3σ CL
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Confidence intervals frequentist

Confidence intervals - frequentist interpretation
meaning of a 90% CL interval (or region):

I Suppose you repeat LHC many times.

I Each time you extract from the data an interval for the Higgs mass
using the same procedure as for the one quoted above.

I In each of the many LHC experiments you would obtain a slightly
different interval, but in 90% of the cases the interval will contain the
true value of the Higgs mass (“coverage”).

I Similar for multi-dimensional regions: the CL region (in n-dim space)
would cover the true values for the n parameters in 90% of the cases.

Note: The probability statement is on the interval (or region), not on the
parameter(s) of interest, which has an unknown fixed value.
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Confidence intervals frequentist

Confidence intervals from the confidence belt

P[x1 < x < x2; θ] = 1− α =
∫ x2

x1
f (x ; θ)dx

1− α = P[x1(θ) < x < x2(θ)] = P[θ2(x) < θ < θ1(x)]

probability statement on θ1, θ2, but not on θ
T. Schwetz (KIT) Statistical Methods 35 / 118



Confidence intervals frequentist

confidence intervals from the likelihood function
consider the likelihood function L(θα) ≡ f (xi ; θα), for a model depending
on P parameters θα = (θ1, ...θP)

I θ̂α: parameter values which maximize the likelihood: Lmax = L(θ̂α)
(θ̂α are “estimators” of the true values of θα)

I under certain conditions (Wilk’s theorem),

∆X 2 ≡ 2 log Lmax
L(θα)

will be distributed as a χ2 with P d.o.f.
(independent of true values)

I remember χ2 = −2 logL →

∆X 2 = χ2(θα)− χ2min
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Confidence intervals frequentist

using χ2

suppose the experiment divides the range of observation into N bins

define: χ2(θα) ≡
n∑

i=1

(xi − µi (θα)
σi

)2

χ2(θα) = χ2min(θ̂α) + ∆χ2(θα)

N N − P P

parameter estimation, confidence interval
goodness of fit

I χ2min follows a χ2-distribution with N − P d.o.f. and can be used to
evaluate the goodness of fit.

I ∆χ2 follows a χ2-distribution with P d.o.f.

T. Schwetz (KIT) Statistical Methods 37 / 118



Confidence intervals frequentist

Confidence regions from ∆χ2

A P-dimensional region in the space θα at given CL is obtained by
requiring ∆χ2(θα) < X (CL) (contours in ∆χ2)

d.o.f. \ CL 68%(1σ) 90% 95%(2σ) 99% 99.73%(3σ)
1 1 2.71 4 6.64 9
2 2.28 4.61 5.99 9.21 11.8
3 3.51 6.25 7.82 11.4 14.2
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Figure 1. Global 3⌫ oscillation analysis. Each panel shows the two-dimensional projection of the

allowed six-dimensional region after marginalization with respect to the undisplayed parameters.

The di↵erent contours correspond to 1�, 90%, 2�, 99%, 3� CL (2 dof). The normalization of reactor

fluxes is left free and data from short-baseline reactor experiments are included as explained in the

text. Note that as atmospheric mass-squared splitting we use �m2
31 for NO and �m2

32 for IO.

The regions in the four lower panels are obtained from ��2 minimized with respect to the mass

ordering.

– 4 –

1σ, 90%, 2σ, 99%, 3σ CL
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Confidence intervals frequentist

On Wilk’s theorem (1938)

When is ∆χ2(θα) really χ2-distributed?
I Wilks theorem applies if the theoretical predictions µi (θα) span a

linear space when θα are varied
I this holds when the predictions can be expanded to linear order
µi (θα) ≈ Ai + Biαθα

I this is exact for a linear model
I in non-linear models, this holds in the vicinity of the best fit point and

is reliable up to a certain CL, beyond which the non-linear character
of the parameter dependence becomes important

I for “powerful” data the linear approximation will hold to high CL, for
“weak” data non-linearities may become important already at low CL.

T. Schwetz (KIT) Statistical Methods 39 / 118



Confidence intervals frequentist

On Wilk’s theorem (1938)
important examples where Wilk’s theorem does not hold:

I close to a physical boundary of a parameter
ex.: absolute neutrino mass observables: m2

νe ≥ 0,
∑

i mi ≥ 0
ex.: upper limit on sterile neutrino mixing |Uα4|2

I when certain values of the predictions µi (θα) cannot be reached
ex.: trigonometric dependencies:
sin2 2θ23 ≤ 1, δCP dependence

I confidence regions from the standard ∆χ2 contours will be only
approximate.

I if large deviations from Gaussianity are expected, confidence regions
have to be constructed by Monte Carlo methods.
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Confidence intervals frequentist

CIs from explicit confidence belt construction

1. assume certain true values for θ and use the random number
generator of your computer to generate an “artificial” realisation of
the data xi according to the p.d.f. predicted by the model

2. calculate the least square-statistic for that realisation:
∆X 2(θ) = X 2(θ)− X 2

min and store the value in a histogram
3. repeat steps 1 and 2 many times
4. repeat steps 1, 2, 3 for each value of θ
5. at each value for θ search for the cut-value X 2

cut(θ), such that
∆X 2(θ) is larger than X 2

cut(θ) in 10% of the cases (for a 90% CI)
6. calculate the least square-statistic for the observed data ∆X 2

obs(θ)
7. the CI is given by the union of all values of θ for which

∆X 2
obs(θ) < X 2

cut(θ)

Feldman, Cousins, PRD57, 3873 (1998), physics/9711021
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Confidence intervals frequentist

I In the limit where Wilk’s theorem holds
(“Gaussian approximation” or “χ2 approximation”)

I 1-dimensional χ2 projections will be parabolas
I p-dimensional regions will be p-dimensional ellipsoids
I inclination of the ellipse in a 2-dim plane gives the correlation between

those two parameters

I In the θ12, θ13, ∆m2
21 space we are close to Gaussian

I non-Gaussianities are relevant:
I mass ordering degeneracy ∆m2

31
I octant degeneracy χ2(θ23)
I CP phase δ (periodic parameter space!)

I In these cases translation of ∆χ2 values into CL (or probabilities) is
only approximate.
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Confidence intervals frequentist

Global 3-flavour fit

0.2 0.25 0.3 0.35 0.4

sin
2

θ
12

0

5

10

15

∆
χ

2

6.5 7 7.5 8 8.5

∆m
2

21
 [10

-5
 eV

2
]

0.4 0.45 0.5 0.55 0.6 0.65

sin
2

θ
23

0

5

10

15

∆
χ

2

-2.6 -2.5 -2.4

∆m
2

32
   [10

-3
 eV

2
]   ∆m

2

31

2.4 2.5 2.6

0.018 0.02 0.022 0.024 0.026

sin
2

θ
13

0

5

10

15

∆
χ

2

0 90 180 270 360

δ
CP

NO, IO (w/o SK-atm)
NO, IO (with SK-atm)

NuFIT 4.1 (2019)

★

0.2 0.25 0.3 0.35 0.4

sin
2
θ

12

6.5

7

7.5

8

∆
m

2 2
1
 [
1
0

-5
 e

V
2
]

★

0.015 0.02 0.025 0.03

sin
2
θ

13

★

0.3 0.4 0.5 0.6 0.7

sin
2
θ

23

0

90

180

270

360

δ
C

P

★

-2.8

-2.6

-2.4

-2.2

★

2.2

2.4

2.6

2.8

∆
m

2 3
2
  
  
[1

0
-3

 e
V

2
] 
  
 ∆

m
2 3

1

★

NuFIT 4.1 (2019)

T. Schwetz (KIT) Statistical Methods 43 / 118



Confidence intervals frequentist

Elevant, Schwetz, 1506.07685
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Elevant, Schwetz, 1506.07685
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Confidence intervals frequentist

2-dimensional regions are closer to Gaussianity
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Figure 12: Two-dimensional confidence regions at 1� (red), 2� (blue), 3� (green) in the (sin2 ✓23, �CP)

plane for T2K (left panel) and T2K + MINOS (right panel), including T2K anti-neutrino data in both

cases. Solid curves correspond to the MC simulation, whereas dotted curves correspond to the Gaussian

approximation. For the MC we assume a true normal mass ordering with �m2
32

true
= 2.4⇥ 10�3 eV2, while

for the fit we minimize with respect to �m2
32 including its sign.
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Confidence intervals frequentist

Invariance under variable change
Best fit values from χ2min and confidence intervals from ∆χ2 = const are
invariant under (reasonable) variable transformations

Ex.: one variable θ → y = g(θ), e.g. θ → y = sin2 θ
I If χ2(θ) has a minimum at θ̂, χ2(y) has a minimum at

ŷ = g(θ̂)

I If [θ1, θ2] is a confidence interval for θ obtained from requiring
∆χ2(θ) = Xcut, then the corresponding interval for y is

[y1, y2] = [g(θ1), g(θ2)]
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Confidence intervals frequentist

unbinned likelihood versus χ2

I binning implies loss of information

I whenever possible (practical) use unbinned likelihood

I if binning is necessary use as many bins as possible (practical)
I rule of thumb: bin size comparable to the resolution

(e.g., energy resolution in case of an energy spectrum)
(smaller bins do not add more information, but do not hurt either)

I if number of events per bin becomes small, an option is to use the
“Poisson” version of χ2 (see previous slide)
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Confidence intervals frequentist

Combining several experiments
I consider M experiments.
I experiment ex consists of Nex data points.
I each experiment has its own χ2 function: χ2ex (θ)
I if there is no correlation between experiments, the combined χ2 is

simply

χ2glob(θ) =
M∑

ex=1
χ2ex (θ) # d.o.f. =

M∑
ex=1

Nex

(or multiplying the likelihoods).
I possible correlations need to be taken into account by the covariance

matrix or by introducing nuissance parameters (see later).
I any minimization over parameters has to be done for χ2glob(θ), not

the individual experiments

min[f (x)] + min[g(x)] 6= min[f (x) + g(x)]
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Confidence intervals Bayesian intervals

Bayes theorem and p.d.f.s for parameters
In contrast to the frequentist approach, Bayesians assign a probability
distribution to the parameters of a model (or the model itself).

