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Global data on neutrino oscillations

various neutrino sources and vastly different energy and distance scales:

sun reactors atmosphere accelerators

Zenith e

Homestake, SAGE,GALLEX KamLAND, D-CHOOZ SuperKamiokande MINOS, T2K, NOvA
SuperK, SNO, Borexino RENO, DayaBay IceCube

» global data fits nicely with the 3 neutrinos from the SM

» “anomalies” (at 2-3 o) which do not fit the 3-flavour picture:

LSND, MiniBooNE, reactor anomaly, no LMA MSW up-turn of solar
neutrino spectrum
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Introduction

3-flavour neutrino parameters

> 3 masses: Am3;, Am3;, mg
» 3 mixing angels: 612, 613, O3

» 3 phases: 1 Dirac (9), 2 Majorana (o, az)
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Introduction

3-flavour neutrino parameters

> 3 masses: Am3;, Am3;, mg

» 3 mixing angels: 612, 613, O3

» 3 phases: 1 Dirac (9), 2 Majorana (o, az)
neutrino oscillations

absolute mass observables
lepton-number violation (neutrinoless double-beta decay)
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Introduction

Neutrino mass states and mixing
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Introduction

Three-flavour oscillation parameters

» each oscillation parameter is determined by several (classes of)
experiments

> especially true for not-so-well determined parameters

> interplay of different data sets = global analyses
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Introduction

Three-flavour oscillation parameters

» each oscillation parameter is determined by several (classes of)
experiments

> especially true for not-so-well determined parameters

> interplay of different data sets = global analyses

» NuFit collaboration: www.nu-fit.org
with M.C. Gonzalez-Garcia, M. Maltoni, et al.

» latest paper: Esteban, Gonzalez-Garcia, Hernandez-Cabezudo, Maltoni,
Schwetz, JHEP 1901 (2019) 106 [1811.05487]

> latest version: 4.1 (as of July 2019)
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Global 3-flavour fit

NUFIT 4.1 (2019)
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Global 3-flavour fit

NO, 10 (w/o SK-atm)

NUFIT 4.1 (2019)
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robust determination
(relat. precision at 3¢):

01 (14%)
Am%l (16%) )

013 (8.9%)
|Am3,|(7.6%)

broad allowed range for 623 (24%),
non-significant indications for
non-maximality /octant

ambiguity in sign of Am3, —
mass ordering (3.20 preference for NO)

preference for 180° < dcp < 360°
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Introduction

Absolute neutrino mass

| NUFIT 4.0 (2018) |
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> Endpoint of beta spectrum: m3 = Y=, |UZ|m? = m3(Am?, 61, mo)

» Cosmology: >~ =", mi = S (AmA, mp)
> Neutrinoless double beta-decay: mee = | >_; U2m;| = mee(Am?, 01, mo, ;)
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Introduction

Absolute neutrino mass

| NUFIT 4.0 (2018) |
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> Endpoint of beta spectrum: m3 = Y=, |UZ|m? = m3(Am?, 61, mo)

» Cosmology: >~ =", mi = S (AmA, mp)
> Neutrinoless double beta-decay: mee = | >_; U2m;| = mee(Am?, 01, mo, ;)
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Introduction

These lectures:

Basic problems in statistics
Parameter estimation
Goodness of fit

Confidence intervals
frequentist
Bayesian intervals
Parameter marginalization

Event rates in oscillation experiments

Reactor experiments

More complicated situations
Building the x?

Systematical errors in x? analyses
Hypothesis testing

Frequentist

Bayesian model selection
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Outline

Basic problems in statistics
Parameter estimation
Goodness of fit

T. Schwetz (KIT) Statistical Methods




Basic problems in statistics

Basic problems in statistics
We have

» a set of observables x;

» a model (theory) making predictions for those observables,

» and the model may depend on parameters: 6.

T. Schwetz (KIT) Statistical Methods
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Basic problems in statistics

Basic problems in statistics
We have
» a set of observables x;
» a model (theory) making predictions for those observables,

» and the model may depend on parameters: 6.

Now we want to address questions like the following:
» Does the model provide a “good” description of the data?
(“model testing” or “goodness-of-fit")

» What are the parameter values 9Aa that provide the best description of
the data, assuming this model is correct? (“parameter estimation”)

» Assuming the model is correct, what is the “acceptable” range for the
parameters? (“acceptance regions” or “confidence intervalls”)

» Suppose we have two different models (hypotheses), which one of the
two gives a “better” description of the data? (“hypothesis testing”)
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Basic problems in statistics

—

In statistics a “model” predicts the p.d.f. for the observables: f(X;6)
(in physics we often call already the mean value “prediction” and implicitly
assume Gaussian or Poisson distribution)
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Basic problems in statistics

—

In statistics a “model” predicts the p.d.f. for the observables: f(X;6)
(in physics we often call already the mean value “prediction” and implicitly
assume Gaussian or Poisson distribution)

Example

» given set of oscillation parameters 6:

» “predicted number” of v, appearance events in T2K N(0)

» read: the number of events is expected to be Poisson distributed with
the Poisson mean given by N(6)
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Statistic

A “statistic” is any function depending on random variables: T (x;)
» We are free to consider any statistic to address those questions.

» for each of the questions from the previous slide we can use a
different statistic

> in practice often “x2" (more precisely, a least-squares statistic) is
used to address all of them (sometimes this leads to confusion)

> a very important statistic is the likelihood
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Basic problems in statistics

Frequentist statistics

» the only random (statistical) quantities are data
> there is no way to assign a probablitiy to a model or its parameters

» a model parameter has an unknown but fixed true value
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Basic problems in statistics

Frequentist statistics

» the only random (statistical) quantities are data
> there is no way to assign a probablitiy to a model or its parameters
» a model parameter has an unknown but fixed true value

Example: the mass of an apple or the mass of the Higgs

- the apples in a shop will have some distribution in mass, we can
assign a p.d.f. for the mass of an apple

- the mass of the Higgs is a fundamental parameter of the SM, it has a
fixed (but unknown) value. (The same is true for the electron mass,
neutrino mass, mixing angles...)
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Basic problems in statistics

Frequentist statistics

» the only random (statistical) quantities are data
> there is no way to assign a probablitiy to a model or its parameters
» a model parameter has an unknown but fixed true value
Example: the mass of an apple or the mass of the Higgs
- the apples in a shop will have some distribution in mass, we can
assign a p.d.f. for the mass of an apple

- the mass of the Higgs is a fundamental parameter of the SM, it has a
fixed (but unknown) value. (The same is true for the electron mass,
neutrino mass, mixing angles...)

> in the frequentist approach we can make only probability statements

about the outcome of an experiment (if it were repeated many times)
under the hypothesis of a model
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Basic problems in statistics

Bayesian inference

» consider the p.d.f. predicted in a given model as conditional p.d.f. for

—

given parameters f(X|0)

» we can specify our prior subjective belief on the distribution of the
parameters before the experiment is performed: “prior” m(€), and use

Bayes theorem to obtain a “posterior” p.d.f. for the parameters, given
observed data:

— = =

F(613°%%) o< £(3°%%(0)m (6)

» observations “update” our degree of belief of the parameters
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Basic problems in statistics

Bayesian inference

v

consider the p.d.f. predicted in a given model as conditional p.d.f. for

—

given parameters f(X|0)

» we can specify our prior subjective belief on the distribution of the
parameters before the experiment is performed: “prior” W(g) and use
Bayes theorem to obtain a “posterior” p.d.f. for the parameters, given
observed data:

— = =

F(613°%%) o< £(3°%%(0)m (6)

v

observations "update” our degree of belief of the parameters

v

can also be generalized to statements about the model as a whole
(Bayesian model comparison)

T. Schwetz (KIT) Statistical Methods 15 / 118



Basic problems in statistics

The likelihood

=

> a “model” predicts the p.d.f. for the observables: f(X;6)

» The likelihood function is the p.d.f. for the observables evaluated at
the actuall outcome of an experiment, viewed as a function of the
parameters of the model £(6) = £(x°; 0)
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The likelihood

=

a “model” predicts the p.d.f. for the observables: f(X;6)

v

\4

The likelihood function is the p.d.f. for the observables evaluated at
the actuall outcome of an experiment, viewed as a function of the
parameters of the model £(6) = £(x°; 0)

If there are n statistically independent measurments x; and each
follows the distribution f(x; 6), the joint p.d.f. factorizes and

v

=

£(8) = [T F0*: )
i=1

v

Example: energy spectrum - unbinned LH - histogram, binned LH
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The likelihood

=

> a “model” predicts the p.d.f. for the observables: f(X;6)

» The likelihood function is the p.d.f. for the observables evaluated at
the actuall outcome of an experiment, viewed as a function of the

parameters of the model £() = £(x°Ps; 6)

» If there are n statistically independent measurments x; and each
follows the distribution f(x; 6), the joint p.d.f. factorizes and

=

£(8) = [T F0*: )
i=1

» Example: energy spectrum - unbinned LH - histogram, binned LH

Note: the likelihood is not a p.d.f. for the model parameters g
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Basic problems in statistics

likelihood versus y?

» Example: consider observables x; with multivariate Gaussian
distribution:

F(x; 1(8), V) = ——

1 _
T & |5~ eO)TV T x — (8))

2

» The experiment has obtained the measurments x°PS, then up to an
irrelevant constant the logarithm of the likelihood is

08 £(0) = — (x* — u(6)TV (x> — u(0))
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Basic problems in statistics

likelihood versus y?

» Example: consider observables x; with multivariate Gaussian
distribution:

F(x; 1(6), V) = ——

1 _
T & |5~ eO)TV T x — (8))

2

» The experiment has obtained the measurments x°PS, then up to an
irrelevant constant the logarithm of the likelihood is

08 £(0) = — (x* — u(6)TV (x> — u(0))

> the “x2" is related to the likelihood by
X3(0) = —2log £(60) = (x°* — u(0)) V(x> — u(9))
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Basic problems in statistics

likelihood versus y?
» Example: consider observables x; with multivariate Gaussian

distribution:

F(x; 1(6), V) = ——

1 _
T & |5~ eO)TV T x — (8))

2

» The experiment has obtained the measurments x°PS, then up to an
irrelevant constant the logarithm of the likelihood is

08 £(0) = — (x* — u(6)TV (x> — u(0))

> the “x2" is related to the likelihood by
X3(0) = —2log £(60) = (x°* — u(0)) V(x> — u(9))

» caveat: not true if V/(0)
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Basic problems in statistics

likelihood versus y?

