
Accelerator-based neutrino beams 
and oscillations

(mostly long-baseline beams)

Maury Goodman

Argonne National Lab, USA
 long-baseline and short-baseline always need a hyphen if used as an adjective
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Language

 Don’t be polite

 Don’t raise your hand

 If I am talking too fast,      
shout:

 Don’t be polite

 Don’t raise your hand

 If you don’t understand, 
shout a question or say:
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Outline

 n Beams

 Detectors for n beams

 Long-baseline n experiments (8)

 Completed K2K, MINOS, ICARUS, OPERA

 Current NOnA, T2K

 Future DUNE, Hyper-K

Other accelerator neutrino experiments
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Neutrino Beams
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1st neutrino beam
Mel Schwartz

 Schwartz proposed to use a proton 
beam to make p which decay to n.

 5e13 p/s (Ep = 3 GeV)

 gct (Ep ~ 1 Gev) = 50 m

 5000 n/(s cm2)

 1 interaction/hr in 10 ton detector
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“Discovery” of the nm

Expected Seen

Equal   5 showers

Equal   29 m tracks
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Neutrino Beam

For an intense neutrino beam, you need:

 Accelerator with an intense proton beam (Power 

measured in kW)

 A target that

 Won’t melt

 Most protons interact so you get the most p/K

 p and K quickly leave the target so they don’t interact

 Focusing device (horn) to maximize forward p/K 

 A beam pipe to well define the beam & acceptance
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Accelerator & 
proton beam

 The more proton (intensity), 
the more neutrinos

 Energy is more complicated.

 En  Eb

 Cycle time (Tcycle) is an issue

More low En with high Eb

For most experiments

I will describe the 

integrated beam as p.o.t.

for “protons on target”
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indicates current NOvA and T2K cases,
“PIP” (@Fermilab) = “proton improvement plan” 



On-axis WBB
Wide band beam

735 
km
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On-axis best for nm → nm; nm → nt



Proton target
NuMI uses graphite
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Some target goals:
 All protons interact
 Target does not melt
 lifetime due to material fatigue

  large
 No p/K interact
 Target position affects focusing

  small 



Narrow-Band Beam

❖Wide-Band Beam: (most n

beams now), wide 

momentum range of p/K,   

then focus p/K.

❖Narrow-Band Beam: 

momentum select p/K.  

“dichromatic”, En known
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NBB not relevant to long-baseline experiments, but useful thinking about beams 



Focusing device
“sign selected”
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More events in n beams than n ̅ for 2 reasons:
1. More p+ than p- (charge conservation)
2. s(n) > s(n ̅) by about 2



Focusing + target
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You can focus more p/K with 2 horns than 1

Since Ep distribution is wide, you can’t focus all the 

secondary hadrons

Moving the target with respect to the horns affects <En>
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Making an off-axis 
neutrino beam
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- Rates way down (already an obvious 

significant issue in long-baseline n)

+ Backgrounds for nm → ne reduced

 ne in the beam mostly at higher 
energy

 e from nt,  No nt interactions below 
4 GeV

 NC (p0) background not 
eliminated, but since there is no 
high energy tail, it is reduced.

Why go Off-Axis?
best for nm → ne

7 September 2019 Maury Goodman - Pontecorvo School 17



What makes a long-baseline 
experiment long?

3 different answers:

1. The detector is off-site
• A practical definition

2. L (km) >> pEn (GeV)/(1.27 Dm2) 
• A physics definition, guaranteeing 

many oscillations

3. Ldetector >> Ldecay pipe

• So that the “beam” appears to be a 
point source at the FD (but not
ND).

A common question:
How does a beam hit a 
target 700 km away?

The beam diverges as 
1/L2, and the detector is 
small compared to the 
size of the “beam”.