We can use Bayes theorem to get a p.d.f. for θ from the likelihood
function of the data x : f (x , θ) = f (θ|x)f (x) = f (x |θ)f (θ) or

f (θ|x) = f (x |θ)f (θ)
f (x) = f (x |θ)f (θ)∫

f (x |θ)f (θ)dθ ∝ L(θ)π(θ)

I f (x |θ) = L(θ): likelihood function
I f (θ) = π(θ) prior p.d.f of θ
I f (θ|x) posterior p.d.f. of θ

The data updates our “degree of belief” about θ from the prior π(θ) to
the posterior p.d.f. f (θ|x)
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Confidence intervals Bayesian intervals

Bayesian parameter intervals

A Bayesian interval for θ containing a probability β is given by

β =
∫ θ2

θ1
f (θ|x)dθ

I θ1,2 not unique
I easy to define upper or lower limits
I “equal probability” intervals or “central” intervals
I N-dimensions: volume integration

(often one defines the volume by constant-likelihood contours)
integration is efficiently done by Markov chain Monte Carlo techniques

T. Schwetz (KIT) Statistical Methods 51 / 118



Confidence intervals Bayesian intervals

Bayesian intervals in general are not invariant under variable
transformations. 1-dim example:

β =
∫ θ2

θ1
L(θ)π(θ)dθ

consider variable transformation y = y(θ)∫ θ2

θ1
L(θ)π(θ)dθ =

∫ y(θ2)

y(θ1)
L(θ(y))π(θ(y))dθ

dy dy

BUT: the interval [y1, y2] defined by

β =
∫ y2

y1
L(θ(y))π(θ(y))dy

in general differs from [y(θ1), y(θ2)]
⇒ limits are not invariant under non-linear variable transformation!
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Confidence intervals Bayesian intervals

How to choose the prior?

I constant prior?
I constant logarithmic prior? (“uninformative”)
I non-normalizable prior (“impropper”)?
I “objective priors” (allow for frequentist interpretation)

require certain properties like maximum gain of information, or
invariance under variable transformations

I result becomes independent of prior when the width of the likelihood
is small compared the typical variation of the prior

I easy to include physical boundaries of a parameter

If the likelihood is much more peaked than the prior (“good data”), the
result becomes independent of the prior and similar to frequentist limits.
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Confidence intervals Bayesian intervals

Bayesian and Frequentist intervals

If “the problem is Gaussian”, the χ2 is a parabola

χ2 = χ2min +
(
θ − θ̂
σθ

)2

and the likelihood is proportional to a Gaussian

L(θ) ∝ e−χ2/2

If furthermore, the prior is constant in θ, then bayesian (central) intervals
and Frequentist intervals (from ∆χ2) agree.
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Confidence intervals Bayesian intervals
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Figure 1. One-dimensional posterior distributions (black full lines) and two-dimensional 1�, 2�

and 3� Bayesian credible regions (black void contours). The figure also shows the one-dimensional

profile likelihoods (red dashed curves) and two-dimensional �2 regions (coloured filled regions) from

Ref. [7].

4 Determination of s2
23

In this section we study the determination of s2
23 in more detail. To do so, in Fig. 4 we

plot the Bayesian marginal posterior distribution (which in this case is proportional to the

marginal likelihood) of s2
23 for all orderings together with the S of the credible intervals (see

Eqs. (2.6) and (2.7)), as well as the profile likelihood and
p
��2 (the nominal significance

under the assumption of a standard �2 distribution).

– 7 –

Bergstrom et al., 1507.04366
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Confidence intervals Parameter marginalization

On multi-dimensional parameter spaces

Suppose you want to show regions at a CL β for q parameters x , and you
are not interested in P − q parameters y :

I use q d.o.f. and minimize wrt to y :
“the q-dimensional region for x , irrespective of the values of y”

I use q d.o.f. and fix y to some values:
“the q-dimensional region for x , assuming some true value of y”
(ex.: upper bound on σscat for fixed mχ)
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Confidence intervals Parameter marginalization

On multi-dimensional parameter spaces
Suppose you want to show regions at a CL β for p parameters x , and you
are not interested in q = P − p parameters y [note: θ = (x , y)]:

I use p d.o.f. and minimize wrt to y :
“the p-dimensional region for x , irrespective of the values of y”

χ2(θ) = χ2min(θ̂) + ∆χ2(θ)

N N − P P

∆χ2(x , y) = ∆χ2min,y (x) + δχ2(x , y)

P p = P − q q

∆χ2min,y (x) ≡ min[∆χ2(x , y); y ] (p d.o.f.)
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Confidence intervals Parameter marginalization

Example: 1-dim and 2-dim projections
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Confidence intervals Parameter marginalization

Bayesian parameter marginalization

In a Bayesian framework it is straight forward to obtain the marginalized
p.d.f. by integrating over nuisance parameters:

f (x , y) ∝ L(x , y)π(x , y)

f (x) =
∫

dy f (x , y)

If the prior factorizes π(x , y) = π(x)π(y):

f (x) ∝ π(x)
∫

dy L(x , y)π(y)
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Confidence intervals Parameter marginalization

Posterior

Profile L

2.2 2.4 2.6
∆m2

3ℓ/10
−3 eV2

si
n
2
θ 2

3

0.3
0.4
0.5
0.6

Bayes

χ2

si
n
2
θ 1

3

0.018
0.02
0.022
0.024
0.026

δ C
P

0

100

200

300

∆
m

2 21
/1

0
−
5
eV

2

6.5
7

7.5
8

8.5

sin2 θ12

∆
m

2 3ℓ
/1

0
−
3
eV

2

0.25 0.3 0.352.2

2.4

2.6

sin2 θ23
0.4 0.6

sin2 θ13
0.02 0.025

δCP
0 200

∆m2
21/10

−5 eV2
6.5 8

Figure 1. One-dimensional posterior distributions (black full lines) and two-dimensional 1�, 2�

and 3� Bayesian credible regions (black void contours). The figure also shows the one-dimensional

profile likelihoods (red dashed curves) and two-dimensional �2 regions (coloured filled regions) from

Ref. [7].

4 Determination of s2
23

In this section we study the determination of s2
23 in more detail. To do so, in Fig. 4 we

plot the Bayesian marginal posterior distribution (which in this case is proportional to the

marginal likelihood) of s2
23 for all orderings together with the S of the credible intervals (see

Eqs. (2.6) and (2.7)), as well as the profile likelihood and
p
��2 (the nominal significance

under the assumption of a standard �2 distribution).
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Confidence intervals Parameter marginalization

Summary marginalization

I frequentist: χ2 is minimized (likelihood maximized) with respect to
nuissance parameters → “profiling”

χ2(x) = min
y

[
χ2(x , y)

]

I Bayesian: posterior p.d.f. is integrated over nuissance parameters

f (x) =
∫

dy f (x , y)

results may differ dramatically, especially in multi-dimensional spaces
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How to analyze data from neutrino oscillation experiments
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Basic steps towards an analysis
I Suppose a given experiment divides the range of observation into N bins.

The outcome is reported in number of observed events in each bin ni .
(Expect Poisson distribution for the number of events in each bin.)

I For given oscillation parameters

θ = (θ12, θ13, θ23, δCP,∆m2
21,∆m2

31) (P = 6)

we can predict the expected number of events per bin µi (θ).