The relation

xX*(8) = —2log L(8)

is often used as a general definition of x?, also if

» the p.d.f. of x is not Gaussian
» if unbinned data is used for the likelihood

(a least-square statistic such as “x2" requires binned data)

T. Schwetz (KIT) Statistical Methods 18 / 118



Basic problems in statistics Parameter estimation

Parameter estimation

The parameters which maximize the likelihood (minimize x?) can be used
as "estimators” for the (unknown) true values of the parameters:

log Lomax = log £(0) = max log £(0)
Ximin = x*(8) = min x*(6)

» 0 is sometimes called the "best fit point”, or
“maximum likelihood estimator”

» 0 is a random variable (a statistic), because it is a function of the data

> in some sense maximum likelihood estimators are “optimal”
converge towards the true values in the large sample limit

T. Schwetz (KIT) Statistical Methods 19 / 118



Basic problems in statistics Parameter estimation

Minimization problem

» if the parameter dependence (@) is linear (or sufficiently linear):
solve the system of equations

N _

00, =0

> in non-linear situations the minimization has to be done numerically -
can be very non-trivial (multi-dimensional parameter space, local
minima, physical boundaries,...)

T. Schwetz (KIT) Statistical Methods 20 /118



Basic problems in statistics Goodness of fit

Goodness of fit

Q: How well does a model explain the data?
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Basic problems in statistics Goodness of fit

Goodness of fit
Q: How well does a model explain the data?

Example

» An experiment measures 10 observables x;.

» The model predicts that x; should be Gaussian distributed with known
mean p and variance o (no free parameter in the model).

» If the model is true,

X? Eio: (Xi_ﬂ>2

i—1 g

follows a y2-distribution with 10 degrees of freedom: x2,(X?)
(by definition)
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Basic problems in statistics Goodness of fit

Goodness of fit, example:

» Suppose with the measured x; we obtain ngs = 25.

» We calculate the so-called “p-value™:

oo
p-value = / X30(2)dz ~ 0.5%
25

> Interpretation: “If the model is true and the experiment was repeated
many times, in 0.5% of the cases we would find X? > 25"

T. Schwetz (KIT) Statistical Methods 22 /118



Basic problems in statistics Goodness of fit

Goodness of fit, example:

» Suppose with the measured x; we obtain ngs = 25.

» We calculate the so-called “p-value™:
oo
p-value = / X30(2)dz ~ 0.5%
25

> Interpretation: “If the model is true and the experiment was repeated
many times, in 0.5% of the cases we would find X? > 25"

> No probability statement on the model, only on the outcome of the
experiment!

T. Schwetz (KIT) Statistical Methods 22 /118



Basic problems in statistics Goodness of fit

Goodness of fit including parameter estimation

» An experiment measures n observables x;
» The model predicts that x; should be Gaussian distributed with mean
wi depending on p parameters 6,:
1i(0a) i=1,.,n a=1,.,p

2

The variances of x; are 7.
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Basic problems in statistics Goodness of fit

Goodness of fit including parameter estimation

» An experiment measures n observables x;
» The model predicts that x; should be Gaussian distributed with mean
wi depending on p parameters 6,:
1i(0a) i=1,.,n a=1,.,p

2

The variances of x; are 7.

» If the model is true,

X2 — min & <Xi—ui(9a)>2
min R pt o

follows a x2-distribution with (n-p) degrees of freedom: X%_p(XZ)
(see Maltoni,Schwetz,hep-ph/0304176 for a pedagogical proof).
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Goodness of fit including parameter estimation

> given an observed value for X% we can calculate the p-value by

in
2
p—value:/X; Xn—p(2)dz

Remember that the x2 distribution has mean n and variance 2n.
Therefore, if the model is true, we expect (“expectation value”)

Xr%\ln ~ (n*p):l: \V 2(n*p)

(sloppy: XZ;,/d.0.f. ~ 1)
a “good fit” should have a p-value =~ 50%

v

v

v

a small p-value [X2. > (n — p)] indicates an un-likely outcome

v

a p-value close to 100% [X2,, < (n— p)] may indicate that errors are
estimated too large (model fits data “too good”)

T. Schwetz (KIT) Statistical Methods 24 /118



Basic problems in statistics Goodness of fit

Monte Carlo method

> It is not guaranteed that X2, follows a x? distribution with n — p
degrees of freedom.

» In general the distribution has to be calculated by Monte Carlo
methods.

T. Schwetz (KIT) Statistical Methods 25 /118



Basic problems in statistics Goodness of fit

the model predicts a p.d.f. for the observables depending on parameters:
f(xi;6a), as well as p;(6,) and o;(6,,).

1. assume certain true values for 8, and use the random number
generator of your computer to generate an “artificial” realisation of
the data x; according to the p.d.f. predicted by the model

2. calculate the least square-statistic for that realisation:
n 2
Xi — pi(fa)
min 6 ; o_’(ea)
and store the value in a histogram
3. repeat those two steps many times
4. calculate the least square-statistic for the real observed data Xr%in obs

5. the p-value is given by the fraction of the artificial data sets for which

you have obtained a larger X2, than the observed one

T. Schwetz (KIT) Statistical Methods 26 / 118



Basic problems in statistics Goodness of fit

Monte Carlo method

comments:

» the p-value may depend on the assumed “true values” for 6, which
has been used to generate the artificial data realisations.
In frequentist statistics we cannot “marginalize” over the true values.
Need to report the dependence on the true values.

T. Schwetz (KIT) Statistical Methods 27 /118



Monte Carlo method

comments:

» the p-value may depend on the assumed “true values” for 6, which
has been used to generate the artificial data realisations.
In frequentist statistics we cannot “marginalize” over the true values.
Need to report the dependence on the true values.

> not restricted to the least-square statistic
in principle one can use any statistic to evaluate the goodness of fit as
long as their distribution can be estimated or calculated by Monte
Carlo (though there may be good or bad ones)

T. Schwetz (KIT) Statistical Methods 27 / 118



Basic problems in statistics Goodness of fit

Comments on goodness of fit

v

While X2,,/d.o.f. > 1 indicates a problem with the fit,
X2. /d.o.f. ~ 1 does not guarantee that the fit is “good".

v

E.g., if the number of d.o.f. is large, there may be many data points
which are not very sensitive to the “model” (dilution of the goodness
of fit).

v

Further diagnostics is recommended.

» E.g., divide data in sub-sets (without looking at the actual outcome
of the experiments) and check for consistency
Maltoni,Schwetz,hep-ph /0304176

v

Pull diagram.

T. Schwetz (KIT) Statistical Methods 28 / 118



Basic problems in statistics Goodness of fit

36 b’ (13 TeV)
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Basic problems in statistics Goodness of fit

Ex.: global fit with many data points

. 99.73% CL
2 dof
eV-sterile neutrino oscillations

T Dentler et al., 1803.10661
%)
NE: 100> Appearance

( ‘wj/o DiF)

‘ X2,/ dof = 1141/1159
p-value = 64%
107] Fixe uxes
1074 1073 1072 107!

in2
sin” 26,

divide data into appearance and disappearance data, and consider “prize
to pay” by the combination [Maltoni,Schwetz hep-ph/0304176]:

2 2 2 2
XPG = Xmin,glob — Xmin,app — Xmin,dis
x2-distribution with P dof, P = # of params in common to the two sets

= x2q/dof = 28.9/2, p-value = 5.3 x 1077
30 / 118
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Outline

Confidence intervals
frequentist
Bayesian intervals
Parameter marginalization
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Confidence intervals

v

Suppose you have a model depending on some parameters 6

v

The goodness of fit of your model is good and you come to the
conclusion that the model fits the data well.

You also obtained best fit values of the parameters 0

v

» Now we want to address the question:
what is the “acceptable range” for the parameters?

— confidence interavals (CI)

T. Schwetz (KIT) Statistical Methods 32 /118



Confidence intervals

Confidence intervals

What is the precise meaning of statements as:

mp = 125.00 + 0.21(stat.) + 0.11(syst.) GeV

T. Schwetz (KIT) Statistical Methods 33 /118



Confidence intervals

Confidence intervals

What is the precise meaning of statements as:

mp = 125.00 + 0.21(stat.) + 0.11(syst.) GeV

or plots like this:

8.5 T T T T T
O 8 E
> C ]
o L ]
0 - i
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~ & r ]
£ C ]
T 7F 7
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57\ T AT A N N
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Confidence intervals - frequentist interpretation
meaning of a 90% CL interval (or region):
» Suppose you repeat LHC many times.

» Each time you extract from the data an interval for the Higgs mass
using the same procedure as for the one quoted above.

» In each of the many LHC experiments you would obtain a slightly
different interval, but in 90% of the cases the interval will contain the
true value of the Higgs mass (“coverage”).

T. Schwetz (KIT) Statistical Methods 34 /118



Confidence intervals frequentist

Confidence intervals - frequentist interpretation

meaning of a 90% CL interval (or region):

» Suppose you repeat LHC many times.

» Each time you extract from the data an interval for the Higgs mass
using the same procedure as for the one quoted above.

» In each of the many LHC experiments you would obtain a slightly
different interval, but in 90% of the cases the interval will contain the

true value of the Higgs mass (“coverage”).

» Similar for multi-dimensional regions: the CL region (in n-dim space)
would cover the true values for the n parameters in 90% of the cases.
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Confidence intervals frequentist

Confidence intervals - frequentist interpretation

meaning of a 90% CL interval (or region):

» Suppose you repeat LHC many times.

» Each time you extract from the data an interval for the Higgs mass
using the same procedure as for the one quoted above.