Strange fact:  since oscillations 
grow as L2, and the flux falls as 
1/L2, you actually get more 
oscillated events/Mdetector at the 
ND!
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Questions?
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Neutrino Detectors
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General considerations
for n detectors

Mass & chemical composition

Cost

Granularity

Angular Resolution

 Energy Resolution

Ability to make functionally identical ND

Magnetic Field?
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Specific detectors

Covered in this lecture

K2K               water

MINOS iron/scintillator

OPERA          iron/emulsion

ICARUS         liquid argon

T2K                water/(Gd)

NOnA liquid scintillator

DUNE liquid argon

T2HK             water/Gd

Other neutrino detectors
FNAL E1 segmented liq scint

Several bubble chambers

FNAL E594 sand/flash chambers

CHARM marble/scint sandwich

CDHS Magnetized Fe/scint

CCFR Magnetized Fe/scint

CHORUS emulsion

NOMAD Hybrid

MiniBooNE liquid scintillator

MINERvA multiple nuclei/scint

MicroBooNE liquid argon

SBND liquid argon

(Near Detectors for Long-Baseline)
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Water Cherenkov

❑ Large water tank

❑ Phototubes on edges

❑ X0 is 36 cm

❑ 7X0 ~ 2.5 m

 m – sharp ring

 e – fuzzy ring

 exiting m – filled-in ring

 Time resolution Dt ~ ns
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throughgoing m stopping m



Segmented Tracking

Alternating crossed planes

You get two 2D views

 Then match hits (tracks)       

or match objects (showers)

 There might be inactive 

material between planes

 It could be magnetized

 Dt ~ ns to ms

MINOS layers

NOnA event
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Liquid Argon

 Large volumes of pure Lar

 Ionization makes electrons

 Electric Field toward wires

ProtoDUNE example - 180 kV

 Slow drift (Dt ~ few ms)

Need very low H2O, O2,… 

to maintain drift lifetime
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Near Detectors

These have two different purposes

 To understand the beam flux and spectrum

 To measure backgrounds for an appearance signal 
before the neutrinos oscillate
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Near Detectors (ND)

 A ND is a crucial part of 
most long-baseline exps

 Issues include:

ND does not see a point 
target

Extrapolating an oscillated 
flux

Same nuclear n target?

Substantial difference in 
event rates (which affects 
cost considerations)

❑ Similar ND & FD

▪ K2K

▪ MINOS

▪ NOnA

❑Quite different ND & FD

▪ T2K

▪ DUNE

▪ T2HK (Hyper-K)

❑No ND

▪ ICARUS

▪ OPERA
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Questions?
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Previous

long-baseline n

experiments
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K2K (KEK)

MINOS (NuMI) NeUtrinos at the Main Injector 

ICARUS (CNGS) Cern Neutrinos to Gran Sasso

OPERA (CNGS) 



An Analysis Issue

• In the 3 n paradigm:

P(nm → nm) + P(nm → nt) + P(nm → ne) =1

dominant     sub-dominant

• Previous experiments focused on

P(nm → nt)  1- P(nm → nm) 

• Current and future experiments focus on

P(nm → ne)
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K2K
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n

En  1.3



K2K results
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K2K Near Detector at 300 m: 0.9 e20 pot

Best fits:

Dm2
32 = 2.8 10-3 eV2

sin2(223) = 1



MINOS

A neutrino beam from
Illinois to Minnesota

7 September 2019 Maury Goodman - Pontecorvo School 34



MINOS detector
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 486 layers of 2.54 cm 

steel

 485 planes 1 cm plastic 

scintillator

 Magnetized to 3 T

 8 m octagon

 Fiber readout - both ends



MINOS results
from 14.1 e20 pot & 39 kton-yr

Dm2
32 = 2.28-2.46 10-3 eV2

 1st oscillations with n̅

Excluded no ne @ 96% CL
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OPERA
nm → nt
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CNGS beam

 150,000 bricks

 1.25 kton

 L = 732 km

 <En> = 15 GeV



OPERA results
1.8 e20 pot

Observed 10 nt candidates

 2.0 Background expected 

(charm)

 6.1 s nt appearance

Dm2
32 = 2.7+.7

-.6 10-3 eV2

Or use Dm2
32 to measure s(nt)
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ICARUS

 Ran in CNGS beam

 600 tons in 2 modules

 Pioneered LAr technology

 Overcame many challenges but 

took a long time.

