VIII International Pontecorvo Neutrino Physics School

September 1 - 10, 2019 Sinaia, Romania September 8th, 2019

Neutrinoless double beta decay Experiments

Andrea Giuliani

Outline

> Double beta decay: what it is and why it is important

How we search for neutrinoless double beta decay

Overview of the current experimental situation

> Details of the most important experiments

Challenges for the future

Outline

> Double beta decay: what it is and why it is important

How we search for neutrinoless double beta decay

> Overview of the current experimental situation

> Details of the most important experiments

Challenges for the future

What is double beta decay?

Two decay modes are usually discussed:

(1) (A,Z) \rightarrow (A,Z+2) + 2e⁻ + 2 $\overline{\nu_e}$

$$2\nu$$
 Double Beta Decay
allowed by the Standard Model
already observed – $\tau \sim 10^{19} - 10^{21}$ y

Processes ② would imply new physics beyond the Standard Model

violation of total lepton number conservation (LNV)

It is a very sensitive test to new physics since the phase space term is much larger for process (2) than for process (1)

Andrea Giuliani – CSNSM Orsay

Interest for 0v-DBD lasts for **70 years** ! Goeppert-Meyer proposed the standard process in 1935 Furry proposed the neutrinoless process in 1939

Double beta decay and basic nuclear physics

Double beta decay and basic nuclear physics

Andrea Giuliani – CSNSM Orsay

35 nuclei can undergo double beta decay

Neutrinoless double beta decay (0v2β): standard and non-standard mechanisms

 $0\nu 2\beta$ is a test for « creation of leptons »: $2n \rightarrow 2p + 2e^- \Rightarrow LNV$

This test is implemented in the nuclear matter: (A,Z) \rightarrow (A,Z+2) + 2e⁻

Ov2β Standard mechanism: neutrino physics Ov2β is mediated by light massive Majorana neutrinos (exactly those which oscillate) C. Giunti Non-standard mechanism: Sterile v, BSM, LNV Not necessarily neutrino physics

Double beta decay and neutrino physics

Double beta decay is a **second order weak transition very low rates**

Diagrams for the two processes discussed above:

a virtual neutrino process is exchanged decays between the two electroweak lepton vertices

0ν2β

Double beta decay and neutrino physics

Andrea Giuliani – CSNSM Orsay

Double beta decay and neutrino physics

Andrea Giuliani – CSNSM Orsay

Il Nuovo Cimento, 14 (1937) 171

TEORIA SIMMETRICA DELL'ELETTRONE E DEL POSITRONE

Nota di Ettore Majorana

Sunto. - Si dimostra la possibilità di pervenire a una piena simmetrizzazione formale della teoria quantistica dell'elettrone e del positrone facendo uso di un nuovo processo di quantizzazione. Il significato delle equazioni di DIRAC ne risulta alquanto modificato e non vi è più luogo a parlare di stati di energia negativa; nè a presumere per ogni altro

tipo di particelle, particolarmente neutre, l'esistenza di «antiparticelle» corrispondenti ai «vuoti» di energia negativa.

Neutrino flavor oscillations

In the Standard Model, neutrinos are massless

Origin of the charged fermion masses in the Standard Model

Particles bump on the Higgs field pervading all the empty space and acquire a mass

Photons do not have a mass because they are neutral and do not interact with the Higgs field

Neutrinos do not have a mass because they do not have a righthanded component and the lefthanded component propagate freely 15

Giving masses to neutrinos

Follow what is done with the other fermions in a straight-forward way

Dirac mass

$$\mathscr{L}_D = -m_D(\overline{\nu_L}\nu_R + h.c.)$$

where v_R are new fields insensitive to the gauge interactions

However, we are authorised to add a new mass term only for neutrinos

Majorana mass

$$\mathcal{L}_M = -\frac{1}{2}M_R(\bar{\nu}_R^C \nu_R + \text{h.c.})$$

which involves fields of equal chiralities **possible only for neutral particles!**