» In each of the many LHC experiments you would obtain a slightly
different interval, but in 90% of the cases the interval will contain the

true value of the Higgs mass (“coverage”).

» Similar for multi-dimensional regions: the CL region (in n-dim space)
would cover the true values for the n parameters in 90% of the cases.

Note: The probability statement is on the interval (or region), not on the
parameter(s) of interest, which has an unknown fixed value.
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Confidence intervals  frequentist

Confidence intervals from the confidence belt

parameter 6

X0 %0

Possible experimental values x

X2
Plx <X<xz;0]:17a:/ f(x;0)dx

X1

l—a= P[Xl(e) < x < Xg(e)] = P[92(X) <0< Hl(X)]

probability statement on 61, 6>, but not on 6
35 / 118
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Confidence intervals frequentist

confidence intervals from the likelihood function

consider the likelihood function £(6,) = f(x;; 0,), for a model depending
on P parameters 0, = (01, ...0p)

> éa: parameter values which maximize the likelihood: L.x = E(QAQ)
(0, are “estimators” of the true values of 6,)
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Confidence intervals frequentist

confidence intervals from the likelihood function

consider the likelihood function £(6,) = f(x;; 0,), for a model depending
on P parameters 0, = (01, ...0p)

> éa: parameter values which maximize the likelihood: L.x = E(QAQ)
(0, are “estimators” of the true values of 6,)

» under certain conditions (Wilk's theorem),

Emax
£(0.)

AX? =2log

will be distributed as a x? with P d.o.f.
(independent of true values)
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Confidence intervals frequentist

confidence intervals from the likelihood function

consider the likelihood function £(6,) = f(x;; 0,), for a model depending
on P parameters 0, = (01, ...0p)

> éa: parameter values which maximize the likelihood: L.x = E(QAQ)
(0, are “estimators” of the true values of 6,)

» under certain conditions (Wilk's theorem),

Emax
£(0.)

AX? =2log

will be distributed as a x? with P d.o.f.
(independent of true values)

» remember y?> = —2log £ —

AX? = X*(0a) — Xhin

T. Schwetz (KIT) Statistical Methods 36 /118



Confidence intervals frequentist

using x?

suppose the experiment divides the range of observation into N bins

define: Xz(ea) = Zn: (Xi - u;(@a))z

i—1 gi

Xz(ea) = X?nin(éa) + AX2(90<)
N N-—-P P
parameter estimation, confidence interval
goodness of fit

> X2, follows a x?-distribution with N — P d.o.f. and can be used to
evaluate the goodness of fit.
» Ax? follows a x?-distribution with P d.o.f.
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Confidence intervals frequentist

Confidence regions from Ax?

A P-dimensional region in the space 6, at given CL is obtained by
requiring Ax?(0a) < X(CL) (contours in Ax?)

d.of. \ CL|68%(1c) | 90% | 95%(20) | 99% | 99.73%(30)

1 1 2.71 4 6.64 9
2 2.28 4.61 5.99 9.21 11.8
3 3.51 6.25 7.82 11.4 14.2
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Confidence intervals  frequentist

Confidence regions from Ax?

A P-dimensional region in the space 6, at given CL is obtained by
requiring Ax?(0a) < X(CL) (contours in Ax?)

d.of. \ CL|68%(1c) | 90% | 95%(20) | 99% | 99.73%(30)

1 1 2.71 4 6.64 9

2 2.28 4.61 5.99 9.21 11.8
3 3.51 6.25 7.82 11.4 14.2
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On Wilk's theorem (1938)

When is Ax?() really x?-distributed?
» Wilks theorem applies if the theoretical predictions 1;(6,) span a
linear space when 6, are varied
» this holds when the predictions can be expanded to linear order
M,-(Qa) ~ Aj + Bia0n
> this is exact for a linear model

» in non-linear models, this holds in the vicinity of the best fit point and
is reliable up to a certain CL, beyond which the non-linear character
of the parameter dependence becomes important

» for “powerful” data the linear approximation will hold to high CL, for
“weak” data non-linearities may become important already at low CL.
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On Wilk's theorem (1938)

important examples where Wilk's theorem does not hold:

» close to a physical boundary of a parameter
ex.: absolute neutrino mass observables: m,%e >0,>;m >0

ex.. upper limit on sterile neutrino mixing |Uaa4/?

» when certain values of the predictions 1;(,) cannot be reached
ex.: trigonometric dependencies:
sin® 263 < 1, dcp dependence

T. Schwetz (KIT) Statistical Methods 40 / 118



On Wilk's theorem (1938)

important examples where Wilk's theorem does not hold:

» close to a physical boundary of a parameter
ex.: absolute neutrino mass observables: m,%e >0,>;m >0

ex.. upper limit on sterile neutrino mixing |Uaa4/?

» when certain values of the predictions 1;(,) cannot be reached
ex.: trigonometric dependencies:
sin® 263 < 1, dcp dependence

» confidence regions from the standard Ay? contours will be only
approximate.

» if large deviations from Gaussianity are expected, confidence regions
have to be constructed by Monte Carlo methods.

T. Schwetz (KIT) Statistical Methods 40 / 118



Confidence intervals frequentist

Cls from explicit confidence belt construction

1. assume certain true values for 6 and use the random number
generator of your computer to generate an “artificial” realisation of
the data x; according to the p.d.f. predicted by the model

2. calculate the least square-statistic for that realisation:

AX?(0) = X2(0) — X2, and store the value in a histogram

3. repeat steps 1 and 2 many times

4. repeat steps 1, 2, 3 for each value of ¢

5. at each value for 6 search for the cut-value X2,(#), such that

AX?(0) is larger than X2,.(6) in 10% of the cases (for a 90% ClI)
6. calculate the least square-statistic for the observed data AX3 (6)

7. the Cl is given by the union of all values of 6 for which
A)<02bs(9) < Xc2ut(9)

Feldman, Cousins, PRD57, 3873 (1998), physics/9711021
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Confidence intervals frequentist

> In the limit where Wilk's theorem holds
(“Gaussian approximation™ or “x? approximation”)
» 1-dimensional x? projections will be parabolas

» p-dimensional regions will be p-dimensional ellipsoids

» inclination of the ellipse in a 2-dim plane gives the correlation between
those two parameters

T. Schwetz (KIT) Statistical Methods 42 /118



Confidence intervals frequentist

> In the limit where Wilk's theorem holds
(“Gaussian approximation™ or “x? approximation”)
» 1-dimensional x? projections will be parabolas
» p-dimensional regions will be p-dimensional ellipsoids

» inclination of the ellipse in a 2-dim plane gives the correlation between
those two parameters

> In the 615, 613, Amgl space we are close to Gaussian

» non-Gaussianities are relevant:

» mass ordering degeneracy Am3;
» octant degeneracy x?(623)
» CP phase ¢ (periodic parameter space!)

> In these cases translation of Ax? values into CL (or probabilities) is
only approximate.

T. Schwetz (KIT) Statistical Methods 42 /118



tervals frequentist

Global 3-flavour fit

NUFIT 4.1 (2019)
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Confidence intervals frequentist

Elevant, Schwetz, 1506.07685

T2K+MINOS sinzeza -0.4 (NO) T2K+MINOS sin2923 -0.5 (NO) T2K+MINOS sin2923 -0.6 (NO)

T 3m2 2 w2  w 3m2 27
ACP OCP

T2K+MINOS sin?),,; =0.4 (10) T2K+MINOS sin0,,; =0.5 (I0)
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Confidence intervals frequentist

Elevant, Schwetz, 1506.07685

NO-0.4
0.5

0.6
I0-0.4
0.5

0.6

Gaussian

0 2 - 372 on
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Confidence intervals frequentist

2-dimensional regions are closer to Gaussianity

T2K (NO) T2K+MINOS (NO)
2n P %\ 2
3n/2 37/2
& o
O ki 5] T
& K
2 /2 '
85 os 05 06 07 85 o4 05 06 07
sin 023 sin 923

Elevant, Schwetz, 1506.07685

see also Esteban et al.,, 1611.01514 [NuFit 3.0]
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Confidence intervals frequentist

Invariance under variable change

Best fit values from x2. and confidence intervals from Ax? = const are
invariant under (reasonable) variable transformations

Ex.: one variable § — y = g(0), e.g. § — y =sin?0

> If x2(0) has a minimum at 8, x2(y) has a minimum at

y=g(b)

» If [A1,62] is a confidence interval for 6 obtained from requiring
AX?(0) = Xeut, then the corresponding interval for y is

1, y2] = [8(61), 8(62)]

T. Schwetz (KIT) Statistical Methods 47 / 118



Confidence intervals frequentist

unbinned likelihood versus y?

» binning implies loss of information

» whenever possible (practical) use unbinned likelihood

» if binning is necessary use as many bins as possible (practical)

» rule of thumb: bin size comparable to the resolution
(e.g., energy resolution in case of an energy spectrum)
(smaller bins do not add more information, but do not hurt either)
> if number of events per bin becomes small, an option is to use the
“Poisson” version of x? (see previous slide)
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Confidence intervals frequentist

Combining several experiments

» consider M experiments.
> experiment ex consists of N, data points.

» each experiment has its own x? function: x2,(0)

T. Schwetz (KIT) Statistical Methods 49 / 118



Confidence intervals frequentist

Combining several experiments

» consider M experiments.
> experiment ex consists of N, data points.
» each experiment has its own x? function: \2 (6)

» if there is no correlation between experiments, the combined x? is
simply

M M
Xaob(0) = D> X2 (0)  #dof = > Ne
ex=1 ex=1

X

(or multiplying the likelihoods).
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Confidence intervals frequentist

Combining several experiments

» consider M experiments.
> experiment ex consists of N, data points.
» each experiment has its own x? function: \2 (6)

» if there is no correlation between experiments, the combined x? is
simply

M M
Xgiob(0) = D X2(0)  #dof =3 Ne
ex=1 ex=1
(or multiplying the likelihoods).

» possible correlations need to be taken into account by the covariance
matrix or by introducing nuissance parameters (see later).
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Confidence intervals frequentist

Combining several experiments

» consider M experiments.

> experiment ex consists of N, data points.