I Build a χ2, e.g. (more details later):

χ2(θ) =
N∑

i=1

[
µi (θ)− ni

σi

]2

I Use χ2(θ) to perform a statistical analysis
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Event rates in oscillation experiments

Outline
Basic problems in statistics

Parameter estimation
Goodness of fit

Confidence intervals
frequentist
Bayesian intervals
Parameter marginalization

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2
Systematical errors in χ2 analyses

Hypothesis testing
Frequentist
Bayesian model selection
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Event rates in oscillation experiments

Event rates in oscillation experiments
number of events in a να → νβ oscillation experiment:

N(θ) = TN
∫

dEν φνα(Eν) Pαβ(Eν ; θ)σνβ (Eν)

T exposure time
N number of target particles
φνα neutrino flux of flavour α at detector
Pαβ να → νβ oscillation probability
σνβ detection cross section of neutrino νβ
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Event rates in oscillation experiments

Event rates in oscillation experiments
number of events in a να → νβ oscillation experiment:

N(θ) = TN
∫

dEν φνα(Eν) Pαβ(Eν ; θ)σνβ (Eν)

I in more realistic situations we need to take into account the
characteristics of the particular experiment

I consider in more detail the actual observables
I typically it will involve more integrals

Ex.: atmospheric neutrinos: integrate also over zenith angle,
production height in atmosphere, ....
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Event rates in oscillation experiments

to compare with observation add expected background in each bin:

µi (θ) = Ni (θ) + Bi

→ can be used to build χ2, for example:

χ2(θ) =
N∑

i=1

[µi (θ)− ni ]2

ni

includes only statistical errors → on systematics see later
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Event rates in oscillation experiments Reactor experiments

Example: Reactor experiments
I source of ν̄e with few MeV → ν̄e disappearance
I detection reaction: inverse beta-decay

ν̄e + p → n + e+

observe positron and neutron in coincidence
I visible energy:

Evis ≈ E e+
kin + 2me = Eν − (mn −mp) + me +O(E 2

ν /mn)
Evis ≈ Eν − 0.8MeV

→ one-to-one relation between Evis and Eν

I accurate spectral information: number of inverse beta-decay events
binned in visible energy
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Event rates in oscillation experiments Reactor experiments

Example: Reactor experiments

KamLAND hep-ex/0406035
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FIG. 2: (a) The correlation between the prompt and delayed event
energies after cuts. The three events with Edelayed ∼ 5 MeV are
consistent with neutron capture on carbon. (b) Prompt event energy
spectrum of νe candidate events with associated background spectra.
The shaded band indicates the systematic error in the best-fit reactor
spectrum above 2.6 MeV.

event energy after all selection cuts except for the Edelayed
cut. The prompt energy spectrum above 2.6 MeV is shown in
Fig. 2b. The data evaluation method with an unbinned max-
imum likelihood fit to two-flavor neutrino oscillation is sim-
ilar to the method used previously [1]. In the present analy-
sis, we account for the 9Li, accidental and the 13C(α,n)16O
background rates. For the (α,n) background, the contri-
bution around 6 MeV is allowed to float because of uncer-
tainty in the cross section, while the contributions around
2.6 MeV and 4.4 MeV are constrained to within 32% of the
estimated rate. We allow for a 10% energy scale uncer-
tainty for the 2.6 MeV contribution due to neutron quench-
ing uncertainty. The best-fit spectrum together with the back-
grounds is shown in Fig. 2b; the best-fit for the rate-and-shape
analysis is ∆m2 = 7.9+0.6

−0.5×10−5 eV2 and tan2 θ = 0.46, with
a large uncertainty on tan2 θ. A shape-only analysis gives
∆m2 = (8.0 ± 0.5)×10−5 eV2 and tan2 θ = 0.76.

Taking account of the backgrounds, the Baker-Cousins χ2

for the best-fit is 13.1 (11 DOF). To test the goodness-of-fit
we follow the statistical techniques in Ref. [7]. First, the
data are fit to a hypothesis to find the best-fit parameters.
Next, we bin the energy spectrum of the data into 20 equal-
probability bins and calculate the Pearson χ2 statistic (χ2

p)
for the data. Based on the particular hypothesis 10,000 spec-
tra were generated using the parameters obtained from the
data and χ2

p was determined for each spectrum. The con-
fidence level of the data is the fraction of simulated spectra
with a higher χ2

p. For the best-fit oscillation parameters and
the a priori choice of 20 bins, the goodness-of-fit is 11.1%
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FIG. 3: Ratio of the observed νe spectrum to the expectation for no-
oscillation versus L0/E. The curves show the expectation for the best-
fit oscillation, best-fit decay and best-fit decoherence models taking
into account the individual time-dependent flux variations of all re-
actors and detector effects. The data points and models are plotted
with L0=180 km, as if all anti-neutrinos detected in KamLAND were
due to a single reactor at this distance.

with χ2
p /DOF = 24.2/17. The goodness-of-fit of the scaled no-

oscillation spectrum where the normalization was fit to the
data is 0.4% (χ2

p /DOF = 37.3/18). We note that the χ2
p and

goodness-of-fit results are sensitive to the choice of binning.
To illustrate oscillatory behavior of the data, we plot in

Fig. 3 the L0/E distribution, where the data and the best-
fit spectra are divided by the expected no-oscillation spec-
trum. Two alternative hypotheses for neutrino disappear-
ance, neutrino decay [8] and decoherence [9], give dif-
ferent L0/E dependences. As in the oscillation analy-
sis, we survey the parameter spaces and find the best-fit
points at (sin2 θ, m/cτ) = (1.0, 0.011 MeV/km) for decay and
(sin2 2θ, γ0) = (1.0, 0.030 MeV/km) for decoherence, using
the notation of the references. Applying the goodness-of-fit
procedure described above, we find that decay has a goodness-
of-fit of only 0.7% (χ2

p /DOF = 35.8/17), while decoherence
has a goodness-of-fit of 1.8% (χ2

p/DOF = 32.2/17). We note
that, while the present best-fit neutrino decay point has already
been ruled out by solar neutrino data [10] and observation of
SN1987A, the decay model is used here as an example of a
scenario resulting in a νe deficit. If we do not assume CPT
invariance and allow the range 0.5 < sin2 θ < 0.75, then the
decay scenario considered here can avoid conflict with solar
neutrino [10] and SN1987A data [11].

The allowed region contours in ∆m2-tan2 θ parameter
space derived from the ∆χ2 values (e.g., ∆χ2 < 5.99 for 95%
C.L.) are shown in Fig. 4a. The best-fit point is in the region
commonly characterized as LMA I. Maximal mixing for val-
ues of ∆m2 consistent with LMA I is allowed at the 62.1%
C.L. Due to distortions in the spectrum, the LMA II region
(at ∆m2∼2×10−4 eV2) is disfavored at the 98.0% C.L., as
are larger values of ∆m2 previously allowed by KamLAND.
The allowed region at lower ∆m2 is disfavored at the 97.5%
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6

use sin2 2✓12 = 0.857 ± 0.024 and �m2
21 = (7.50 ±

0.20) ⇥ 10�5 eV2 from Ref. [31], our result was largely
independent of these values. Consistent results were obtained
when our previous methods [1, 9] were applied to this larger
dataset. Under the normal (inverted) hierarchy assumption,
|�m2

ee| yields �m2
32 = (2.37 ± 0.11)⇥ 10�3 eV2 (�m2

32 =
�(2.47 ± 0.11)⇥ 10�3 eV2). This result was consistent with
and of comparable precision to measurements obtained from
accelerator ⌫µ and ⌫̄µ disappearance [10, 11]. Using only the
relative rates between the detectors and �m2

32 from Ref. [10]
we found sin2 2✓13 = 0.085 ± 0.006, with �2/NDF =
1.37/3.

The reconstructed positron energy spectrum observed in the
far site is compared in Fig. 3 with the expectation based on
the near-site measurements. The 68.3%, 95.5% and 99.7%
C.L. allowed regions in the |�m2

ee|-sin2 2✓13 plane are shown
in Fig. 4. The spectral shape from all experimental halls
is compared in Fig. 5 to the electron antineutrino survival
probability assuming our best estimates of the oscillation
parameters. The total uncertainties of both sin2 2✓13 and
|�m2

ee| are dominated by statistics. The most significant
systematic uncertainties for sin2 2✓13 are due to the relative
detector efficiency, reactor power, relative energy scale and
9Li/8He background. The systematic uncertainty in |�m2

ee| is
dominated by uncertainty in the relative energy scale.

1 2 3 4 5 6 7 8

Ev
en

ts
/d

ay
 (b

kg
. s

ub
tra

ct
ed

)

2

4

6

8

10

12

14

16

18

Far site data
Weighted near site data (best fit)
Weighted near site data (no oscillation)

Reconstructed Positron Energy (MeV)
1 2 3 4 5 6 7 8

Fa
r /

 N
ea

r(w
ei

gh
te

d)

0.85

0.9

0.95
1

1.05
1.1

FIG. 3. Upper: Background-subtracted reconstructed positron
energy spectrum observed in the far site (black points), as well as
the expectation derived from the near sites excluding (blue line) or
including (red line) our best estimate of oscillation. The spectra
were efficiency-corrected and normalized to one day of livetime.
Lower: Ratio of the spectra to the no-oscillation case. The error bars
show the statistical uncertainty of the far site data. The shaded area
includes the systematic and statistical uncertainties from the near site
measurements.
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⌫e rate and energy spectra. The best estimates were sin2 2✓13 =
0.084 ± 0.005 and |�m2

ee| = (2.42 ± 0.11) ⇥ 10�3 eV2 (black
point). The adjoining panels show the dependence of ��2 on
sin2 2✓13 (top) and |�m2

ee| (right). The |�m2
ee| allowed region

(shaded band, 68.3% C.L.) was consistent with measurements of
|�m2

32| using muon disappearance by the MINOS [10] and T2K [11]
experiments, converted to |�m2

ee| assuming the normal (solid) and
inverted (dashed) mass hierarchy.