 Ended up more R&D than physics
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Questions?
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Current

long-baseline n

experiments
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 T2K  (J-PARC)
 NOvA (NuMI)



Analysis Issue
P(nm→ne) (in Vacuum)

P(nm→ne) = P1 + P2 + P3 + P4

 P1 = sin2(23) sin2(213) sin2(1.27 Dm31
2 L/E)        

 P2 = cos2(23) sin2(212) sin2(1.27 Dm21
2 L/E) 

 P3 =   -/+ J sin(d) sin(1.27 Dm31
2 L/E)                        

 P4 = J cos(d) cos(1.27 Dm31
2 L/E)

where J = cos(13) sin (212) sin (213) sin (223) x

sin (1.27 Dm31
2 L/E) sin (1.27 Dm21

2 L/E) 
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Matter effects

Oscillations in matter

❖P=P(,,,Dm2,Dm2,d,ne, mass order) 

Enhance oscillations for neutrinos in the 
normal mass order

 Enhance oscillations for antineutrinos in 
the inverted mass order
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n, n̅ oscillation 
probabilities
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More Distance

Comparison of 800 km to 1300 km

Spectra

n n ̅
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T2K

 Accelerator at Tokai (J-PARC)

 Higher intensity than KEK

 Same far detector as K2K (i.e. Super-K)

 Off-axis for nm → ne

 Better ND than K2K 
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T2K results
from 2.2e20 pot
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T2K results
from 2.2e21 pot

 89 ne candidates with 14.7(7.6)e20 pot

 CPV, 2s CL for dCP doesn’t include 0 or 
p

p

 sin223 = 0.526+0.032
-0.036

 Dm2
32 = 2.463+0.071

-0.070 10-3 eV2

 Normal mass order favored

 2.5 times more data planned
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T2K-II proposal

 2016 proposal

 7.8e21 pot -> 20 e21 pot

 23 to 1.7, Dm2
32 to 1%

 ND upgrade

 Results before 2026

J-PARC upgrades

Improving sensitivity
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Questions?
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NOnA
Neutrino Oscillation ne appearance

 Same beamline as MINOS

 En tuned lower (2 GeV)

 Oscillation max - 810 km

 14 kT FD segmented scintillator
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NOnA
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NOnA events

Particle Identification (PID)

 nm CC

 ne CC

 NC

 Cosmic

 PID originally done with 

cuts.  This is now mostly 

done with Machine 

Learning techniques

 MC

 Data
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“CVN”

Machine Learning

Pattern recognition 
without 
reconstruction
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nm

ne



NOnA results
from 21.3e20 pot

nm → nm (total ; Background)

 (8.9e20 n) 113 nm ; 4.2

n̅m → n̅m

 (12.3e20 n̅) 102 nm ; 2.2

nm → ne

 58 ne ; 15

n̅m → n̅e

 27 n̅e ; 10.3
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NOnA results
from 21.3e20 pot

 Prefer NO by 1.9 s

 Upper Octant at 1.6 s

 Exclude d = p/2 in IO >3s

 Dm2
32 = 2.48+0.10

-0.06 10-3eV2

 sin223 = 0.56  0.04 (Upper)
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NOnA plans
by 2024

❑36e20 pot  2 by 2024

❑3s for 30% of d

❑3s rejection of maximal mixing for 

sin223 < 0.43 or > 0.59
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Draft Fermilab
Long-Range Schedule
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Long-Baseline n
Demographics

 = 1036

7 September 2019 Maury Goodman - Pontecorvo School 59



Questions?
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Future

long-baseline n

experiments
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DUNE
Deep Underground Neutrino Experiment

•As of January 2019

1202 collaborators from 183 institutions in 31 countries

 648 faculty/scientist, 201 PDs, 119 engineers, 234 PhD students
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Anatomy of DUNE

15m x 15 m x 65 m
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DUNE
removing muck from old “Ore Pass”
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DUNE 
Single Phase-Dual Phase
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Strategy

The DUNE Collaboration is pursuing and 
prototyping two LAr TPC technologies, SP &DP

The collaboration is planning for the 1st 10 kT
module to be SP & 2nd DP (2+1+1 model with 
3rd module SP and 4th ‘module of opportunity’)

Sequencing (SP-DP-SP vs. SP-SP-DP) will 
depend on ProtoDUNE results & resources
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DUNE Schedule