» each experiment has its own x? function: x2,(0)

» if there is no correlation between experiments, the combined x? is
simply

M M
Xaiob(0) = > X2(0)  #dof = > N
ex=1 ex=1

(or multiplying the likelihoods).
» possible correlations need to be taken into account by the covariance
matrix or by introducing nuissance parameters (see later).

» any minimization over parameters has to be done for xi,,ob(e), not
the individual experiments

min[f(x)] + min[g(x)] # min[f(x) + g(x)]

T. Schwetz (KIT) Statistical Methods 49 / 118



Confidence intervals Bayesian intervals

Bayes theorem and p.d.f.s for parameters

In contrast to the frequentist approach, Bayesians assign a probability
distribution to the parameters of a model (or the model itself).

We can use Bayes theorem to get a p.d.f. for 8 from the likelihood
function of the data x: f(x,0) = f(0|x)f(x) = f(x|0)f(0) or

~ F(x|9)f(9) f(x|0)f(0)
FlOb) = fx) [ F(x|)F(6)dd

» f(x]0) = L(0): likelihood function
» f(6) = m(0) prior p.d.f of 6
» f(0|x) posterior p.d.f. of ¢

The data updates our “degree of belief” about 6 from the prior 7(6) to
the posterior p.d.f. f(6]x)
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Confidence intervals Bayesian intervals

Bayesian parameter intervals

A Bayesian interval for 6 containing a probability 3 is given by

0>
8= f(9|X)d9
01

\4

012 not unique

v

easy to define upper or lower limits

v

“equal probability” intervals or “central” intervals

v

N-dimensions: volume integration
(often one defines the volume by constant-likelihood contours)
integration is efficiently done by Markov chain Monte Carlo techniques
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Confidence intervals Bayesian intervals

Bayesian intervals in general are not invariant under variable
transformations. 1-dim example:

8= :2 L(0)x(6)d0

consider variable transformation y = y(6)

02 y(62) do

LOTOE = [ LG0T dy

01 y(61) dy

BUT: the interval [y1, y»] defined by

B = L(0(y))(0(y)) dy

in general differs from [y(61), y(62)]
= limits are not invariant under non-linear variable transformation!
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Confidence intervals Bayesian intervals

How to choose the prior?

v

constant prior?
» constant logarithmic prior? (“uninformative”)
» non-normalizable prior (“impropper”)?

> “objective priors” (allow for frequentist interpretation)
require certain properties like maximum gain of information, or
invariance under variable transformations

> result becomes independent of prior when the width of the likelihood
is small compared the typical variation of the prior

» easy to include physical boundaries of a parameter
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Confidence intervals Bayesian intervals

How to choose the prior?

v

constant prior?
» constant logarithmic prior? (“uninformative”)
» non-normalizable prior (“impropper”)?

> “objective priors” (allow for frequentist interpretation)
require certain properties like maximum gain of information, or
invariance under variable transformations

> result becomes independent of prior when the width of the likelihood
is small compared the typical variation of the prior

» easy to include physical boundaries of a parameter

If the likelihood is much more peaked than the prior (“good data”), the
result becomes independent of the prior and similar to frequentist limits.

T. Schwetz (KIT) Statistical Methods 53 /118



Confidence intervals Bayesian intervals

Bayesian and Frequentist intervals

If “the problem is Gaussian”, the x? is a parabola

AN\ 2
0—40
X2:X3nin+<o_9 )

and the likelihood is proportional to a Gaussian

L(0) oc e X/

If furthermore, the prior is constant in 6, then bayesian (central) intervals
and Frequentist intervals (from Ax?) agree.
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dence intervals Bayesian intervals

—Posterior
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Confidence intervals Parameter marginalization

On multi-dimensional parameter spaces

Suppose you want to show regions at a CL § for g parameters x, and you
are not interested in P — g parameters y:

» use g d.o.f. and minimize wrt to y:
“the g-dimensional region for x, irrespective of the values of y”
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Confidence intervals Parameter marginalization

On multi-dimensional parameter spaces

Suppose you want to show regions at a CL § for g parameters x, and you
are not interested in P — g parameters y:

» use g d.o.f. and minimize wrt to y:

“the g-dimensional region for x, irrespective of the values of y”

» use g d.o.f. and fix y to some values:
“the g-dimensional region for x, assuming some true value of y"
(ex.: upper bound on oy, for fixed my)

T. Schwetz (KIT) Statistical Methods 56 / 118



_ Corfidenceintervals [
On multi-dimensional parameter spaces

Suppose you want to show regions at a CL § for p parameters x, and you
are not interested in ¢ = P — p parameters y [note: 0 = (x,y)]:

» use p d.o.f. and minimize wrt to y:
“the p-dimensional region for x, irrespective of the values of y"

x*(9) = XG0+ AX3(0)
N N — P
AXP(xy) = Axhin,(x) + 6x*(xy)
P p=P-q q

AXiin,y(x) = min[Ax*(x,y)iy]  (pd.of)

T. Schwetz (KIT) Statistical Methods 57 / 118



Example: 1-dim and 2-dim projections

NUFIT 4.1 (2019)
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Confidence intervals Parameter marginalization

Bayesian parameter marginalization

In a Bayesian framework it is straight forward to obtain the marginalized
p.d.f. by integrating over nuisance parameters:

f(x,y) o< L(x,y)m(x,y)
) = [ dy flx.)
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Confidence intervals Parameter marginalization

Bayesian parameter marginalization

In a Bayesian framework it is straight forward to obtain the marginalized
p.d.f. by integrating over nuisance parameters:

f(x,y) o< L(x,y)m(x,y)
) = [ dy flx.)

If the prior factorizes w(x,y) = 7(x)7(y):

() o w(x) [ dy L(x,y)(y)

T. Schwetz (KIT) Statistical Methods
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dence intervals Parameter marginalization
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Confidence intervals Parameter marginalization

Summary marginalization

> frequentist: x2 is minimized (likelihood maximized) with respect to
nuissance parameters — “profiling”

() = min [x°(x,y)|

» Bayesian: posterior p.d.f. is integrated over nuissance parameters

()= [ dy F(x.y)

T. Schwetz (KIT) Statistical Methods 61 /118



Confidence intervals Parameter marginalization

Summary marginalization

> frequentist: x2 is minimized (likelihood maximized) with respect to
nuissance parameters — “profiling”

200N s 2
() = min [x°(x,y)|
» Bayesian: posterior p.d.f. is integrated over nuissance parameters

()= [ dy F(x.y)

results may differ dramatically, especially in multi-dimensional spaces
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How to analyze data from neutrino oscillation experiments
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BN
Basic steps towards an analysis

> Suppose a given experiment divides the range of observation into N bins.
The outcome is reported in number of observed events in each bin n;.

(Expect Poisson distribution for the number of events in each bin.)
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BN
Basic steps towards an analysis

> Suppose a given experiment divides the range of observation into N bins.
The outcome is reported in number of observed events in each bin n;.

(Expect Poisson distribution for the number of events in each bin.)

> For given oscillation parameters
0 = (612,013,023, 0cp, Am3y, Am3;) (P =16)

we can predict the expected number of events per bin 1;(8).
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Basic steps towards an analysis

»

Suppose a given experiment divides the range of observation into N bins.
The outcome is reported in number of observed events in each bin n;.

(Expect Poisson distribution for the number of events in each bin.)

For given oscillation parameters

0 = (612, 013,623, 6cp, Amy, Am3;) (P =6)
we can predict the expected number of events per bin 1;(8).
Build a x?, e.g. (more details later):

-5 [0

i=1

Use x2(0) to perform a statistical analysis

T. Schwetz (KIT) Statistical Methods 63 / 118



Outline

Event rates in oscillation experiments
Reactor experiments
More complicated situations
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Event rates in oscillation experiments

Event rates in oscillation experiments

number of events in a v, — vy oscillation experiment:

N() = TN [ dE, 6. (E) Pas(E,: 0) 0, (E)

T  exposure time

N number of target particles
¢v, neutrino flux of flavour o at detector
Pog Vo — vg oscillation probability
detection cross section of neutrino vg
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Event rates in oscillation experiments

Event rates in oscillation experiments

number of events in a v, — vy oscillation experiment:

N() = TN [ dE, 6. (E) Pas(E,: 0) 0, (E)

> in more realistic situations we need to take into account the
characteristics of the particular experiment

» consider in more detail the actual observables

» typically it will involve more integrals
Ex.: atmospheric neutrinos: integrate also over zenith angle,
production height in atmosphere, ....
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Event rates in oscillation experiments

to compare with observation add expected background in each bin:

1i(0) = N;(6) + B,

— can be used to build x?, for example:
N 2
[1:i(6) — ni]
o) = 30 @) =l
i=1 !

includes only statistical errors — on systematics see later
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Event rates in oscillation experiments Reactor experiments

Example: Reactor experiments

» source of U, with few MeV — U, disappearance

» detection reaction: inverse beta-decay
= +
Vet p—>n+te

observe positron and neutron in coincidence

> visible energy:

Eis =~ El‘f;1 +2me = E, — (my, — mp) + me + O(Eg/mn)
E.is =~ E, — 0.8 MeV

— one-to-one relation between Eis and E,

» accurate spectral information: number of inverse beta-decay events
binned in visible energy
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Event rates in oscillation experiments Reactor experiments

Example: Reactor experiments

DayaBay 1505.03456
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KamLAND hep-ex/0406035 °E
16—
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Event rates in oscillation experiments Reactor experiments

Number of events per bin

ideal experiment:

Ni0) = TN | dE, $(E,) Pee(E,;0) 0(E,))  E, ~ Eyis + 0.8 MeV
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Event rates in oscillation experiments Reactor experiments

Number of events per bin

ideal experiment:
~dE, ¢(E,) Pee(E,; 0)0(E) E, ~ E;is + 0.8 MeV

BUT: need to take into account energy resolution: a “true” EU is

V1S
reconstructed as Eyis with a certain probability distribution R(Eyis, EZ )

vis

up,i
vis

EX:
N;(0) = TN/EIO . dEviS/dE,, H(E,) Pee(E,; 0) 0(E,)R(Eyis, EFN)

