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•What are gravitational waves?
• How are they detected?
•What produces gravitational waves?
• Discoveries, what we learned so far
•Multi-messenger astrophysics
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Einstein just published his General Theory of Relativity, 
and is looking for ways to observationally test it. Albert Einstein
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gravity  =  curved spacetime



Credit: The Scientific Monthly

1916

Albert Einstein

Cr
ed

it:
Sh

ut
te

rs
to

ck
.c

om

gravitational waves: disturbances in the curvature of 
spacetime, generated by accelerated masses, that 
propagate as waves.
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Albert Einstein

To a large extent, gravitational waves 
are produced like electromagnetic waves.

ü An accelerated charged particle will emit waves.
ü Acceleration cannot be spherically symmetric.
ü Propagates with the speed of light.

v Gravitational wave emission requires a changing 
quadrupole moment.

v It is effectively changing distances perpendicular to the 
propagation (transverse wave).

v Polarizations: + and X (plus and cross).
v Amplitude decreases as 1/r.
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Albert Einstein

gravity is weak



Resonance bar detectors (Joseph Weber)

1960’s

Concept: tidal forces due to gravitational waves 
distort the bar. It resonates if the distortion changes 
at the resonance frequency. 

Richard Feynman convinced the community at the 
1957 Chapel Hill conference (under pseudonym Mr. 
Smith) that gravitational waves are real using the 
“sticky bead” argument.

1969: Weber claims discovery of gravitational waves. 
He starts claiming regular detections. Others try but 
can’t reproduce his results.



Laser Interferometer 
Gravitational-wave Observatory

Courtesy: David Shoemaker

Rai Weiss

1968

Courtesy: David Shoemaker Courtesy: David Shoemaker

First experiment: laser interferometer with ~1m armlength.

(LIGO)



LASER INTERFEROMETER



Kipp Thorn started thinking about what could produce detectable gravitational waves.



Colliding black holes and neutron stars

Image credit: Paramount pictures/Warner bros.



GRAVITATIONAL WAVES
Typical distance variation at Earth (~10-21)

0.000000000000000000001



LIGO Hanford, WA LIGO Livingston, LA



How can we reach such a sensitivity?
LIGO “noise curve”

Strain = fractional length 
change of interferometer 
arm.



The interferometer arms can have 1MW laser power

This reduces “shot noise” at 
high frequencies due to the 
fluctuation of the number of 

photons “hitting” the mirrors.



Seismic isolation

Reduces noise at the 
lowest frequencies.



Ultrahigh vacuum

Air would scatter the laser.

(LIGO is the World’s biggest vacuum)





timeline
Sep 18, 2015

Jan 12, 2016

take data heretest that 
everything 

works

Sep 14

GW

9:50:45 UTC

trigger by generic search

+ 3 min

September 14th, 2015



Abbott+ PRL 116, 061102 (2016) 

September 14th, 2015



Courtesy of Corey Gray





Abbott+ PRL 116, 061102 (2016) 

The properties of the two black 
holes can be largely reconstructed 
from the gravitational wave signal:

• Masses
• Spins
• Sky location
• Distance
• Inclination
• Orbital eccentricity
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O3 so far https://gracedb.ligo.org/latestEvent classification in O3 (so far)

https://gracedb.ligo.org/latest/

(adopted from B. Farr, LIGO-G1901170)

O1: ______

• 3 BBH

O2:______

• 1 BNS

• 7 BBH

+8 new events since this figure was made….

https://gracedb.ligo.org/latest/


isolated stellar binaries 
(field binaries)

dense stellar systems 
(dynamical encounter)

primordial black holes

How do binary black holes form?

LIGO+Virgo PRX 2019

• Mass/spin distribution
• Orbital eccentricity
• Multi-messenger emission?



LIGO+Virgo 2018

GW170729 – different origin?