 Physics TDR will be available soon

 Detector 1 ready to start installation August 2024

 Detector 1 ready for cool down August 2025

 Detector 1 ready for physics late summer 2026

 Detector 2 ready to start installation August 2025

 Detector 2 ready for cool down August 2026

 Detector 2 ready for physics late summer 2027
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Projected DUNE 
sensitivities 10 y
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2019 calculations for 10 
staged years of DUNE

See CP Violation Measure dCP

Measure 23
Mass order

9 possible values



DUNE sensitivities 
versus exposure

Sensitivities vs time 
(exposure)

Nominal analysis

With systematics

 Assuming 3n
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Measure dCP Measure 13

Measure 23 Measure Dm2
32



Questions?
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Hyper-Kamiokande

186 kton (fiducial) Water detector (10Super-K)

J-PARC upgraded to 1.3 MW

Not approved, but a “priority project” by MEXT’s 

roadmap
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Projected 
Hyper-K sensitivity
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Hyper-K
mass order & CP

80% of d for 3s CPV

8s for T2K best fit

s(d) = 22(7) for -90 (0)
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Questions?
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Other accelerator-based 

neutrino experiments
other than long-baseline n experiments
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1. Pre-oscillation days

❑Establish neutral currents

❑Measure structure functions

❑Measure Weinberg angle
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NuTeV anomaly

Measure

• Follow-up experiment not 
approved
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2. Production experiments

The Goal is to study neutrino production rates 

by measuring p/K yields from pN reactions

Need for understanding of:

1. p/K yields from fixed Ep proton on nuclei

2. p/K survival from scattering leaving the target

 Thin targets for (1); Actual targets for (2)
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MIPP results

 120 GeV protons off a 

NuMI target

 p+(left) an p- (right) vs px

in bins of pt
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3. Beam Dumps

 nt from Ds →tnt decay 

 203 n events in emulsion 

 See 4, expected 4.1  1.4

 BG (charm) 0.41  0.15
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4. Prototypes

 Drops in purity due to stop 
of the liquid argon 
recirculation (sometime 
planned and sometime not)

7 September 2019 Maury Goodman 81

Study n detector prototypes in 

charged particle test beams to 

determine detector performance:



ProtoDUNE-SP
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ProtoDUNE Events &
future CERN plan

✓ 2018 ProtoDUNE-SP run

✓ Use cosmics through Oct 2020 for SP & DP
✓ Upgrade SP Oct 2020- Sep 2021
✓more beam Apr-May 2022
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5. Cross section studies

 Study n in the few GeV region

 Mix of QE, DIS, resonance

 Importance of 2p2h or Meson 

Exchange Currents (MEC) 

 Nuclear Effects
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Questions?
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6. Early short-baseline 
oscillation experiments

❖If hot dark matter had been the missing matter, 

i.e. Wn ~ 0.2, this implied mn ~ 10 eV

❖This motivated a number of neutrino 
oscillation searches at FNAL, CERN, 
Rutherford Lab, BNL, LANL, etc.

❖LSND (originally designed to search for what 
we now call 12) had a signal; others didn’t.

❖After SNO, we knew LSND wasn’t 12, but it 
has been interpreted as a 4th sterile n.
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Various limits 
with LSND “signal”
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7. Fermilab’s
Short-Baseline Program

Designed to confirm or refute the sterile 
neutrino interpretation of the short-baseline 
anomalies (LSND excess, MiniBooNE, 
Chromium source deficit, and the reactor 
anomaly.)

SBN  MicroBooNE + SBND + ICARUS
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3-Detector SBN
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Is the MiniBooNE low energy 
excess due to sterile ns?

MiniBooNE 2007
“MiniBooNE Results Inconsistent with 

Existence of "Sterile" Neutrinos”
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MiniBooNE 2018
“… there are additional types of neutrinos, 

albeit with properties different from the 3 

“normal” types. These extras are known as 

sterile neutrinos.”



My skepticism

• There is/are an anomaly(ies).   Will SBN resolve anything?
• In my opinion…maybe & maybe not.

– 3+1 sterile neutrino solutions to the short-baseline anomalies 
have been long ruled out.

– If you don’t know what you’re looking for, you might find it, and 
you might not, but you can’t rule it out.

Why physicist disagree:
If the data doesn’t agree with the null hypothesis or 
the alternative hypothesis, some say you need more 
data, while some say you need more hypotheses.