E, ~ EZ" 4 0.8 MeV

w
s
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Event rates in oscillation experiments Reactor experiments

can write this as

Ni(6) = TN / dE, $(E,) Pee(Ey: 8) 0(E,) Ri(E,)

u_p,i
Ri(E,)) = /E s GEsR(Eis, E) - B, ~ EJ° 4+ 0.8 MeV
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Event rates in oscillation experiments Reactor experiments

can write this as

N(6) = TN / dE, (E,) Pee(E,: 0) 0(E,) Ri(E,)

Ri(E,) = /E " dEisR(Euis, ET™)  E, &~ E 4 0.8 MeV

low, i V1S

vis

often it is a good approximation to assume a Gaussian resolution function:

vis \/%O' 20_2 vis
7' I "
Ri(E)) = % lerf (Ejg I\é E\Ef;‘e> —erf <Evli3:/:/; E\Efsue>‘|
g g

T. Schwetz (KIT) Statistical Methods 70 / 118
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Event rates in oscillation experiments Reactor experiments

realistic “resolution function” — response matrix

Ex.: Daya Bay 1607.05378

N 12
Q0 -
% r 4
10 10
Z L
s -
§ b
= N 3
g- N 10
e -
& 6 -
C 10°
i
2 :_ 10
0 C I I I I I
0 2 4 6 8 10 12
E, (MeV)
Fig. 21. The detector response matrix used to

map antineutrino energy to the reconstructed en-
ergy. The IBD energy shift, IAV effect, non-
linearity, and energy resolution are included.
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Event rates in oscillation experiments Reactor experiments

multi-baseline source:

N;(0) = TNZcr/dEV @(E,) Pee(Ey, Lr; 0) 0(E,) Ri(Ey)

P

r
Cr X —
2

LI‘
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

» consider a v, — Ve appearance experiment with £, ~ 1 GeV
(e.g., T2K, NOVA)

» detection reaction: v + N - e+ X
significant energy is carried away by hadronic scattering products X
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

» consider a v, — Ve appearance experiment with £, ~ 1 GeV
(e.g., T2K, NOVA)
» detection reaction: ve + N — e+ X
significant energy is carried away by hadronic scattering products X

assume only electron is observed and events are binned in electron energy

N(O) = TN [ dE, 0(E) Pelsi0) [ < 2% (k)

Elow,i dEe TEE (

e

— double integral even before including resolution function
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Event rates in oscillation experiments More complicated situations

Example: long-baseline experiment

» consider a v, — Ve appearance experiment with £, ~ 1 GeV
(e.g., T2K, NOVA)

» detection reaction: ve + N — e+ X
significant energy is carried away by hadronic scattering products X

some detectors can use info on X to reconstruct £, — bins in E}¢

may require complicated cuts introducing energy dependent efficiences,...

T. Schwetz (KIT) Statistical Methods 73 /118



Event rates in oscillation experiments More complicated situations

Detector response function - migration matrix

Ni(6) = TN/dEV S(E,) Pue(E.: 8) 0(E,) Ri(E,)

Ri(E,): detector response function

» describes the probability that an event with neutrino energy E, is
reconstructed in the bin J

» the bins may label any observable (e.g., lepton energy, reconstr.
neutrino energy, ...)

» Ri(E,) can include many effects related to the detector (energy
resolution, energy dep. efficiencies, differential cross sections, ...)

» if the integral over true neutrino energy is discretized R;(E,) becomes
a matrix R;; — “migration matrix”
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Event rates in oscillation experiments More complicated situations

Detector response function - migration matrix

Ni(6) = TJ\/’/dE,, S(E,) Pue(E.: 8) 0(E,) Ri(E,)

Ri(E,): detector response function

can be conveniently done with the GLoBES software package
Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph /0701187
http://www.mpi-hd.mpg.de/lin/globes/
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Example: atmospheric neutrinos

consider an experiment observing muons induced by atmospheric neutrinos
(e.g., INO, IceCube):

Ny (6) = T/\/’/dE,,/dQ o(E,) Ri(Es, Q)x
[60(E, Q) Pu(Ev, 2 0) + de(Epy Q) Pep(Ey, Q; 6)]

i bin in muon energy
j bin in muon zenith angle
da(Ey, Q) flux of v, with given E, and solid angle Q

Rij(E,,Q): probability to reconstruct muon from a neutrino with energy
E,, coming from a solid angle Q into the muon bin ij (includes double
differential cross section)

(still simplified in several respects....)
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Outline

Building the x?
Systematical errors in x? analyses
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Building the x2

» Can define:

_ N [111(0) — ni]2 N [111(0) — ni]2
X2 = ; uf(t‘)) or ; .
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Building the x2

» Can define:

_ N [111(0) — ni]2 N [111(0) — ni]2
X2 = ; uf(t‘)) or ; .

> If the number of events is small in some bins (“Poisson x2"):

N
=2y
i=1

nj
1i(8) — n;j + n;log }
( ) 1i(0)
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Building the )(2

» Can define:

_ N [111(0) — ni]2 N [111(0) — ni]2
X2 = ; Mi(g) or ; .

> If the number of events is small in some bins (“Poisson x2"):

N
=2y
i=1

1i(@) — n; + njlog ni }

1i(0)
» If statistical errors include the ones from a subtracted background:
N 2
w1i(@) — n;
2oy [en]
i—1 gi
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Building the )(2

» Can define:

_ N [111(0) — ni]2 N [111(0) — ni]2
X2 = ; Mi(g) or ; .

> If the number of events is small in some bins (“Poisson x2"):

N
=2y
i=1

1i(@) — n; + njlog ni }

1i(0)
» If statistical errors include the ones from a subtracted background:
N 2
w1i(@) — n;
2oy [en]
i—1 gi

» If there is correlation between bins:

N
X2 = [1i(8) — ni]V; Hui(8) — nj]

ij=1
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Building the )(2 Systematical errors in >\2 analyses

Systematic uncertainties

Assume we have N experimental data points n; with statistical error o;
and theoretical predictions u; for each of the data points:

2

2 (pi — ny)

X = Z o2
=1 i

1i(0) depends on the parameters of the model 6.

Consider the situation that p; depends also on additional parameters &,
describing systematical uncertainties (“nuisance parameters”): 1;(0,¢)

We may have some knowledge on &: mean values (£,) = fa and
uncertainty o,
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Building the x2 Systematical errors in Xz analyses

Example

pi(0) = & (&2 Ni(0) + & Bi) fa=1£X%
%(1—1—51+52)N;(9)+(1+51+63)Bi 5(1:5&_1

& overall detector normalization
& overall signal normalization (e.g., flux uncertainty)
&3 background normalization
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Building the )(2 Systematical errors in >\2 analyses

Example

i(0) = &1 (&2 Ni(0) + &3 Bj) Ca=1%x%
~ (14014 02)Ni(0) + (14 01 + 63)B;i 6o =&a—1

& overall detector normalization

& overall signal normalization (e.g., flux uncertainty)
&3 background normalization

can be generalized to more complicated systematics, including energy
dependent uncertainties (shape), energy scale, ...
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Building the x2 Systematical errors in Xz analyses

Consider ¢ at the same level as § and add info to x?

2

N i i 2 a Aa
X2(97§) :; [/Jfl(evi)iz ] + ; (€ (O_g)i )

X2(9) = mgin X2(9,§)

x2(0) is distributed as usual with N = (N — P) + P dof
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Building the xz Systematical errors in Xz analyses

Consider ¢ at the same level as § and add info to x?

2

N i i 2 a Aa
X2(97§) :; [/Jfl(evi)iz ] + ; (g (0_3)62 )

x(0) =min x*(0,)
x2(0) is distributed as usual with N = (N — P) + P dof

no conceptual issue also for P > N
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Building the x2 Systematical errors in Xz analyses

Linearize the problem

. O .
1i(0,€) ~ (0,6 + 3 22 (¢ — £0)

+ 0
. A N a Aa Op
define: ,u,(@,f) = :ul(e) ) E(/y = € gé ) RiOl = O-g aga

Oq

. <A
X2(97§/) _ Z [2(0) +>°, fla§a n; i 26&2

0 o

x2(0,¢') is quadratic in ¢ = gTXi = 0 is a linear system of equations
= solve the system to obtain &, and obtain x2(60) = x2(6, Emin)
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Building the x2 Systematical errors in Xz analyses

Linearize the problem

. O .
1i(0,€) ~ (0,6 + 3 22 (¢ — £0)

+ 0
. A N a Aa Op
define: ,u,(@,f) = :ul(e) ) E(/y = € gé ) RiOl = O-g aga

Oq

. <A
2(0.6) = 30 PO F 2o Riako =0 57 g2

oy =
x2(0,¢') is quadratic in ¢ = gTXi = 0 is a linear system of equations
= solve the system to obtain &, and obtain x2(60) = x2(6, Emin)

» this proceedure works fine if £/, <1 and (R¢'); < pi
> if (R'); ~ pj, the prediction can become negative

T. Schwetz (KIT) Statistical Methods
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Building the xz Systematical errors in Xz analyses

Equivalence of pull and covariance approaches

» "pull" approach:
Xﬁuu(e):: ”g”JXZ(evf)

» "covariance" approach:

Oui Oy
=2 56, 6, 78) = 2 RioRie

Xeou(0) = D _[7:(0) — ni] "S5 [R(0) — m] with Sy = 076+ Vj
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Building the xz Systematical errors in Xz analyses

Equivalence of pull and covariance approaches

» "pull" approach:
Xﬁuu(e):: ”g”JXZ(evf)

» "covariance" approach:

Oui Oy
=2 56, 6, 78) = 2 RioRie

Xeou(0) = D _[7:(0) — ni] "S5 [R(0) — m] with Sy = 076+ Vj

Exercise: proof that Xfm”(e) = x2..(0)

Fogli, Lisi, Marrone, Montanino, Palazzo, PRD02 [hep-ph/0206162]
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Building the x2 Systematical errors in Xz analyses