Andrea Giuliani – CSNSM Orsay

Giving masses to neutrinos

In matrix notation:

$$N_{L} = (\nu_{L}, \nu_{R}^{C}) \qquad \mathscr{L}_{D+M} = -\frac{1}{2} N_{L}^{T} \mathscr{C}^{\dagger} M N_{L} + \text{h.c.}$$

$$V_{L} \quad V_{R}$$
Provides the Dirac and Majorana mass terms defined before
$$V_{R} \begin{pmatrix} 0 & m_{D} \\ m_{D} & M_{R} \end{pmatrix}$$

In order to find the physical states and masses, this matrix must be diagonalized in order to put the Lagrangian in the form:

$$\mathscr{L}_{D+M} = \sum_{i} m_{i} \overline{\nu}_{i} \nu_{i}$$

Andrea Giuliani – CSNSM Orsay

See-saw mechanism

 m_{D} must be of the same order of the charged lepton masses (Higgs mechanism)

M_R can be everywhere (GUT scale)

 \rightarrow the condition $M_R >> m_D$ can naturally explain the small neutrino masses

Andrea Giuliani – CSNSM Orsay

Standard mechanism for $0\nu 2\beta$

Standard mechanism for $0\nu 2\beta$

How 0v-DBD is connected to neutrino mixing matrix and masses in case of process induced by light v exchange (mass mechanism).

m_{ee} vs. lightest v mass

Andrea Giuliani - CSNSM Orsay

	g _A quenching	$1/\tau = G(Q,Z) g_A^4 M_{nucl} ^2 m_{ee}^2$					
	g _A = - 1.269 1.25 1	Free nucleon Often taken in the calculations Quark		J. Barea et al. and Ejiri et al. realized that g_A is quenched in $2\nu 2\beta$ decay (as in all β -like processes)			
	$g_{A,eff} \sim 0.6 - 0.8$		Sever reduction of the rate				
	However, it is not clear if observed quenching can be generalised to $0\nu 2\beta$						
	Constraints from cosmology on $\Sigma = m_1 + m_2 + m_3$			0.08 			
	Upper limits ranging in the interval ~ 0.2 – 0.6 eV depending on the model and data-sets used for the analysis R. Battye Model-dependent constraint			ο.02 0.02 0.02 ΝΗ 2σ 0.01	$\frac{2\sigma}{3\sigma}$	(95% C.L.) 0.20	
	Indication in favo	or of Normal Ordering	Neutrino oscillation in terrestrial matter				
		Res			Global analysis		
Andrea Giuliani – CSNSM Orsay VIII Pc						Pontecorvo Scho	

Andrea Giuliani – CSNSM Orsay

$m_{\beta\beta}$ distribution in the parameter space

Phys. Rev. D 96, 053001 (2017)

(see also Phys. Rev. D 96, 073001 (2017))

Discovery probability of next-generation neutrinoless double-6 decay experiments

Global Bayesan analysis including neutrino oscillations, tritium, double beta decay, cosmology Ignorance of the scale of the parameters \rightarrow Scale-invariant prior distributions

- $\succ \Sigma = m_1 + m_2 + m_3, \Delta m_{ij}^2$: logarithmic
- Angles and phases in PMNS matrix: flat

Marginalized posterior distributions of $m_{\beta\beta}$

$m_{\beta\beta}$ distribution in the parameter space

Phys. Rev. D 96, 053001 (2017)

Probability densities and cumulative probabilities for $m_{\beta\beta}$

Outline

> Double beta decay: what it is and why it is important

How we search for neutrinoless double beta decay

> Overview of the current experimental situation

> Details of the most important experiments

Challenges for the future

What we are looking for

The shape of the two-electron sum-energy spectrum enables to distinguish between the 0v (new physics) and the 2v decay modes

The signal is a peak (at the Q-value) over an almost flat background

How difficult is it ?

How difficult is it ?