 [km/MeV]〉νE〈 / effL
0 0.2 0.4 0.6 0.8

) eν 
→ eν

P(

0.9

0.95

1
EH1
EH2
EH3
Best fit

FIG. 5. Electron antineutrino survival probability versus effective
propagation distance Le↵ divided by the average antineutrino energy
hE⌫i. The data points represent the ratios of the observed
antineutrino spectra to the expectation assuming no oscillation. The
solid line represents the expectation using the best estimates of
sin2 2✓13 and |�m2

ee|. The error bars are statistical only. hE⌫i
was calculated for each bin using the estimated detector response,
and Le↵ was obtained by equating the actual flux to an effective
antineutrino flux using a single baseline.

|�m2
ee| have been obtained by studying the energy-

dependent disappearance of the electron antineutrino inter-
actions recorded in a 6.9⇥105 GWth-ton-days exposure.
Improvements in calibration, background estimation, as well
as increased statistics allow this study to provide the most
precise estimates to date of the neutrino mass and mixing
parameters |�m2

ee| and sin2 2✓13.
Daya Bay is supported in part by the Ministry of Science

and Technology of China, the U.S. Department of Energy,
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Event rates in oscillation experiments Reactor experiments

Number of events per bin

ideal experiment:

Ni (θ) = TN
∫ Eup,i

vis

E low,i
vis

dEν φ(Eν) Pee(Eν ; θ)σ(Eν) Eν ≈ Evis + 0.8MeV

BUT: need to take into account energy resolution: a “true” E true
vis is

reconstructed as Evis with a certain probability distribution R(Evis,E true
vis )

Ni (θ) = TN
∫ Eup,i

vis

E low,i
vis

dEvis

∫
dEν φ(Eν) Pee(Eν ; θ)σ(Eν)R(Evis,E true

vis )

Eν ≈ E true
vis + 0.8MeV
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Event rates in oscillation experiments Reactor experiments

can write this as

Ni (θ) = TN
∫

dEν φ(Eν) Pee(Eν ; θ)σ(Eν) Ri (Eν)

Ri (Eν) ≡
∫ Eup,i

vis

E low,i
vis

dEvisR(Evis,E true
vis ) Eν ≈ E true

vis + 0.8MeV

often it is a good approximation to assume a Gaussian resolution function:

R(Evis,E true
vis ) = 1√

2πσ
exp

[
−(Evis − E true

vis )2
2σ2

]
σ = σ(E true

vis )

Ri (Eν) = 1
2

[
erf
(

Eup,i
vis − E true

vis√
2σ

)
− erf

(
E low ,i

vis − E true
vis√

2σ

)]
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Event rates in oscillation experiments Reactor experiments

realistic “resolution function” → response matrix

Ex.: Daya Bay 1607.05378

Chinese Physics C Vol. XX, No. X (201X) XXXXXX

The non-linearity model includes five parameters: de-
tector energy scale, Birks’ constant, relative contribution
from Cherenkov light, and the amplitude and decay con-
stant of the electronics model. The parameters are de-
termined by a combined �2 fit to the mono-energetic �
lines of calibration sources and continuous � spectrum
of 12B produced by the muon spallation inside the AD.
The Geant4 simulation is used to build the relation of
non-linearity response of di↵erent particle species, such
as gamma, e+ and e�. The IBD positron non-linearity
response derived from the best fit parameters is shown in
Fig 19. The uncertainty band is constructed by consid-
ering calibration and model uncertainties. The positron
non-linearity response was validated using the Michel
electron spectrum from muon decay at rest and the con-
tinuous �+� spectra from internal radioactive � decays
of 212Bi, 214Bi and 208Tl (see Ref. [32] for detailed non-
linearity treatment). The non-linearity uncertainty has a
negligible e↵ect on the measured oscillation parameters
because it is treated as correlated for all ADs.

6.1.4 Energy Resolution

The detector energy resolution was studied by a vari-
ety of calibration sources deployed at the detector center,
IBD and spallation neutrons, and alpha sources from ra-
dioactivity. For each source, the reconstructed energy is
measured and the width and the energy of the peak are
obtained from fits with Gaussian function to the peak of
the energy distribution. The results from both MC and
experimental data are shown in Fig. 20.
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Fig. 20. Energy resolution for a variety of calibra-
tion sources as well as the IBD neutron capture
gamma peaks for both MC and data. The pa-
rameters in the energy resolution function were
extracted by fitting the calibration energy peaks
and widths. Alpha source data were used to cross-
check the result. The naked gamma sources are
also simulated.

The relative energy resolution of an antineutrino de-
tector as a function of energy is parameterized by

�E

E
=

r
a2 +

b2

E
+

c2

E2
, (25)

where �E is the uncertainty of the reconstructed energy
distribution, E is the peak of the distribution,and a, b
and c are three parameters that quantify the contribution
from spatial resolution of reconstructed energy, photon
statistics, and PMT dark noise, respectively [66]. The
parameters in Eq. 25 were studied by fitting the energy
resolution of the calibration sources as well as IBD and
spallation neutrons, uniformly distributed in GdLS. The
internal radioactive alpha sources were used to cross-
check the result. Naked gamma sources are also sim-
ulated for comparison, and they have better energy reso-
lution than the calibration data because they do not in-
clude the source shielding and calibration source deploy-
ment apparatus. The best fit parameters are a = 0.016,
b = 0.081 MeV

1
2 and c = 0.026 MeV when the energy is

given in the units of MeV. A variation of the parame-
ters within the uncertainties has negligible e↵ects on the
prompt spectrum when it is smeared, therefore the un-
certainty of energy resolution is neglected in the analysis.

6.1.5 Energy Response Matrix

After taking into account the above e↵ects, the detec-
tor response matrix (Eq. 22) can be constructed to map
the reconstructed energy to the antineutrino energy.
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Fig. 21. The detector response matrix used to
map antineutrino energy to the reconstructed en-
ergy. The IBD energy shift, IAV e↵ect, non-
linearity, and energy resolution are included.

Two methods were used to evaluate the energy re-
sponse matrix. The first method estimates the IAV
e↵ect, non-linearity, and energy resolution step-by-step
using analytical methods as described above. The sec-
ond method constructs the response matrix using a full-
detector simulation based on Geant4 [56]. The detector

010201-25
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Event rates in oscillation experiments Reactor experiments

Ex.: KamLAND

multi-baseline source:

Ni (θ) = TN
∑

r
cr

∫
dEν φ(Eν) Pee(Eν , Lr ; θ)σ(Eν) Ri (Eν)

cr ∝
Pr
L2r
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

I consider a νµ → νe appearance experiment with Eν ∼ 1 GeV
(e.g., T2K, NOvA)

I detection reaction: νe + N → e + X
significant energy is carried away by hadronic scattering products X
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

I consider a νµ → νe appearance experiment with Eν ∼ 1 GeV
(e.g., T2K, NOvA)

I detection reaction: νe + N → e + X
significant energy is carried away by hadronic scattering products X

assume only electron is observed and events are binned in electron energy

Ni (θ) = TN
∫

dEν φ(Eν) Pµe(Eν ; θ)
∫ Eup,i

e

E low,i
e

dEe
dσ
dEe

(Eν)

→ double integral even before including resolution function
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

I consider a νµ → νe appearance experiment with Eν ∼ 1 GeV
(e.g., T2K, NOvA)

I detection reaction: νe + N → e + X
significant energy is carried away by hadronic scattering products X

some detectors can use info on X to reconstruct Eν → bins in E rec
ν

may require complicated cuts introducing energy dependent efficiences,...
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Event rates in oscillation experiments More complicated situations

Detector response function - migration matrix

Ni (θ) = TN
∫

dEν φ(Eν) Pµe(Eν ; θ)σ(Eν)Ri (Eν)

Ri (Eν): detector response function

I describes the probability that an event with neutrino energy Eν is
reconstructed in the bin i

I the bins may label any observable (e.g., lepton energy, reconstr.
neutrino energy, ...)

I Ri (Eν) can include many effects related to the detector (energy
resolution, energy dep. efficiencies, differential cross sections, ...)