Simple example

Consider the case of a single systematic describing an over-all
normalization uncertainty

o —y [0+ - mr . ( ; )2

- o o¢

R,' = /1,,'(9)

covariance matrix for the covariance method: Sj; = ;0% + u,-,u,jag
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Building the x2 Systematical errors in Xz analyses

Simple example

Consider the case of a single systematic describing an over-all
normalization uncertainty

o —y [0+ - mr . ( ; )2

- o o¢
Ri = pi(0)
covariance matrix for the covariance method: Sj; = ;0% + u,-,u,jag
Exercise:

» minimize the x2 and calculate &y,in and x2(6, Emin)

» consider the same systematic using the Poisson x?
(check that your solution makes sense!)
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Building the )(2 Systematical errors in >\2 analyses

Simple example

Consider the case of a single systematic describing an over-all
normalization uncertainty

o —y [0+ - mr . ( ; )2

- o o¢

R,' = /1,,'(9)
covariance matrix for the covariance method: Sj; = ;0% + u,-,u,jag
for o¢ — oo this corresponds to a shape-only analysis (free normalization)

exactly this method has been used by the Daya Bay collaboration for their
2012 analysis based on near-far comparison
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Building the )(2 Systematical errors in >\2 analyses

Real-life example Daya Bay 1203.1669
The value of sin®26;; was determined with a x? con-
structed with pull terms accounting for the correlation of the
systematic errors [28],

X2 =26: [Mg—Ta(1+e+Y, wlar +ea4) +77d}2

— Mg+ By
2 6 2 2
Gr €a , Mg
+zgg+z(cg+6%), @
r d=1

where M, are the measured IBD events of the d-th AD with
backgrounds subtracted, B, is the corresponding background,
T4 is the prediction from neutrino flux, MC, and neutrino os-
cillations [29], wf is the fraction of IBD contribution of the r-
th reactor to the d-th AD determined by baselines and reactor
fluxes. The uncertainties are listed in Table The uncorre-
lated reactor uncertainty is .. (0.8%), o4 (0.2%) is the uncor-
related detection uncertainty, and op is the background un-
certainty listed in Table[IL. The corresponding pull parameters
are (a,,£4,74)- The detector- and reactor-related correlated
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Building the )(2 Systematical errors in >\2 analyses

Real-life example Daya Bay 1203.1669
Exercise: study the x? used in the Daya Bay paper
The value of sin®260;; was determined with a x? con-

structed with pull terms accounting for the correlation of the
systematic errors [28],

22 =26: [Mg—Tg (1+e+3., wlar +ea) +77d}2

et Mg+ By

a2 e2 12
Cur(3d) %

6
T d=1

-+

where M, are the measured IBD events of the d-th AD with
backgrounds subtracted, B, is the corresponding background,
T} is the prediction from neutrino flux, MC, and neutrino os-
cillations [29], wf is the fraction of IBD contribution of the r-
th reactor to the d-th AD determined by baselines and reactor
fluxes. The uncertainties are listed in Table The uncorre-
lated reactor uncertainty is . (0.8%), o4 (0.2%) is the uncor-
related detection uncertainty, and op is the background un-

certainty listed in Table[ITl The corresponding pull parameters
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Building the )(2 Systematical errors in >\2 analyses

Pull versus covariance approaches

» Pull approach requires to solve a linear system of equations of
dimension P (number of pulls)

» Covariance approach requires to invert the N x N covariance matrix
(N number of bins)

» Depending on whether N is larger or smaller than P one or the other
method may be preferred (often P < N)
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Building the )(2 Systematical errors in >\2 analyses

Pull versus covariance approaches

» Pull approach requires to solve a linear system of equations of
dimension P (number of pulls)

» Covariance approach requires to invert the N x N covariance matrix
(N number of bins)

» Depending on whether N is larger or smaller than P one or the other
method may be preferred (often P < N)

» Pull method allows for more diagnostics of the fit, e.g.:

> look at £,min to identify a systematic with large “pull”,
> look at contours of 6 versus ¢ to identify correlations between
systematics and parameters
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Building the Systematical errors in Xz analyses

Example for “pull diagram” from solar neutrino fit

Systematics  Pulls (o) for LMA solution
—4 =3 -2 -1 0 4142 +3 44

S11 -0.05
533 +0
534 +0.01
81,14 =0.15 H H
817 +0.38 . Pom
Luminosity +0.04 : :
Z/X +0.03
Age +0
Opacity -0.05
Diffusion -0.02
CBe -0.07
Shep -0.03
8Bshope . +0.17 -
SK scole +0.78 o
SK resol. +0.61 jum
SK offset +0.44 =
SK 5.0, 5.5] -0.03 . .
SK 5.5, 6.5) -0.26 . o
SK 16.5, 8.01 +0.54 : .
SK 18.0, 9.5] +0.01 : :
SK 9.5, 11.5] -0.14
SK111.5, 13.5] -0.21 H H
SKI13.5, 16.01 +0.26 H .
SK [16.0, 20.01 +0.01 i i
SNO scole -0.15 H f
SNO resol. -0.32 i oo
SNO vertex +0.13 H H
SNO n capture -0.1
SNO n bkgd -0.06
SNO LE bkgd -0.16
SNO cross sec. +0.04

2 =

Xays = 2.05

Fogli et al hep-ph/0206162

T. Schwetz (KIT) Statistical Methods
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Building the XZ Systematical errors in ,\2 analyses

Correlations between reactor flux normalization and 6;3

[ OCH4RSEL (fres 1)

~>< 30 g Toutoum T r
< 25 ] _OCH4RSEL (Huer) 1 ||

N W AP R Y

085 fines capv A oes Cepva0CH | [Tines CH+PV4DC+0YB-+Reno |
full +RSBL 4 full +RSBL 4 Hull +RSBL 4
YL N A I I I I A S AT I
0. 002 004 006 0. 002 004 006 0. 002 004 006

. 2 .2 . 2
sin“d,; sin“d,; sin“d,;
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Building the )(2 Systematical errors in >\2 analyses

Poisson 2

The pull method can be generalized to the Poissonian form of the x?
which should be used in case of small event numbers per bin:

N
(0,62 =23 | 5i(0, €2) — i + nylog } +38
i=1 (9 ga

» allows to introduce correlated errors in the Poisson y?

> (0, &) can still be linearized in &, but the x? will no longer be a
quadratic function in £ = have to use numerical or semi-analytic
methods to do the minimization
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Building the xz Systematical errors in Xz analyses

Comments - 1

» straight forward to generalize to correlated data and/or pulls:

N
L) =Y [1i(0,€) — ni] V(0. €) — nj]

ij=1

+ Z §a — ga (gﬁ - gﬁ)
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Building the )(2 Systematical errors in >\2 analyses

Comments - 1
» straight forward to generalize to correlated data and/or pulls:
N
€)= > [1i(6.€) = m]Vy (156, €) — )]

ij=1

+Z §a — ga (gﬁ - gﬁ)

> can also be applied in the framework of likelihood analysis
,C(Q,f) = Edata(evg) X Enuis(g)
L(0) = maxe L£(6,€)
Luis(€) contains all information we have on the nuisance parameters

If £(6,&) and/or Lpyis(§) are "complicated" the minimization
(maximization) has to be done numerically.
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Building the )(2 Systematical errors in >\2 analyses

Comments - 2

» The methods discussed here for the treatment of systematic erros
assume that systematic uncertainties are of statistical nature.
Their effects on the analysis are encoded by assuming some random
distribution for them (often Gaussian).
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Building the Xz Systematical errors in Xz analyses

Comments - 2

» The methods discussed here for the treatment of systematic erros
assume that systematic uncertainties are of statistical nature.
Their effects on the analysis are encoded by assuming some random
distribution for them (often Gaussian).

» Sometimes these assumptions are justified e.g. when the origin of the
uncertainty is some measurment (e.g., normalization uncertainty).

» Sometimes these assumptions are not justified, in case of true
“theoretical uncertainties” (e.g. nuclear matrix elements for
neutrino-less double-beta decay).
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Building the Xz Systematical errors in Xz analyses

Comments - 2

» The methods discussed here for the treatment of systematic erros
assume that systematic uncertainties are of statistical nature.
Their effects on the analysis are encoded by assuming some random
distribution for them (often Gaussian).

» Sometimes these assumptions are justified e.g. when the origin of the
uncertainty is some measurment (e.g., normalization uncertainty).

» Sometimes these assumptions are not justified, in case of true
“theoretical uncertainties” (e.g. nuclear matrix elements for
neutrino-less double-beta decay).

» Frequentist interpretation in the strict sense is not clear
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Building the Xz Systematical errors in Xz analyses

Comments - 2

>

v

v

\4

The methods discussed here for the treatment of systematic erros
assume that systematic uncertainties are of statistical nature.

Their effects on the analysis are encoded by assuming some random
distribution for them (often Gaussian).

Sometimes these assumptions are justified e.g. when the origin of the
uncertainty is some measurment (e.g., normalization uncertainty).

Sometimes these assumptions are not justified, in case of true
“theoretical uncertainties” (e.g. nuclear matrix elements for
neutrino-less double-beta decay).