Current-generation experiments

Strategic milestone

Andrea Giuliani – CSNSM Orsay

Strategic milestone

Factors guiding isotope selection

Q-value and y background

Isotopic abundance

How we do it: experimental approaches

- constraints on detector materials
- \bigcirc very large masses are possible demonstrated: up to $\,\sim$ 0.1 1 ton
- with proper choice of the detector, very high energy resolution
 Ge-diodes
 - bolometers
- in gaseous/liquid xenon detector, indication of event topology
- it is difficult to get large source mass
- neat reconstruction of event topology
- several candidates can be studied with the same detector

sensitivity F: lifetime corresponding to the minimum detectable number of events over background at a given confidence level

Effect of the background on the sensitivity

Andrea Giuliani – CSNSM Orsay

VIII Pontecorvo School

The struggle against environmental radioactivity

Standard solutions

Natural radioactivity (α, β, γ radiation) $T_{1/2}^{0v2\beta} > 10^{26}$ γ $\iff T_{1/2}^{238}$ U, ²³² Th, ⁴⁰ K] ~ 10 ⁹ -10 ¹⁰ y		Levels of < 1 μ Bq / kg are required Ordinary material \sim 1-100 Bq/kg
Cosmic muons Above ground flux ~ 1 /(cm ² × min)		Underground laboratory \rightarrow Flux reduction by > 10 ⁶
Neutrons Generated by rock radioactivity and muons		Quality and depth of the underground lab Dedicated shielding are often required
Cosmogenic induced activity (long living) Delayed effect of the cosmic radiation (activation)		Choice of detector materials Storage of material underground
2 ν Double Beta Decay Spectrum leaking in the region of interest		Energy and time resolution of detectors
$\begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 2\nu & 3\% \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=3\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} 1 \\ 0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} FWHM=4\% \\ 0.8 \\ 0.8 \end{bmatrix} \begin{bmatrix} FWHM=4\% $	^{7HM=5%} 5% 0.	¹ ¹ ¹ ¹ ¹ ¹⁰⁰ Mo
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.	$T^{2\nu}_{1/2} \sim 7 \times 10^{18} \text{ y}$ Fastest 2v process
2800 2900 3000 3100 3200 2800 2900 3000 3100 3200 2800 2900 3000 310	00 3200 Energy	2800 2900 3000 3100 3200 y (keV)

Outline

> Double beta decay: what it is and why it is important

> How we search for neutrinoless double beta decay

Overview of the current experimental situation

> Details of the most important experiments

Challenges for the future

In red based on the bolometric technique

m_{ee} vs. lightest v mass

VIII Pontecorvo School

Current situation

sour	ce = detector		NOW	MID-TERM	LONG-TERM
Scalability	Scalability Fluid embedded source	Xe-based TPC	EXO-200		nEXO
			NEXT-10	NEXT-100	NEXT-2.0 NEXT-HD NEXT-BOLD
				PandaX-III	PandaX-III 1t
		d Liquid scintillator	KamLAND-Zen 800		KamLAND2-Zen
		as a matrix	SNO+ phase I		SNO+ phase II
High ΔE and ε	Crystal embedded source	Germanium diodes	GERDA-II		
			MAJORANA DEM.	LEGEND 200 LE	LEGEND 1000
			AMoRE pilot, l	AMoRE II	
		Bolometers	CUORE CUPID-0, CUPID-N	10	CUPID CUPID-reach CUPID-1T

Current situation

source = detector		NOW	MID-TERM	LONG-TERM	
\bigcap			EXO-200		nEXO
N		Xe-based TPC	NEXT-10	NEXT-100	NEXT-2.0 NEXT-HD NEXT-BOLD
illi	Fluid			PandaX-III	PandaX-III 1t
alab	embedded source	Liquid	KamLAND-Ze	en 800	KamLAND2-Zen
	These ex				
deeply or fully the IO region and					SNO+ phase II
to cover a substantial part of the NO region					
T _{1/2} > 10 ²⁷ – 10 ²⁸ y – m _{ee} < ~20 meV					LEGEND 1000
n ΔE	embedded source		AMoRE pilot, I	AMoRE II	
Higl		Bolometers	CUORE CUPID-0, CUPID-	Мо	CUPID CUPID-reach CUPID-1T