I if the integral over true neutrino energy is discretized Ri (Eν) becomes
a matrix Rij → “migration matrix”
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Event rates in oscillation experiments More complicated situations

Detector response function - migration matrix

Ni (θ) = TN
∫

dEν φ(Eν) Pµe(Eν ; θ)σ(Eν)Ri (Eν)

Ri (Eν): detector response function

can be conveniently done with the GLoBES software package
Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187
http://www.mpi-hd.mpg.de/lin/globes/

T. Schwetz (KIT) Statistical Methods 74 / 118



Event rates in oscillation experiments More complicated situations

Example: atmospheric neutrinos
consider an experiment observing muons induced by atmospheric neutrinos
(e.g., INO, IceCube):

Nij(θ) = TN
∫

dEν
∫

dΩσ(Eν)Rij(Eν ,Ω)×

[φµ(Eν ,Ω) Pµµ(Eν ,Ω; θ) + φe(Eν ,Ω) Peµ(Eν ,Ω; θ)]

i bin in muon energy
j bin in muon zenith angle

φα(Eν ,Ω) flux of να with given Eν and solid angle Ω

Rij(Eν ,Ω): probability to reconstruct muon from a neutrino with energy
Eν coming from a solid angle Ω into the muon bin ij (includes double
differential cross section)

(still simplified in several respects....)
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Building the χ2

Outline
Basic problems in statistics

Parameter estimation
Goodness of fit

Confidence intervals
frequentist
Bayesian intervals
Parameter marginalization

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2
Systematical errors in χ2 analyses

Hypothesis testing
Frequentist
Bayesian model selection
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Building the χ2

I Can define:

χ2 =
N∑

i=1

[µi (θ)− ni ]2
µi (θ) or

N∑
i=1

[µi (θ)− ni ]2
ni

I If the number of events is small in some bins (“Poisson χ2”):

χ2 = 2
N∑

i=1

[
µi (θ)− ni + ni log ni

µi (θ)

]
I If statistical errors include the ones from a subtracted background:

χ2 =
N∑

i=1

[
µi (θ)− ni

σi

]2
I If there is correlation between bins:

χ2 =
N∑

i ,j=1
[µi (θ)− ni ]V−1ij [µj(θ)− nj ]
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Building the χ2 Systematical errors in χ2 analyses

Systematic uncertainties

Assume we have N experimental data points ni with statistical error σi
and theoretical predictions µi for each of the data points:

χ2 =
N∑

i=1

(µi − ni )2

σ2i

µi (θ) depends on the parameters of the model θ.

Consider the situation that µi depends also on additional parameters ξ,
describing systematical uncertainties (“nuisance parameters”): µi (θ, ξ)

We may have some knowledge on ξ: mean values 〈ξα〉 = ξ̂α and
uncertainty σξα
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Building the χ2 Systematical errors in χ2 analyses

Example

µi (θ) = ξ1 (ξ2 Ni (θ) + ξ3 Bi ) ξα = 1± xα%

≈ (1 + δ1 + δ2)Ni (θ) + (1 + δ1 + δ3)Bi δα = ξα − 1

ξ1 overall detector normalization
ξ2 overall signal normalization (e.g., flux uncertainty)
ξ3 background normalization

can be generalized to more complicated systematics, including energy
dependent uncertainties (shape), energy scale,...
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Building the χ2 Systematical errors in χ2 analyses

Consider ξ at the same level as θ and add info to χ2

χ2(θ, ξ) =
N∑

i=1

[µi (θ, ξ)− ni ]2

σ2i
+
∑
α

(ξα − ξ̂α)2

(σξα)2

χ2(θ) = min
ξ

χ2(θ, ξ)

χ2(θ) is distributed as usual with N = (N − P) + P dof

no conceptual issue also for P & N
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Building the χ2 Systematical errors in χ2 analyses

Linearize the problem

µi (θ, ξ) ≈ µi (θ, ξ̂) +
∑
α

∂µi
∂ξα

(ξα − ξ̂α)

define: µi (θ, ξ̂) ≡ µ̂i (θ) , ξ′α ≡
ξα − ξ̂α
σξα

, Riα ≡ σξα
∂µi
∂ξα

χ2(θ, ξ′) =
∑

i

[µ̂i (θ) +
∑
α Riαξ

′
α − ni ]2

σ2i
+
∑
α

ξ′α
2

χ2(θ, ξ′) is quadratic in ξ′ ⇒ ∂χ2

∂ξα
= 0 is a linear system of equations

⇒ solve the system to obtain ξmin and obtain χ2(θ) = χ2(θ, ξmin)

I this proceedure works fine if ξ′α . 1 and (Rξ′)i � µi
I if (Rξ′)i ∼ µi , the prediction can become negative
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Building the χ2 Systematical errors in χ2 analyses

Equivalence of pull and covariance approaches
I "pull" approach:

χ2pull(θ) = min
ξ
χ2(θ, ξ)

I "covariance" approach:

Vij =
∑
α

∂µi
∂ξα

∂µj
∂ξα

(σξα)2 =
∑
α

RiαRjα

χ2cov(θ) =
∑

ij
[µ̂i (θ)− ni ]T S−1ij [µ̂j(θ)− nj ] with Sij ≡ σ2i δij + Vij

Exercise: proof that χ2pull(θ) ≡ χ2cov(θ)

Fogli, Lisi, Marrone, Montanino, Palazzo, PRD02 [hep-ph/0206162]
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Building the χ2 Systematical errors in χ2 analyses

Simple example
Consider the case of a single systematic describing an over-all
normalization uncertainty

χ2(θ, ξ) =
∑

i

[
µi (θ)(1 + ξ)− ni

σi

]2
+
(
ξ

σξ

)2

Ri = µi (θ)

covariance matrix for the covariance method: Sij = δijσ
2
i + µiµjσ

2
ξ

T. Schwetz (KIT) Statistical Methods 83 / 118



Building the χ2 Systematical errors in χ2 analyses

Simple example
Consider the case of a single systematic describing an over-all
normalization uncertainty

χ2(θ, ξ) =
∑

i

[
µi (θ)(1 + ξ)− ni

σi

]2
+
(
ξ

σξ

)2

Ri = µi (θ)

covariance matrix for the covariance method: Sij = δijσ
2
i + µiµjσ

2
ξ

Exercise:
I minimize the χ2 and calculate ξmin and χ2(θ, ξmin)
I consider the same systematic using the Poisson χ2

(check that your solution makes sense!)
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Simple example
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normalization uncertainty

χ2(θ, ξ) =
∑

i

[
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σi

]2
+
(
ξ

σξ

)2

Ri = µi (θ)

covariance matrix for the covariance method: Sij = δijσ
2
i + µiµjσ

2
ξ

for σξ →∞ this corresponds to a shape-only analysis (free normalization)

exactly this method has been used by the Daya Bay collaboration for their
2012 analysis based on near-far comparison
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Building the χ2 Systematical errors in χ2 analyses

Real-life example Daya Bay 1203.1669
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Building the χ2 Systematical errors in χ2 analyses

Real-life example Daya Bay 1203.1669
Exercise: study the χ2 used in the Daya Bay paper
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Building the χ2 Systematical errors in χ2 analyses

Pull versus covariance approaches

I Pull approach requires to solve a linear system of equations of
dimension P (number of pulls)

I Covariance approach requires to invert the N × N covariance matrix
(N number of bins)

I Depending on whether N is larger or smaller than P one or the other
method may be preferred (often P � N)

I Pull method allows for more diagnostics of the fit, e.g.:
I look at ξαmin to identify a systematic with large “pull”,
I look at contours of θ versus ξ to identify correlations between

systematics and parameters
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Building the χ2 Systematical errors in χ2 analyses

Example for “pull diagram” from solar neutrino fit

Fogli et al hep-ph/0206162
T. Schwetz (KIT) Statistical Methods 87 / 118



Building the χ2 Systematical errors in χ2 analyses

Correlations between reactor flux normalization and θ13
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Building the χ2 Systematical errors in χ2 analyses

Poisson χ2

The pull method can be generalized to the Poissonian form of the χ2
which should be used in case of small event numbers per bin:

χ2(θ, ξα) =2
N∑

i=1

[
µi (θ, ξα)− ni + ni log ni

µi (θ, ξα)

]
+
∑
α

ξ2α

I allows to introduce correlated errors in the Poisson χ2

I µ(θ, ξ) can still be linearized in ξ, but the χ2 will no longer be a
quadratic function in ξ ⇒ have to use numerical or semi-analytic
methods to do the minimization
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Building the χ2 Systematical errors in χ2 analyses

Comments - 1
I straight forward to generalize to correlated data and/or pulls:

χ2(θ, ξ) =
N∑

i ,j=1
[µi (θ, ξ)− ni ]V−1ij [µj(θ, ξ)− nj ]

+
∑
α,β

(ξα − ξ̂α)W−1
αβ (ξβ − ξ̂β)

I can also be applied in the framework of likelihood analysis

L(θ, ξ) = Ldata(θ, ξ)× Lnuis(ξ)
L(θ) = maxξ L(θ, ξ)

Lnuis(ξ) contains all information we have on the nuisance parameters

If L(θ, ξ) and/or Lnuis(ξ) are "complicated" the minimization
(maximization) has to be done numerically.
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Building the χ2 Systematical errors in χ2 analyses

Comments - 2
I The methods discussed here for the treatment of systematic erros

assume that systematic uncertainties are of statistical nature.
Their effects on the analysis are encoded by assuming some random
distribution for them (often Gaussian).

I Sometimes these assumptions are justified e.g. when the origin of the
uncertainty is some measurment (e.g., normalization uncertainty).