– Further, if SBN finds an interesting or uninteresting explanation 
of the MiniBooNE LE excess, that still doesn’t explain the LSND 
excess.  
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Questions?
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8. Other physics in long-baseline 

neutrino detectors

 Solar n

Atmospheric n

 Supernova n

Nucleon decay

Dark matter

Cosmic rays

 Seasonal Variations

 Lorentz Violation

…

Discovery of Associated 

Production at TeV energies

by measuring the charge ratio of 

cosmic ray muons underground

p+/p- ~ 1.25;      K+/K- ~ 6
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Conclusions
accelerator-based n experiments

Previous experiments brought understanding to 

the oscillations parameters from atmospheric n

experiments.

Current & future ones are helping to finish 

measuring all parameters of “n standard model”

For the next decade, DUNE & Hyper-K will 

require attention from the great majority of n

physicists in the world.
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Maury Goodman - Pontecorvo School

Advertisement(s)

Free monthly neutrino rumor newsletter  --

It is called “long-baseline news” but covers a 
wide range of neutrino physics

~100 lines,  

send “subscribe” to maury.goodman@anl.gov or see 
http://www.hep.anl.gov/ndk/longbnews/

Join 2461 subscribers.
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OPTIONAL HOMEWORK

1. At what En are the first and second oscillation max for each of the 
8 experiments?

2. List some possible explanations for the short-baseline anomalies 
(LSND, MiniBooNE, Ga, Reactor)?

3. What is the optimal distance for a nt appearance experiment in a 
background-free detector?

4. Assuming 3n, can dCP be measured without running n̅?
5. How would sterile n, non-standard interactions, or other new n

physics affect measurements in long-baseline experiments?
6. Assuming the normal mass order with 3n & hierarchical masses, 

which n mass dominates:
a) the effective n mass measured by 0nbb?
b) the effective n mass measured by direct mass experiments like KATRIN?

Email solutions to maury.goodman@anl.gov before 15 Oct 2019
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backup
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Intelligent Design of 
Neutrino Parameters? (~2005)

(from S. Wojcicki) 

• The optimum choice for Dm2
21?                                   

Such as to give resonant transition (MSW effect) in the middle of solar energy 
spectrum -, Dm2

21 = 8.2 x 10-5 eV2

• The optimum choice for sin12? 
Big enough for oscillations to be seen in KamLAND - ~0.8
• The optimum choice for Dm2

32?                                    
Such as to give full oscillation in the middle of the range of possible distances that 

atmospheric n’s travel to get to the detector - Dm2
32 = 2.3 x 10-3 eV2

• The optimum choice for sin23?                                     
Big enough so that oscillations could be seen easily - 23 ~ p/4
• The optimum choice for sin13?                                   
Small enough so as not to confuse interpretation of the above - 13 < 100

• But the acid test - will 13 be big enough to see CP violation and determine mass 
hierarchy?
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And still?

•By 2011 we learned that 13 was as large as could be imagined 
in 2006

How about the remaining parameters so that the “Intelligent 
Design” arguments can get longer (2012)?

d ~ 3p/2
 to most quickly determines the hierarchy

 to get large CP violation & answer the CP violation question

The inverted hierarchy, so we can tell Dirac/Majorana & 
maybe beta decay endpoint 

Majorana, which seems to be more interesting so that 
some of our theorists will be happy (seesaw, etc.)
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It appears:

•✓By 2011 we learned that 13 was as large as could be imagined 
in 2006

How about the remaining parameters so that the “Intelligent 
Design” arguments can get longer (2012)?

d ~ 3p/2
 to most quickly determines the hierarchy

 to get large CP violation & answer the CP violation question

The inverted hierarchy, so we can tell Dirac/Majorana & 
maybe beta decay endpoint 

Majorana, which seems to be more interesting so that 
some of our theorists will be happy (seesaw, etc.)

✓



?
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Other ideas

❖ LAGUNA

❖ NuSTORM

❖ DAEdALUS

❖ SSC -> moon
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n beams
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n factory
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•

Beta Beams

 Accelerate Heavy ions 
which b decay


6He for n,   18Ne for n̅

 Might use CERN-ISOLDE 
heavy ion accelerator, PS, 
SPS, +storage ring

ne

nm

MeV
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