sour	ce = detector		NOW	MID-TERM	LONG-TERM	
			EXO-200		nEXO	
oility	 ➢ Isotope mass is 0v2β source but also a background indicator → fiducialization ➢ Low energy resolution – 25 keV FWHM (NEXT) – 270 keV FWHM (KamLAND-Zen) ➢ Space resolution: tracking or impact point (single-site vs. multi-site) depending on the project 					
Scalal	 The limit (signal) comes from a global reconstruction of the background over a wide energy range If isotope is strongly (~1 % level) diluted (SNO+, KamLAND-ZEN), finally limited by solar neutrinos if no directionality 					
ω p		Germanium	GERDA-II	LEGEND 200	LEGEND 1000	
High ∆E an	 High geometrical efficiency (> 70%) High energy resolution -3 keV FWHM in Ge diodes - 5 keV FWHM in bolometers Granularity, pulse shape discrimination, particle identification methods The limit (signal) comes from a narrow region around the Q value The background model is used mainly to understand and to improve 					
			CUPID-0, COP		CUPID-1T	

VIII Pontecorvo School

Outline

> Double beta decay: what it is and why it is important

> How we search for neutrinoless double beta decay

> Overview of the current experimental situation

Details of the most important experiments

Challenges for the future

EXO-200

EXO-200 has recently completed data taking WIPP - US Final results: $T_{1/2} > 3.5 \times 10^{25} \text{ y}$

m_{ee} < 107 – 290 meV

Andrea Giuliani – CSNSM Orsay

¹³⁶Xe

$EXO-200 \rightarrow nEXO$

EXO-200 has recently completed data taking WIPP - US

Final results: T_{1/2} > 3.5×10²⁵ y

 $m_{ee} < 107 - 290 \text{ meV}$

136**Xe**

¹³⁶Xe

NEXT

NEXT

¹³⁶Xe KamLAND-Zen 400,800→KamLAND2-Zen

Andrea Giuliani – CSNSM Orsay

VIII Pontecorvo School

¹³⁶Xe KamLAND-Zen 400,800→KamLAND2-Zen

¹³⁶Xe

DARWIN as a neutrinoless double beta decay experiment

 $m_{ee} < 11 - 25 \text{ meV}$

SNO+

Re-use existing infrastracture of SNO – Canada

SNO+ phase I: SNO acrylic vessel filled with LS and 1.3 tons of natural Te in an organometallic compound (0.5% mass loading)

- Filling with liquid scintillator is in progress
- ➢ ∆E = 190 keV FWHM
- > 5 y sensitivity: $T_{1/2} > 1.9 \times 10^{26}$ y $m_{ee} < 35 140$ meV

Possible SNO+ phase II (ongoing R&D)

- Increase Te concentration (it does not affect background)
- Increase light yield
- Improve transparency
- Improve light detectors

Further evolution of this technology with new concepts: THEIA project

- 50 kton water-based liquid scintillator detector
- High coverage with fast photon detectors
- Deep underground
- 8-m radius balloon with high-LY LS and isotope
- 7-m fiducial, 3% ^{nat}Te, 10 years
- **Dominant background:** ⁸B solar v's \rightarrow directional measurement

$$T_{1/2} > 1 \times 10^{27} y$$

 $m_{ee} < 15 - 60 meV$

T_{1/2} > 1.1×10²⁸ y

m_{ee} < 5 – 18 meV

without enrichement

⁷⁶Ge

GERDA, MAJORANA → LEGEND

GERDA

Exposure: 82.4 kg × y Background index: $1.0^{+0.6}_{-0.4} \times 10^{-3} c/(keV kg y)$ $T_{1/2} > 0.9 \times 10^{26} y$ $m_{ee} < 110 - 260 meV$

MAJORANA demonstrator Exposure: 26 kg × y Background: $(4.7\pm0.8) \times 10^{-3} c/(keV kg y)$ $T_{1/2} > 2.7 \times 10^{25} y$ $m_{ee} < 210 - 440 meV$

⁷⁶Ge

GERDA, MAJORANA → LEGEND

GERDA

Exposure: 82.4 kg × y Background index: $1.0^{+0.6}_{-0.4} \times 10^{-3} c/(keV kg y)$ $T_{1/2} > 0.9 \times 10^{26} y$ $m_{ee} < 110 - 260 meV$