I Sometimes these assumptions are not justified, in case of true
“theoretical uncertainties” (e.g. nuclear matrix elements for
neutrino-less double-beta decay).

I Frequentist interpretation in the strict sense is not clear
I pull method fits very natural in Bayesian framework:

L(θ,ξ) = Ldata(θ, ξ)× Lnuis(ξ) →

f (θ, ξ) = Ldata(θ, ξ)π(θ)π(ξ) → f (θ) =
∫

dξf (θ, ξ)
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Building the χ2 Systematical errors in χ2 analyses

Referenzes on pull method in neutrino context

I in the context of solar neutrinos
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D
66 (2002) 053010 [hep-ph/0206162]

I in the context of short-baseline oscillation experiments
T. Schwetz, PhD thesis, Univ. Vienna 2002, see appendix A, available at
request

I in the context of SuperKamiokande atmospheric neutrinos
M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460 (2008) 1
[arXiv:0704.1800], see appendix A

I in the context of future long-baseline oscillation experiment simulation
P. Huber, M. Mezzetto and T. Schwetz, JHEP 0803 (2008) 021
[arXiv:0711.2950]
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Hypothesis testing

Outline
Basic problems in statistics

Parameter estimation
Goodness of fit

Confidence intervals
frequentist
Bayesian intervals
Parameter marginalization

Event rates in oscillation experiments
Reactor experiments
More complicated situations

Building the χ2
Systematical errors in χ2 analyses

Hypothesis testing
Frequentist
Bayesian model selection
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Hypothesis testing Frequentist

Hypothesis testing

I Want to decide whether data allows to reject or favour an hypothesis
H0 over an alternative hypothesis H1

INVERTEDNORMAL

[m
as

s]
2

3ν

ν2

ν1

ν2
ν1

ν3

νe

µν

ντ

I simple hypotheses: depend on no free parameters

I composite hypotheses: depend on free parameters θ to be estimated
from the data
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Hypothesis testing Frequentist

Simple hypotheses

I consider two simple hypotheses: H0, H1

I chose some statistic T (function of random variables, i.e., data)

I each hypothesis predicts a pdf for T : f (T |Hi )

I chose T such that small values favour H0 and large values favour H1

T. Schwetz (KIT) Statistical Methods 95 / 118



Hypothesis testing Frequentist

Simple hypotheses - errors of 1st and 2nd kind
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Hypothesis testing Frequentist

Simple hypotheses - errors of 1st and 2nd kind

reject H0 at the CL (1− α) if T > Tc such that∫ ∞
Tc

dT f (T |H0) = α

α is the probability of rejecting H0 although it is true
⇒ “error of the first kind”
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Hypothesis testing Frequentist

Simple hypotheses - errors of 1st and 2nd kind

probab β of accepting H0 although the alternative H1 is true∫ Tc

−∞
dT f (T |H1) = β

⇒ “error of the second kind” or “power of the test” (1− β)

T. Schwetz (KIT) Statistical Methods 96 / 118



Hypothesis testing Frequentist

Simple hypotheses - comments

I a common choice (the “optimal one”) is the likelihood ratio

T = f (x |H1)
f (x |H0) = L(H1)

L(H0)

I very often we deal with composite hypotheses...
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Hypothesis testing Frequentist

Composite hypotheses
I H0 simple, H1 composite
I H0 composite, H1 simple
I both H0 and H1 composite

if H0 composite: need to reject it for all values of θ ∈ H0∫ ∞
Tc(θ)

dT f (T |H0(θ)) = α → Tc = max
θ∈H0

Tc(θ)

if H1 composite: β will depend on θ ∈ H1∫ Tc

−∞
dT f (T |H1(θ)) = β(θ)

can quote e.g. “best” and “worst” power of the test
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Hypothesis testing Frequentist

Composite hypotheses - comments

I we are completely free to chose any statistic T
(power of the test will depend on this choice)

I again, often a LH ratio is a useful test statistic, e.g.

T = maxθ∈H1 L(H1)
maxθ∈H0 L(H0)

I in sufficiently Gaussian situations the pdf of T is still independent of θ

T. Schwetz (KIT) Statistical Methods 99 / 118



Hypothesis testing Frequentist

Application to the neutrino mass ordering
for extensive discussion see Blennow, Coloma, Huber, Schwetz, 1311.1822

test statistic motivated by LH ratio:

T = min
θ∈IO

χ2(θ)− min
θ∈NO

χ2(θ) ≡ χ2IO − χ2NO,

under some conditions (similar to Wilk’s theorem), T is normal distributed:

T = N (±T0, 2
√

T0) ,

with
T NO
0 (θ0) = min

θ∈IO

∑
i

[µNO
i (θ0)− µIO

i (θ)]2

σ2i
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Hypothesis testing Frequentist

Application to the neutrino mass ordering
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FIG. 1: Left: Distribution of the test statistic T for our default configuration of the JUNO reactor

experiment discussed in Sec. 4.1. Histograms show the results of the MC simulation based on 105

simulated experiments and black curves correspond to the Gaussian approximation discussed in

Sec. 3. Right: The value of ↵ as a function of the critical value T↵
c required for rejecting inverted

(blue) and normal (red) ordering for the JUNO reactor experiment. In the purple region both

mass orderings are rejected at the CL (1 � ↵), in the white region both orderings are consistent

with data at the CL (1 � ↵). The dashed lines in both panels indicate T↵
c for ↵ = 0.01 for both

orderings. The dotted lines indicate the crossing point TNO
c = T IO

c . The dot-dashed line in the

right panel shows an example (for ↵ = 0.1) in which T↵
c,IO < T↵

c,NO.

It is important to note that within a frequentist approach, rejecting one hypothesis at a
given ↵ does not automatically imply that the other hypothesis could not also be rejected
using the same data. Instead, the only statement we can make is to either reject an ordering
or not. The value of T = 0 therefore does not a priori play a crucial role in the analysis. Let
us illustrate this point at an example. In the left panel of Fig. 1, we show the distributions
of the test statistics T for both mass orderings obtained from the simulation of a particular
configuration of the JUNO reactor experiment. Experimental details will be discussed later
in Sec. 4.1. In the right panel we show the corresponding critical values T ↵

c for testing
both orderings and how they depend on the chosen confidence level 1 � ↵. The curves for
testing the di↵erent orderings cross around ↵ = 5.2%, indicated by the dotted lines. This
represents the unique confidence level for which the experiment in question will rule out
exactly one of the orderings, regardless of the experimental outcome. If, for instance, we
would choose to test whether either ordering can be rejected at a confidence level of 90%,
then there is a possibility of an experimental outcome T with T 0.1

c,IO < T < T 0.1
c,NO, implying

that both orderings could be rejected at the 90% CL. This situation is indicated by the

have checked by explicit Monte Carlo simulations that typically the distribution of T 0 is close to a �2

distribution with number of d.o.f. corresponding to the non-minimized parameters in the first term (the

approximation is excellent for JUNO but somewhat worse for LBL experiments). Sensitivity results for

the mass ordering based on T 0 will be reported elsewhere.

7
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Hypothesis testing Frequentist

Application to the neutrino mass ordering
d=90°
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T
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FIG. 7: The simulated distributions of the test statistic T in the NO⌫A experiment for di↵erent

true values of �, as indicated by the labels. The red (blue) distributions assume a true normal

(inverted) ordering.

to the other mass ordering and ��. The reason for this is the well-known fact that the
standard mass ordering sensitivity is symmetric between changing the true ordering and
� ! ��, i.e., TNO

0 (�) ⇡ T IO
0 (��), see e.g., Figs. 8 and 9 of Ref. [8] and Fig. 4-13 of Ref. [11].7

Furthermore, using the formalism in App. A, in particular Eq. (A.24), one can show that
also the deviations from the Gaussian distribution will obey the same symmetry. Below
we will show that despite the deviations from Gaussianity for NO⌫A, the final sensitivities
obtained from the Monte Carlo will be surprisingly close to the Gaussian expectation. As
expected, this will be even more true for LBNE-10 kt.

Due to the strong dependence on the CP phase � we need to choose the critical value
T ↵

c such that the null hypothesis can be rejected at (1 � ↵) CL for all possible values of
�, see discussion in sections 2 and 3.2. This is illustrated in Fig. 9, which is analogous to
Fig. 1 (right panel) for a fixed CL. The continuous (dashed) black curves in Fig. 9 show the
values of T ↵

c that lead to the probability of 5% to find a smaller (larger) value of T under
the hypothesis of a true normal (inverted) ordering as a function of the true value of �. The
left panel shows the result for NO⌫A, while the right panel corresponds to LBNE-34 kt. The

7 This can be understood by considering the expressions for the oscillation probabilities, taking into account

the fact that, if matter e↵ects are su�ciently strong, the �2 minimum in the wrong ordering tends to take

place close to � = ±⇡/2.