Frequentist interpretation in the strict sense is not clear
pull method fits very natural in Bayesian framework:

[,(9,5) = ﬁdata(97 5) X ﬁnuis(f) —
F(0.6) = Lawa0.O7(O)r(©) —  F(0) = [ deF(0.¢)
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Building the xz Systematical errors in ,\2 analyses

Referenzes on pull method in neutrino context

» in the context of solar neutrinos
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Phys. Rev. D
66 (2002) 053010 [hep-ph/0206162]

> in the context of short-baseline oscillation experiments
T. Schwetz, PhD thesis, Univ. Vienna 2002, see appendix A, available at
request

» in the context of SuperKamiokande atmospheric neutrinos
M. C. Gonzalez-Garcia and M. Maltoni, Phys. Rept. 460 (2008) 1
[arXiv:0704.1800], see appendix A

> in the context of future long-baseline oscillation experiment simulation
P. Huber, M. Mezzetto and T. Schwetz, JHEP 0803 (2008) 021
[arXiv:0711.2950]
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Outline

Hypothesis testing
Frequentist
Bayesian model selection
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Hypothesis testing

» Want to decide whether data allows to reject or favour an hypothesis
Hp over an alternative hypothesis H;
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Hypothesis testing Frequentist

Hypothesis testing

» Want to decide whether data allows to reject or favour an hypothesis
Hp over an alternative hypothesis H;

NORMAL INVERTED

Ve
vy I v, I e
3 2 e
v, T
1
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Hypothesis testing

» Want to decide whether data allows to reject or favour an hypothesis
Hp over an alternative hypothesis H;

NORMAL INVERTED
Ve
v; I v, T

v, I
1
Vi
o |
E
Vo T

v, T

» simple hypotheses: depend on no free parameters

» composite hypotheses: depend on free parameters 6 to be estimated
from the data

T. Schwetz (KIT) Statistical Methods
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Simple hypotheses

» consider two simple hypotheses: Hy, H;
» chose some statistic T (function of random variables, i.e., data)
» each hypothesis predicts a pdf for T: f(T|H;)

» chose T such that small values favour Hy and large values favour H;
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Simple hypotheses - errors of 1st and 2nd kind

critical value

Alternative
Hypothesis
H

1

Hypothesis
H

o

Typell Typel
error error
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Simple hypotheses - errors of 1st and 2nd kind

critical value

Alternative
Hypothesis
H

1

Hypothesis
H

o

Typell Typel
error error

reject Ho at the CL (1 — «) if T > T, such that

oo
dT f(T|Hy) = «
Tc
« is the probability of rejecting Hp although it is true
= "error of the first kind"
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Simple hypotheses - errors of 1st and 2nd kind

critical value

Alternative
Hypothesis
H

1

Hypothesis
H

o

Typell Typel
error error

probab (8 of accepting Hp although the alternative Hj is true

Tc
/_ dT F(T|Hi) = 8

= "error of the second kind" or “power of the test” (1 — 3)

T. Schwetz (KIT) Statistical Methods 96 / 118



Hypothesis testing Frequentist

Simple hypotheses - comments

» a common choice (the “optimal one") is the likelihood ratio

L f(xIH) _ L(Hh)
f(x|Ho)  L(Ho)
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Hypothesis testing Frequentist

Simple hypotheses - comments

» a common choice (the “optimal one") is the likelihood ratio

L f(xIH) _ L(Hh)
f(x|Ho)  L(Ho)

» very often we deal with composite hypotheses...
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Composite hypotheses

» Hy simple, H; composite
» Hy composite, Hi simple
» both Hy and H; composite
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Composite hypotheses

» Hy simple, H; composite
» Hy composite, Hi simple
» both Hy and H; composite

if Hy composite: need to reject it for all values of § € Hy

/ AT F(TIHo(0) = —  T. = max T.(6)
T(0) 0cHy
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Composite hypotheses

» Hy simple, H; composite
» Hy composite, Hi simple
» both Hy and H; composite

if Hy composite: need to reject it for all values of § € Hy

/ AT F(TIHo(0) = —  T. = max T.(6)
T(0) 0cHy

if Hy composite: 8 will depend on 6 € H;

[ ar i) = s0)

can quote e.g. “best” and “worst” power of the test

T. Schwetz (KIT) Statistical Methods 98 / 118



Hypothesis testing Frequentist

Composite hypotheses - comments

» we are completely free to chose any statistic T
(power of the test will depend on this choice)

» again, often a LH ratio is a useful test statistic, e.g.

_ maxaeHl ,C(Hl)
maxgeHo L£(Ho)

» in sufficiently Gaussian situations the pdf of T is still independent of
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Hypothesis testing Frequentist

Application to the neutrino mass ordering

for extensive discussion see Blennow, Coloma, Huber, Schwetz, 1311.1822
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Hypothesis testing Frequentist

Application to the neutrino mass ordering
for extensive discussion see Blennow, Coloma, Huber, Schwetz, 1311.1822
test statistic motivated by LH ratio:

T — . 20 o . 20 = 2 2
arg}gx() 9@111%X() X10 — XNO>
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Hypothesis testing Frequentist

Application to the neutrino mass ordering
for extensive discussion see Blennow, Coloma, Huber, Schwetz, 1311.1822

test statistic motivated by LH ratio:

T = min x*(0) — 0) = xfo — \&
arg}gx() 9@111%X() X10 — XNO»

under some conditions (similar to Wilk's theorem), T is normal distributed:
T =N(£To,2V/ o),

with

NO _ [1© 90 1000))
To(00) = nig 2
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Hypothesis testing Frequentist

Application to the neutrino mass ordering

E-resol.
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Hypothesis testing Frequentist

Application to the neutrino mass ordering

0=90° §=0°
true 10
true NO true 10, true NO
=20 =10 0 10 20 =20 -10 0 10 20
T
6=-90° 6=—180°
true NO
true [0 I true 10 true NO
=20 =10 0 10 20 -20 -10 0 10 20
T T

FIG. 7: The simulated distributions of the test statistic 7 in the NOvA experiment for different
true values of 4, as indicated by the labels. The red (blue) distributions assume a true normal
(inverted) ordering.
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Hypothesis testing Frequentist

Median experiment

Median sensitivity corresponds to type Il error rate of 50% =
with 50% chance the actual experiment will obtain a better/worse result

Instead of type | and Il errors one can also quote the median sensitivity
and its spread (again two numbers)
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Median experiment

Median sensitivity corresponds to type Il error rate of 50% =
with 50% chance the actual experiment will obtain a better/worse result

Instead of type | and Il errors one can also quote the median sensitivity
and its spread (again two numbers)

ex.: mass ordering sensitivity Blennow et al., 1311.1822

— MC(=05) NOvA | — MC(g=05) LBNE- 10kt
6l = Standard sensitivity ] 6l —— Standard sensitivity vﬁ%;\
5 - —- Gaussian approx. 1 T -—- Gaussian approx. / \
> - a= |2 e a=p # AN
z £
w2l w1
2
| 0
-150 -100 -50 0 50 100 150 -150 -100 -50 0 50 100 150
5[°] [°]
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Hypothesis testing Frequentist

Median experiment

Consider the x? using the predicted event rate as “data”
(no statistical fluctuation):

tr [1i(6 Ml(etr)]
0 Z /’LI Otr)

n; = u;i(6") can be considered as “most probable outcome” or the result
of the “median experiment”

> interpret sensitivities based on the above x? as median sensitivity, i.e
type Il error rate of 50%.

holds only approximately, in general needs to be checked by MC
Schwetz, hep-ph/0612223, Blennow et al., 1311.1822
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Hypothesis testing Frequentist

Median experiment

Consider the x? using the predicted event rate as “data”
(no statistical fluctuation):

tr [1i(6 Ml(etr)]
0 Z /’LI Otr)

n; = u;i(6") can be considered as “most probable outcome” or the result
of the “median experiment”

> this is by far the most common method in the literature to calculate
sensitivities of neutrino oscillation epxeriments

GLoBES software is designed primarily for this purporse
Huber, Lindner, Winter, hep-ph/0407333; Huber et al., hep-ph/0701187
http://www.mpi-hd.mpg.de/lin/globes/
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Nested hypotheses

Hp and H; are related by a continuous parameter, ex.:
» KATRIN: Hyp: my, =0and H; : m, >0
» MO: Hp: Am%; >0 (NO) and H; : Am3; <0 (10)

T. Schwetz (KIT) Statistical Methods 105 / 118



Nested hypotheses

Hp and H; are related by a continuous parameter, ex.:
» KATRIN: Hyp: my, =0and H; : m, >0
» MO: Hp: Am%; >0 (NO) and H; : Am3; <0 (10)

hypothesis testing becomes related to parameter estimation:

» consider confidence interval for § and check whether the interval at
(1 — «) CL covers the value of y corresponding to the null hypothesis
— probab. of error of first kind = «

» error of second kind is given by the probability that the (1 — «) CL
interval covers 6y although the true value 0 # 6
(will of course depend on the value of 6)
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Hypothesis testing Frequentist

Nested hypotheses, ex.: #>3 maximal mixing and octant

E E > maximal mixing: Hp : 03 = 45°
or 7 AX?(Ho) = 4.9 —
F b - (V4.9 = 2.2)0 for 1 dof
s5F ]
i ] > first octant: Hp : 63 < 45°
N T T L] AX2(HO) = 4.3 —
04 045 05 055 06 065 (V4.3 =2.1)0 for 1 dof

.2
sin 923
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Hypothesis testing Frequentist

Nested hypotheses, ex.: #>3 maximal mixing and octant

IR =————

NUFIT 4.0 (2018) |

15

» maximal mixing: Hg : 63 = 45°

10 AX*(Ho) = 4.9 —
F (V4.9 =2.2)0 for 1 dof

5
\ > first octant: Hy : O3 < 45°
Lo b bun o NG 111 AX2(HO):4.3—>

04 045 05 055 06 065 (V4.3 =2.1)0 for 1 dof

.2
sin 923

significance went down in NuFit 4.1: 1.40
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Mass ordering from real data (global fit)

usually MO significance is interpreted in terms of parameter estimation
(nested models)

2 .2 2
AX - Xmin,IO - Xmin,glob

157‘ ™[ I\H\‘H,‘\‘\\??H TTTTTTTTT 7T 2.8:V‘\\\\‘\\\\‘\\\\‘\\\\ v:
C 1L i 1 «~m26F =
C 1€ i ] g F (@‘:D ]
C 1r b 1 24 i
Lt 1r i 1 %0 E
[ 1r i 1 %o azF 3
5 e ! . o241 -
r 1F : 1 % F - 1
L 4 " 4 2.6 — -
L > d 1€ i ] £ ]
Lo b st A o Bl Lo o WA P P T P I
04 045 05 055 06 065-26 25 24 24 25 26 S 03 04 05 06 07

.2 2 -3 2, 2 . 2

sin” 6,4 Amy, [107eV] Amg, Sin"6,,

NuFit 4.1: Ax? = 10.4 (how many dof?)
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Hypothesis testing Bayesian model selection

Bayesian model selection

» In the Bayesian framework we can make statements on the relative
belief that Hy or Hj is true (usually called “models”).