MAJORANA demonstrator Exposure: 26 kg × y Background: $(4.7\pm0.8) \times 10^{-3} c/(keV kg y)$ $T_{1/2} > 2.7 \times 10^{25} y$ $m_{ee} < 210 - 440 meV$

LEGEND

LEGEND-200:

⁷⁶Ge

LNGS – Italy

71

- Initial Phase
- ~200 kg in upgraded existing GERDA infrastructure
- Improvements:
 - LAr optical purity (light yield, attenuation)
 - Light detection (add readout between detector strings)
 - Cleaner materials and smaller parts near detectors
 - Larger detectors (fewer cables, readout channels)
 - Surface betas (⁴²Ar progeny): Reduce LAr volume and improve pulseshape
 - Discrimination (better electronics)
 - New inverted-coaxial larger detectors (1.5 2 kg)
- Background goal: 0.6 counts/FWHM t yr (3x lower than GERDA)
- Data-taking could start as early as 2021
- Sensitivity: > 10²⁷ y for 1 tonne × y m_{ee} < 35 75 meV</p>

LEGEND-1000:

- 1000 kg (phased) required to cover neutrino-mass I
- Sensitivity: > 10²⁸ y
- Background goal: a factor 10 lower wrt LEGEND-200 → background free at 10 ton × y
- Location under discussion
- Required depth under investigation

¹³⁰Te

CUORE

988 TeO₂ bolometers, arranged in 19 towers, cooled down to 10-15 mK in LNGS (Italy) evolution of Cuoricino - **741 kg** with natural tellurium – **206 kg of** ¹³⁰**Te**

¹³⁰Te, ¹⁰⁰Mo

$CUORE \rightarrow CUPID$

CUORE is collecting data succesfully

- Exposure: 369.9 kg × y T_{1/2} > 2.3×10²⁵ y m_{ee} < 90 - 420 meV pRELIMINAR</p>
- 5 y projected half-life sensitivity: ~10²⁶ y
 - m_{ee} < 50 190 meV
- Background close to expectations:
 b = 1.4 × 10⁻² c/(keV·kg·yr)
- Energy worse than expectations and CUORE-0 (5 keV) ~8.7 keV FHWM \rightarrow margins for improvement
- Analysis of ~1000 individual bolometers is handable

Two important messages from CUORE

- 1. A tonne-scale bolometric detector is feasable
- 2. An infrastructure to host a bolometric next-generation $0\nu\beta\beta$ experiment is already available

CUPID is the natural evolution of CUORE

CUPID demonstrators

Andrea Giuliani – CSNSM Orsay

⁸²Se, ¹⁰⁰Mo

VIII Pontecorvo School

⁸²Se, ¹⁰⁰Mo

CUPID demonstrators

2000

4000

6000

8000

Heat (keV)

Negligible ¹⁰⁰Mo losses in crystal growth

⁸²Se, ¹⁰⁰Mo

CUPID demonstrators

CUPID-Mo

- High-sensitivity search for double beta decay of ¹⁰⁰Mo
- Installed in the Modane underground laboratory (France)
- It coexists in the same cryostat as the EDELWEISS dark matter experiment
- Regular data taking since April 2019
- Evolution of LUMINEU and demonstrator for CUPID

20x 0.2-kg Li₂¹⁰⁰MoO₄

20-scintillating-bolometer array

2.26 kg ¹⁰⁰Mo

VIII Pontecorvo School

Andrea Giuliani – CSNSM Orsay

CUPID configuration and reach

- 118 towers of 13 floors each 1534 crystals
- ~250 kg of ¹⁰⁰Mo for >95% enrichment
 - 1.6×10²⁷ ¹⁰⁰Mo atoms

¹⁰⁰Mo

b ~ 10⁻⁴ counts/(keV kg yr) in the ROI of ¹⁰⁰Mo (~ 3 MeV) with Li₂¹⁰⁰MoO₄ crystals supported by detailed Monte Carlo combining CUORE, CUPID-0 and CUPID-Mo data