20
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Hypothesis testing Frequentist

Median experiment
Median sensitivity corresponds to type II error rate of 50% ⇒
with 50% chance the actual experiment will obtain a better/worse result

Instead of type I and II errors one can also quote the median sensitivity
and its spread (again two numbers)

ex.: mass ordering sensitivity Blennow et al., 1311.1822
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Hypothesis testing Frequentist

Median experiment
Consider the χ2 using the predicted event rate as “data”
(no statistical fluctuation):

χ2(θ; θtr ) =
N∑

i=1

[µi (θ)− µi (θtr )]2

µi (θtr )

ni = µi (θtr ) can be considered as “most probable outcome” or the result
of the “median experiment”

I interpret sensitivities based on the above χ2 as median sensitivity, i.e.,
type II error rate of 50%.
holds only approximately, in general needs to be checked by MC
Schwetz, hep-ph/0612223, Blennow et al., 1311.1822
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Hypothesis testing Frequentist

Median experiment
Consider the χ2 using the predicted event rate as “data”
(no statistical fluctuation):

χ2(θ; θtr ) =
N∑

i=1

[µi (θ)− µi (θtr )]2

µi (θtr )

ni = µi (θtr ) can be considered as “most probable outcome” or the result
of the “median experiment”

I this is by far the most common method in the literature to calculate
sensitivities of neutrino oscillation epxeriments

GLoBES software is designed primarily for this purporse
Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187
http://www.mpi-hd.mpg.de/lin/globes/
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Hypothesis testing Frequentist

Nested hypotheses

H0 and H1 are related by a continuous parameter, ex.:
I KATRIN: H0 : mν = 0 and H1 : mν > 0
I MO: H0 : ∆m2

31 > 0 (NO) and H1 : ∆m2
31 < 0 (IO)

hypothesis testing becomes related to parameter estimation:
I consider confidence interval for θ and check whether the interval at

(1−α) CL covers the value of θ0 corresponding to the null hypothesis
→ probab. of error of first kind = α

I error of second kind is given by the probability that the (1− α) CL
interval covers θ0 although the true value θ 6= θ0
(will of course depend on the value of θ)
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Hypothesis testing Frequentist

Nested hypotheses, ex.: θ23 maximal mixing and octant

0.4 0.45 0.5 0.55 0.6 0.65

sin
2

θ
23

0

5

10

15

∆
χ

2

NuFIT 4.0 (2018)

I maximal mixing: H0 : θ23 = 45◦

∆χ2(H0) = 4.9→
(
√
4.9 = 2.2)σ for 1 dof

I first octant: H0 : θ23 < 45◦

∆χ2(H0) = 4.3→
(
√
4.3 = 2.1)σ for 1 dof

significance went down in NuFit 4.1: 1.4σ
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Hypothesis testing Frequentist

Mass ordering from real data (global fit)
usually MO significance is interpreted in terms of parameter estimation
(nested models)

∆χ2 = χ2min,IO − χ2min,glob

Confidence intervals Parameter marginalization

Example: 1-dim and 2-dim projections
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NuFit 4.1: ∆χ2 = 10.4 (how many dof?)
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Hypothesis testing Bayesian model selection

Bayesian model selection

I In the Bayesian framework we can make statements on the relative
belief that H0 or H1 is true (usually called “models”).

I Calculate “Bayesian odds” of M1 : M2

suppose we want to compare two hypotheses (“models”) M1, M2.
each model depends on ni parameters θi
there is a given set of observations (“data”) D

T. Schwetz (KIT) Statistical Methods 108 / 118



Hypothesis testing Bayesian model selection

Bayesian model selection

I In the Bayesian framework we can make statements on the relative
belief that H0 or H1 is true (usually called “models”).

I Calculate “Bayesian odds” of M1 : M2

suppose we want to compare two hypotheses (“models”) M1, M2.
each model depends on ni parameters θi
there is a given set of observations (“data”) D

T. Schwetz (KIT) Statistical Methods 108 / 118



Hypothesis testing Bayesian model selection

Use Bayes’ theorem to calculate probability for model Mi given data:

P(Mi |D) = P(D|Mi )
P(D) π(Mi ) ∝ Ziπ(Mi )

P(D|Mi ) = Zi =
∫

dθi f (D|θi ,Mi )π(θi ) “evidence”
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P(Mi |D) = P(D|Mi )
P(D) π(Mi ) ∝ Ziπ(Mi )

P(D|Mi ) = Zi =
∫

dθi f (D|θi ,Mi )π(θi ) “evidence”

the evidence is the normalization factor in the posterior for the parameters:

f (θi |D) = f (D|θi ,Mi )
Zi

π(θi ) ...posterior p.d.f. for θi given Mi

remember: f (D|θi ,Mi ) = L(θi ,Mi )

T. Schwetz (KIT) Statistical Methods 109 / 118



Hypothesis testing Bayesian model selection

Use Bayes’ theorem to calculate probability for model Mi given data:

P(Mi |D) = P(D|Mi )
P(D) π(Mi ) ∝ Ziπ(Mi )

P(D|Mi ) = Zi =
∫

dθi f (D|θi ,Mi )π(θi ) “evidence”

relative odds for M1 versus M2 after data:

M1 : M2 = P(M1|D)
P(M2|D) = Z1

Z2

π(M1)
π(M2)

The “Bayes factor” determines how much the data changes our degree of
belief in model 1 versus model 2:

B = Z1
Z2
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Hypothesis testing Bayesian model selection

Jeffrey scale

| log(odds)| odds Pr(M1|D) Strength of evidence

< 1.0 . 3 : 1 . 0.75 Inconclusive

1.0 ' 3 : 1 ' 0.75 Weak evidence

2.5 ' 12 : 1 ' 0.92 Moderate evidence

5.0 ' 150 : 1 ' 0.993 Strong evidence

Table 1. The Je↵reys scale, used for interpretation of Bayes factors, odds, and model probabilities.

The posterior model probabilities for the preferred model are calculated assuming only two competing

hypotheses and equal prior probabilities. Note that log denotes the natural logarithm.

should integrate to unity. The assignment of priors are probably the most discussed and

controversial part of Bayesian inference. This is often far from trivial, but nevertheless this

assignment is an important, even essential, part of any Bayesian analysis.

The Bayes factors, or rather the posterior odds, are interpreted or “translated” into

ordinary language using the so-called Je↵reys scale, given in Tab. 1 as used in, e.g.,

Refs. [11, 12] (“log” denotes the natural logarithm). Even though the Bayes factor in

general will favour the correct model once “enough” data have been obtained, the evidence

is often highly dependent on the choice of prior on the parameters.

In principle, the evidence defined above is really the only consistent quantity to judge

the (relative) merit of a model. However, there are also some so-called information criteria

which have been used to compare di↵erent models, see, e.g., [13, 14]. These do not explicitly

depend on any prior, but typically are derived using quite restrictive assumptions. This

makes their use less reliable, since conclusions based on them could di↵er much from a full

Bayesian analysis. We will also consider the Akaike Information Criterion (AIC) (which

is neither a Bayesian nor a frequentist meassure), motivated by minimizing the expected

“distance” between the true data distribution, and the data distribution given by the fitted

model. It yields a fixed penalty to each model as1

AIC = �2 log Lmax + 2Npar = �2
min + 2Npar, (2.4)

dropping an irrelevant constant, and with Npar the number of free parameters. Hence,

we see that each additional parameter needs to improve the �2 by 2 units to make up

for the additional complexity. Although great caution should be exercised, typically
eZ / e�AIC/2 = Lmaxe

�Npar would be used as a proxy for the model likelihood, and hence

��AIC/2 between two models as log of the Bayes factor, and interpreted using Tab. 1.

However, unlike the Bayesian evidence, it punishes complex models with additional param-

eters regardless of whether these are constrained by the data, and for parameters which

are constrained, the punishment is typically smaller than in the full Bayesian analysis.

1The factor of 2 is just for historical reasons. There is also a modified criterion for small sample sizes,

which we do not consider here since the number of samples is rather large.

– 3 –

odds = B for π(M1) = π(M2) = 0.5
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Hypothesis testing Bayesian model selection

Bayesian evidence
The evidence describes the overlap of the prior and the likelihood

Zi =
∫

dθi L(θi ,Mi )π(θi )

I models with large overlap of prior and likelihood are favoured
I models with many parameters are penalized (volume factor)

example: nested models
I M1 : θ free parameter with prior π(θ)
I M0 : θ = θ0 → π(θ) = δ(θ − θ0)

Z1 =
∫

dθL(θ)π(θ) , Z0 = L(θ0)
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology
Hannestad, Schwetz, 1606.04691
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Figure 1: Posterior likelihood function from current data (Planck+BAO+H0). The left panel shows the

posterior likelihood function for ⌃, where we indicate the predicted values for NO and IO in the case of

m0 = 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m0 for NO and IO with appropriate relative normalization. The

dashed, dot-dashed, solid curves correspond to the approximation that 1, 2, 3 massive neutrinos contribute

to ⌃ (see text for details).

none of these scenarios actually corresponds to the realistic cases of NO or IO with mass-

squared di↵erences constrained by oscillations. However, the spread in the results will be

indicative for our assumption that cosmology is sensitive only to ⌃. Indeed we confirm that

within the numerical accuracy all three models lead to an upper bound of 0.14 eV (95% CL).