» Calculate “Bayesian odds” of M; : M,
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Hypothesis testing Bayesian model selection

Bayesian model selection

» In the Bayesian framework we can make statements on the relative
belief that Hy or Hj is true (usually called “models”).

» Calculate “Bayesian odds” of M; : M,

suppose we want to compare two hypotheses (“models”) My, Ms.
each model depends on n; parameters 6;
there is a given set of observations (“data") D
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Hypothesis testing Bayesian model selection

Use Bayes' theorem to calculate probability for model M; given data:

P(M;|D) = WW(M) o< Zim(M;)

P(D’M,) = Z,' = /dO,- f(D‘O,', I\/l,-)7r(0,-) “evidence"
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Hypothesis testing Bayesian model selection

Use Bayes' theorem to calculate probability for model M; given data:

P(M;|D) = WW(M) o< Zim(M;)

P(D’M,) = Z,' = /dO,- f(D‘O,', I\/l,-)7r(0,-) “evidence"
the evidence is the normalization factor in the posterior for the parameters:

f(D|6;, M)

f(0,|D) = 7

7(6;) ...posterior p.d.f. for 8; given M;

remember: f(D|60;, M;) = L(6;, M)
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Hypothesis testing Bayesian model selection

Use Bayes' theorem to calculate probability for model M; given data:

P(M;|D) = WW(M) o< Zim(M;)

P(D’M,) = Z,' = /dO,- f(D‘O,', M,‘)ﬂ'(e,’) “evidence"

relative odds for M versus M, after data:

P(Mi|D) éw(l\/ll)

Mi: My = =
LT P(Ma|D) T Z w(My)

The “Bayes factor” determines how much the data changes our degree of
belief in model 1 versus model 2:

B2t
Z>
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Hypothesis testing Bayesian model selection

Jeffrey scale

|log(odds)| odds Pr(M;|D) Strength of evidence
<1.0 <3:1 <0.75 Inconclusive

1.0 ~3:1 ~0.75 Weak evidence

2.5 ~12:1 =~0.92 Moderate evidence
5.0 ~150:1 =~0.993 Strong evidence

Table 1. The Jeffreys scale, used for interpretation of Bayes factors, odds, and model probabilities.
The posterior model probabilities for the preferred model are calculated assuming only two competing
hypotheses and equal prior probabilities. Note that log denotes the natural logarithm.

odds = B for n(M;) = n(M,) = 0.5

T. Schwetz (KIT) Statistical Methods 110 / 118



Bayesian evidence

The evidence describes the overlap of the prior and the likelihood

Z = / d0; L(6;, M;)w(6;)

» models with large overlap of prior and likelihood are favoured

» models with many parameters are penalized (volume factor)
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Bayesian evidence

The evidence describes the overlap of the prior and the likelihood

Z = / d0; L(6;, M;)w(6;)

» models with large overlap of prior and likelihood are favoured

» models with many parameters are penalized (volume factor)

example: nested models
» M; : 6 free parameter with prior 7(6)
> MQZ@ZQO —)71'(9):(5((9—90)

Z = / dOLO)T(6),  Zo = L(6o)
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology

| NUFIT 4.0 (2018) |

TTT17T | T T T UL E LB ’ T T T T T 1011 |
i 1 CGERDA, MAJORANA
-------- KATRIN sens,_. | L EXO, KamL-Z, CUORE
7| 1803.11100 Tab Il
10 E 3
107 4~ [ .
3 f 12 [ ]
E>“’ C 10 — ] Ea: 1072 - -
B Y 7 F U ]
- /e : - 3 :
T 5 o
| /nd 32 10° x =
10 C 111 | 0)I 1 1 1 1111 I__ c’l 1 1 L1111 | ]
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Zm, [eV] Zm,[eV]
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology

>

mo + \/Am21 + m3 + \/Am31 + m3 (NO)
m0+\/‘Am32‘+m0+\/|Am32| —Am3 +mg  (I0)

{
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology

Zzgmi

_ ) mo+ \/Amgl + m3 + \/Am§1 + m3 (NO)
mo+\/\Am§z\+m%+\/lAm§zl —Am3 +mg  (I0)

minimal values for mg = 0:

S VAmg +\/am3 —585+£048meV  (NO)
VI1Am3y| +/|Am3y| — Am3, = 98.6+0.85meV  (10)

T. Schwetz (KIT) Statistical Methods 113 / 118



Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology

Hannestad, Schwetz, 1606.04691

0

10, m, =0

Planck CMB + BAO + H,

d

N
o b by TS

0 005 01 015 02
X [eV]
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Hypothesis testing

Bayesian model selection

Neutrino mass ordering from cosmology

Hannestad, Schwetz, 1606.04691
AR IR R L L

0]

. my=0 ]

Planck CMB + BAO + H,

/ /
P
Y

NO, my
/ 10.m,

N
P P

0 005 01 015 02 0250 0.02 0.04 0.06 0.08
T [eV] my [eV]

relative odds (assuming flat prior for mp):

10: NO = Z/O 7'(‘(/0) . fooo dmoﬁ(D|mo,IO) 7T(IO) N} 7T(/O)
T Znow(NO) 5 dmo L(D]mo, NO) w(NO) ~ 2 w(NO)
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Hypothesis testing Bayesian model selection

Neutrino mass ordering from cosmology

Hannestad, Schvvetz 1606 04691

0]

=0 ]

EUCLID + Planck CMB

NO, m
10, m

NO

95%

0 0.05 0.1 0.15 0.2 0250 0.02 0.04 0.06 0.08

10 : NO =

2 [eV] my [eV]

relative odds (assuming flat prior for mp):

Z/o 7'('(/0) - fooodm()[,(D‘moJO) 7T(/O) ~ 1 7T(IO)

Zno m(NO) — [5° dmg L(D|mo, NO) 7(NO) ~ 12 7(NO)
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Hypothesis testing Bayesian model selection

Final word on priors
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Hypothesis test Bayesian model selection

de.arXiv.org > astro-ph > arXiv:1606.04691 =

Astrophysics > C logy and N lactic Astrophysics

Cosmology and the neutrino mass ordering

Steen Hannestad, Thomas Schwetz
(Submitted on 15 Jun 2016 (v1), last revised 18 Nov 2016 (this version, v2))

We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds
on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds
of normal versus inverted ordering. We apply the method for a specific set of current data from Planck CMB data and large-scale
structure surveys, of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain
ical data is ¢ d with data from oscillation

Astrophysics > C logy and N lactic Astrophysics

Strong Evidence for the Normal Neutrino Hierarchy

Fergus Simpson, Raul Jimenez, Carlos Pena-Garay, Licia Verde
(Submitted on 9 Mar 2017)

The configuration of the three neutrino masses can take two forms, known as the normal and inverted hierarchies. We compute
the Bayesian evidence associated with these two hierarchies. Previous studies found a mild preference for the normal hierarchy,
and this was driven by the asymmetric manner in which cosmological data has confined the available parameter space. Here we
identify the presence af a second asymmetry, which is |mposed by data from neumna oscillations. By combmm

favour of the normal hierarchy, which is classified as "strong" in the Jeffreys' scale. We explore how (hese odds ma
of higher precision cosmological data, and discuss the implications of this finding with regards to the nature of neutrinos.
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Hypothesis test Bayesian model selection

de.arXiv.org > astro-ph > arXiv:1606.04691 =

Astrophysics > C logy and N lactic Astrophysics

Cosmology and the neutrino mass ordering

Steen Hannestad, Thomas Schwetz
(Submitted on 15 Jun 2016 (v1), last revised 18 Nov 2016 (this version, v2))

We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds
on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds
of normal versus mvened ordering. We apply the method for a specific set of current data from Planck CMB data and large-scale
structure surveys, of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain

ical data is d with data from oscillation

Astrophysics > C logy and N lactic Astrophysics

Strong Evidence for the Normal Neutrino Hierarchy

Fergus Simpson, Raul Jimenez, Carlos Pena-Garay, Licia Verde
(Submitted on 9 Mar 2017)

The configuration of the three neutrino masses can take two forms, known as the normal and inverted hierarchies. We compute
the Bayesian evidence associated with these two hierarchies. Previous studies found a mild preference for the normal hierarchy,
and this was driven by the asymmetric manner in which cosmological data has confined the available parameter space. Here we
identify the presence of a second asymmetry, which is imposed by data from neutrino oscillations. By combini
the squared-mass splittings with the limit on the sum of neutrino masses of $\Sigma m_\nu < 0.13$ eV, w
favour of the normal hierarchy, which is classified as "strong" in the Jeffreys' scale. We explore how these odds
of higher precision cosmological data, and discuss the implications of this finding with regards to the nature of neutrinos.

Watch out for assumptions about priors!!
see comment in arXiv:1703.04585
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Hypothesis te Bayesian model selection

Model A Model B
Parameter | Prior | Range || Parameter | Prior Range - .
- S - 2 Archidiacono, de Salas, Gariazzo, Mena,
v linear 0-1 v linear 0-1
m /e log | 10751 | Musest/V |y 1070 1 Ternes, Tortola, 1801.04946
my/eV h;:;" 01 Am3, /eV? | linear 5x107° 1074
my/eV h;:;"» |Am3,|/eV? | linear | 1.5 x 1073 - 3.5 x 107°

evidence in favour of NO

7
6F PY . . .
. I R assuming a log prior in
Al the 3 masses prefers
a»l,tilliil 111N1 strongly NO (just
T from oscillation data!)
0
3 EIEE I

2 R Pr it g

T. Schwetz (KIT Statistical Methods 118 / 118



	Basic problems in statistics
	Parameter estimation
	Goodness of fit

	Confidence intervals
	frequentist
	Bayesian intervals
	Parameter marginalization

	Event rates in oscillation experiments
	Reactor experiments
	More complicated situations

	Building the 2
	Systematical errors in 2 analyses

	Hypothesis testing
	Frequentist
	Bayesian model selection