CUPID 10 y half-life sensitivity:

$$T_{1/2} > 1.5 \times 10^{27} \text{ y}$$

 $m_{1/2} < 10 - 17 \text{ me}$

CUPID-reach - Bkg improvement by factor 5 2.3×10^{27} y $\rightarrow m_{ee} < 8.2 - 14$ meVCUPID-1 T - Bkg improvement by factor 201 ton isotope \rightarrow new cryostat 9.2×10^{27} y $\rightarrow m_{ee} < 4.1 - 6.8$ meV

¹⁰⁰Mo

AMoRE

SuperNEMO

The most important of the few experiments with detector ≠ source The isotope is embedded in thin foils (difficult scaling – low efficiency ~30%)

E = 0.72 ± 0.03 Me

Built on the succesfull NEMO-3 experiment

1.15 ± 0.04 MeV

> Main advantage: full topological reconstruction of a $\beta\beta$ event

Investigation of the **mechanism** \rightarrow crucial task in case of discovery Easier access to other physics channels (i.e. **Majoron**)

SuperNEMO demonstrator will start soon data taking – 7 kg of ⁸²Se

Sensitivity: 6×10^{24} y in 2.5 y (assuming that the target radiopurity in ²¹⁴Bi and ²⁰⁸Tl of the source foils is achieved) **Prospects**

- The idea to build full SuperNEMO (20 module 100 kg) is abandoned non competitive in the current scenario
- Plans to move to ¹⁵⁰Nd enrichment by centrifugation is expensive but now possible higher phase space by a factor 6 Rn free background
- Keep technology ready in case of discovery

LSM – France

source ≠ detector

Outline

> Double beta decay: what it is and why it is important

How we search for neutrinoless double beta decay

Overview of the current experimental situation

> Details of the most important experiments

Challenges for the future

Possible scenario in 2025

Considering running or well advanced projects (for results, funding and infrastructures)

VIII Pontecorvo School

Possible scenario in 2025

Considering running or well advanced projects (for results, funding and infrastructures)

Reach of next-generation experiments

VIII Pontecorvo School

Discovery probability

Phys. Rev. D 96, 053001 (2017)

Discovery sensitivity: the value of $T_{1/2}$ or $m_{\beta\beta}$ for which the experiment has a 50% chance to measure a signal with a significance of at least 3 σ

Discovery probability: odds to detect the $0\nu\beta\beta$ signal with significance of at least 3 σ

Obtained by folding the discovery sensitivity with the m_{ee} distribution

How to reach the few meV scale

\geq 10 ton isotope

~ 100 ton × y exposure

Large dedicated enrichment facility?

Strongly favored isotopes: 130 Te – 136 Xe (bolometers, TPCs) Problem with 76 Ge: low Q value, low phase space Problem with 100 Mo: fast 2 ν double beta decay

Background < 0.02 counts /(FWHM ton y)

Factor 10 better than the best ever achieved (GERDA)

Diluted isotopes strongly disfavored by solar neutrinos

High dilution factors possible in opaque scintillators? (LiquidO) Directionality from Cherenkov + scintillation? (THEIA)

Large-scale bolometric set-up and multiple large Xe TPC are possible Ba tagging

How to reach the few meV scale

80 000 bolometers of TeO₂ (natural isotopic composition)

20 dilution refrigerators with experimental space 4 x wrt CUORE

→ can be hosted by an LNGS hall

Mass of each crystal: 1.3 kg (6×6×6 cm)

Efficiency: 90%

Energy resolution: 5 keV FHWM

Already achieved

Background index: $b = 10^{-5}$ counts/(keV kg y) (testable in CUPID)

Conclusions

- $\geq 0v2\beta$ is a crucial process, not only for neutrino physics
- Next-generation experiments have a good discovery potential
- Many projects aim at extending the present sensitivity
- > The field is extremely active: variety of approaches and technologies

Yesterday's discovery is today's calibration.

Conclusions

- $\geq 0v2\beta$ is a crucial process, not only for neutrino physics
- Next-generation experiments have a good discovery potential
- Many projects aim at extending the present sensitivity
- > The field is extremely active: variety of approaches and technologies

Yesterday's discovery is today's calibration.

... and tomorrow's background!