The posterior likelihood function is shown in fig. 1. The left panel shows the likelihood

as a function of ⌃, and we indicate the predicted values for ⌃ for NO and IO assuming

m0 = 0, as well as the 95% CL upper bound on ⌃, assuming a flat prior in ⌃ � 0. Note

that the region of largest likelihood, for ⌃ < 59 meV, is actually unphysical, since such small

values for the sum of the neutrino masses are inconsistent with neutrino oscillation data.

Hence, this region will be cut away once the sum is expressed using eq. (1.1) and imposing

the physical requirement of m0 � 0.

In order to apply eq. (2.2) to calculate the probability of IO vs NO we translate the

likelihood into a posterior likelihood as a function of m0 by using eq. (1.1).2 The resulting

likelihoods are shown in the right panel of fig. 1. The posterior odds for NO versus IO are

given by the ratio of the integrals over those two curves weighted by the prior probabilities

for the orderings. Assuming equal prior probabilities for NO and IO, eq. (2.2) leads to a

probability for IO of pI = 0.35, which corresponds to posterior odds for NO versus IO of

about 1.9:1. Clearly, using even quite restrictive assumptions about the cosmological model

2We neglect the uncertainty induced by the uncertainty on the mass-squared di↵erences from oscillation

data. For an accuracy on ⌃ larger than 0.01 eV this is an excellent approximation, see also sec. 4.

5

relative odds (assuming flat prior for m0):

IO : NO = ZIO
ZNO

π(IO)
π(NO) =

∫∞
0 dm0 L(D|m0, IO)∫∞
0 dm0 L(D|m0,NO)

π(IO)
π(NO) ≈

1
2
π(IO)
π(NO)
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probability for IO of pI = 0.35, which corresponds to posterior odds for NO versus IO of
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology
Hannestad, Schwetz, 1606.04691
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Figure 2: Posterior likelihood function from simulated future data (EUCLID+Planck CMB). The left

panel shows the posterior likelihood function for ⌃ for a fiducial model with one massive neutrino with

m⌫ = 0.06 eV and two massless neutrinos. We indicate the predicted values for NO and IO in the case of

m0 = 0; the width of the lines corresponds to ±2� uncertainty due to current oscillation data. The gray

shaded region indicates the one-sided upper bound on ⌃ at 95% CL (flat prior in ⌃). The right panel shows

the posterior likelihood as a function of m0 for NO and IO with appropriate relative normalization.

as above we transform the likelihood now into a likelihood for m0 assuming either NO or IO,

see right panel. We ignore the small e↵ects of the di↵erent orderings of the neutrino masses

and use the same likelihood to describe both normal and inverted orderings. As mentioned

above this should be an excellent approximation for the used data set. The relative posterior

likelihood for NO and IO is given by the ratio of the areas under the two curves. Assuming

equal prior probabilities for NO and IO we obtain a probability for IO according to eq. (2.2)

of 8%, which corresponds to posterior odds of NO versus IO of approximately 12:1.

4 Sensitivity estimates with a Gaussian toy likelihood

From fig. 2 one can see that the likelihood function as a function of ⌃ is close to Gaussian.

This is certainly true for the simulated EUCLID data, but holds approximately also for

present data. To estimate the required accuracy needed on ⌃ to exclude IO we assume

therefore that the likelihood function from cosmology can be approximated by

L(⌃obs|m0, O) =
1p
2⇡�

exp


�(⌃obs � ⌃(m0, O))2

2�2

�
(4.1)

where ⌃(m0, O) is given in eq. (1.1), and �2 = �2
osc + �2

obs, with �osc(m0, O) being the error

on ⌃ induced by the uncertainty on the mass-squared di↵erences according to eq. (1.2), and

�obs is the accuracy on ⌃ assumed for the cosmological data. From eq. (1.3) we see that

�osc is below 1 meV for both orderings and m0 = 0. For non-zero m0, �osc is even smaller.

Hence, for �obs & 0.01 eV, the uncertainty on ⌃ from oscillation data is negligible.

7

relative odds (assuming flat prior for m0):

IO : NO = ZIO
ZNO

π(IO)
π(NO) =

∫∞
0 dm0 L(D|m0, IO)∫∞
0 dm0 L(D|m0,NO)

π(IO)
π(NO) ≈

1
12

π(IO)
π(NO)
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Hypothesis testing Bayesian model selection

Final word on priors
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Hypothesis testing Bayesian model selection

Watch out for assumptions about priors!!
see comment in arXiv:1703.04585
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Hypothesis testing Bayesian model selection

T. Schwetz @ Heraeus Seminar, July 2019!51

Excluding inverted ordering with cosmology?

Figure 3. Graphical visualisation of the Bayesian factors comparing normal and inverted ordering.
The horizontal lines indicate the values at which there is a change in the statistical significance of
the evidence, according to the Jeffreys’ scale (see table 1). Black (red) points indicate a logarithmic
(linear) prior. The prior ranges are those reported in table 3 if not otherwise stated.

The bottom panels of figure 5, which are restricted to Model B, tell us that the addition
of 0⌫�� or cosmological data introduce a difference in the Bayesian evidences between linear
and logarithmic priors. These data indeed weakly-to-moderately prefer logarithmic priors,
because in this latter case the fraction of volume corresponding to small masses, preferred by
the data, is larger than in the linear case.

5 Conclusions

Plenty of work has been recently devoted in the literature to infer the neutrino mass ordering
using a number of present observations [6, 16, 25–32], but a complete and self-consistent
Bayesian analysis was still missing. Such an analysis is necessary in order to avoid strong
claims in favour of normal mass ordering, based exclusively on the choice of models and priors.
We have presented here the results obtained from the computationally expensive Bayesian
evidence calculations, using current neutrino oscillation data, 0⌫�� decay searches and Cosmic
Microwave Background cosmological observations. In order to explicitly show the crucial role
played by both the prior and the model choice, we analyse two possible parametrizations: (a)
Model A, in which the scan is performed over the individual neutrino masses (m1, m2, m3),
and (b) Model B, which is focused on the (mlightest, �m2

21, �m2
31) parameter space. For both

parametrizations we study linear and logarithmic priors on the physical mass parameters,
while we always use a linear prior for the squared mass differences.

– 14 –

evidence in favour of NO

Model A Model B
Parameter Prior Range Parameter Prior Range

m1/eV
linear 0 – 1

mlightest/eV linear 0 – 1
log 10�5 – 1 log 10�5 – 1

m2/eV
linear 0 – 1

�m2
21/eV2 linear 5 ⇥ 10�5 – 10�4

log 10�5 – 1

m3/eV
linear 0 – 1 |�m2

31|/eV2 linear 1.5 ⇥ 10�3 – 3.5 ⇥ 10�3

log 10�5 – 1

Table 3. Parametrizations of the neutrino masses and priors adopted in the analysis.

where ↵k (k = 1, . . . , 3) are the Majorana phases, which play no role in neutrino oscillations
but are a basic ingredient in 0⌫�� processes.5 One of the phases can always be rotated away,
therefore we are left with two Majorana phases, which we choose to be ↵2 and ↵3. As done in
previous related works [17, 26], we apply flat priors in the range [0, 2⇡] for these two Majorana
phases, whose values are totally unknown, as also reported in table 2.

The latest parameters we need to account for are related to the description of neutrino
masses. Here we distinguish two possible approaches, that we label as Model A and Model
B. For the former one, Model A, we perform the scan over the individual neutrino masses
(i.e. m1, m2 and m3), following the approach of Refs. [26, 30]. The latter one, Model B,
focuses on the (mlightest, �m2

21, �m2
31) parameter space [32]. For both parametrizations we

study linear and logarithmic priors on the physical mass parameters, in order to take into
account that the true absolute mass scale is unknown, while we always use a linear prior for
the squared mass differences. The complete list of priors is reported in table 3. Additionally,
we will explore how variations in the prior ranges affect the final results. The comparison of
the Bayesian evidences obtained with different priors and parametrizations will allow us to
avoid results which are biased by subjective arbitrary choices on the models.

As we shall show in the following sections, given the current available data, the Bayesian
evidence is firmly preferring Model B over Model A, as it is closer to the physical, measurable
quantities. The situation is very similar to the one that we need to face when exploring the
mixing angles: it is more efficient to scan the parameter space using the sin2 ✓ij quantities
than using the mixing angles ✓ij themselves. While very futuristic galaxy and 21cm surveys
might be able to disentangle the individual values of the neutrino masses [44], present cos-
mological measurements are only sensitive to the total neutrino mass and the information on
the three masses can be extracted only using the input from neutrino oscillation experiments.
Since in Model A the parameter space is described using the three masses mi, it is less effi-
ciently explored than the parameter space of Model B, which includes the two squared mass
differences.

3 Experimental data

3.1 Neutrino oscillation data

Our combined analysis is based on the global fit of neutrino oscillation parameters performed
in Ref. [6]. For our Bayesian calculations, we adopt the �2

osc as a function of the mixing

5In the normal ordering case, some combinations of the Majorana phases could lead to an accidental
cancellation of m�� .
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