• m1 possibly beyond mass limit from stellar evolution

• only binary merger with large positive spin



adopted from NASA

Observed mass ranges of black holes

29



Possible formation mechanisms for intermediate mass black holes

Highly accreting BHs

Multiple stellar mergers (Di Carlo+ 2019)

adopted from
 M

ichela M
apelli

Hierarhical mergers 
(Gerosa & Berti 2017, Fishbach+ 2017)

Primordial black holes

30
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Multi-messenger Astrophysics



Multi-messenger astrophysics 

Gravitational waves:
• Compact object 

formation / evolution

Neutrinos:
• Stellar core / structure 

Particle acceleration

Cosmic rays:
• Particle acceleration
• Environment

EM radiation:
• Particle acceleration
• Environment

1. Learn more
2. Detect more

Goals:Powerful transients:
1.    compact binary merger
2.    stellar core collapse
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• Cosmic particle acceleration
• Black hole accretion
• Stellar core collapse
• Compact binary formation channels
• Intermediate mass black holes

• Origin of heavy elements
• Environment in galactic nuclei
• Relativistic outflows
• …



<1Myr

<10Myr

Bartos+ ApJ 2017

Electromagnetic emission 
from binary black holes?

They need to reside in a dense, gaseous environment.



Bartos, Brady, Marka 2013

Compact binary mergers
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Electromagnetic signature



Electromagnetic signature

• Beamed
• Good gamma-ray FoV
• Limited localization 

(difficult to follow-up)



• Good time frame (~week)
• ~Isotropic
• Limited IR FoV / sensitivity

à not for every telescope

Electromagnetic signature



• Isotropic
• Long-term  -- easy follow-up
• Flux may be small

accretion diskaccretion disk

merger ejecta

kilonova
(near-infrared;

~ 1 week)

radioactive decay
shocks within the 

interstellar medium
(radio; years)

following Metzger & Berger 2012

(seconds)

gamma raysgamma rays

high-energy neutrinos

gamma-ray burst

Electromagnetic signature
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Stellar core collapse
Gravitational waves from 
rapidly rotating cores?

Differential rotation (e.g. Corvino+ 2010)

• Dynamical instabilities (shorter time scale)

• Secular instabilities (longer time scale)

• Magnetic distortion

Fallback accretion? (Piro & Thrane, 2012)



~100 follow-up observatories worldwide
All cosmic messengers, across the spectrum.
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Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 17

Fig. 5 Sky locations of GW events confidently detected in O1 and O2. Top panel: initial sky location
released in low-latency to the astronomers (Abbott et al 2016g; LIGO Scientific Collaboration and Virgo
Collaboration 2015; Abbott et al 2019c). Bottom panel: refined sky location including updated calibration
and final choice of waveform models (The LIGO Scientific Collaboration and the Virgo Collaboration
et al 2018). Three events (GW151012, GW170729, GW170818) among the 11 confidetent detections were
identified offline, and were not shared in low-latency. The shaded areas enclose the 90% credible regions of
the posterior probability sky areas in a Mollweide projection. The inner lines enclose regions starting from
the 10% credible area with the color scheme changing with every 10% increase in confidence level. The
localization is shown in equatorial coordinates (right ascension in hours, and declination in degrees). The
HLV label indicates events for which both the LIGO and Virgo data were used to estimate the sky location.

events detected by the two LIGO interferometers show the expected trend of the sky520

area to scale inversely with the square of the SNR (The LIGO Scientific Collaboration521

and the Virgo Collaboration et al 2018). Five among the 11 confident events were522

observed with the three-site network including the LIGO and Virgo detectors. The523

Virgo data were used to estimate the low-latency sky localization for two events524

(GW170814 and GW170817). With this contribution from a third detector we were525

able to significantly shrink the localization to areas covering a few tens of square526

degrees (see GW170814, GW170817, GW170718).527

In addition to localizing sources on the sky, it is possible to provide distance528

estimates for CBC signals since the waveform amplitude is inversely proportional to529

the luminosity distance (Veitch et al 2015; Abbott et al 2016j). Uncertainty in distance530

measurement is dominated by the degeneracy with the inclination of the binary, which531

LIGO-P1200087-v50

Localization

• Not too good, sometimes difficult to scan the whole localization



∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-2

• Gravitational-wave trigger in LIGO-Hanford only
• Livingston – noise transient
• No signal in Virgo
• Consistent with BNS merger
• 1.7s later --- GRB alert from Fermi
• Weak GRB (~10-7 erg cm-2)

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09

0.47
-
+

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 Î (

M1.60 :) and m M1.17, 1.362 Î :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.

3

The Astrophysical Journal Letters, 848:L13 (27pp), 2017 October 20 Abbott et al.

∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
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−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
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BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
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exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.
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At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
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in the LIGO-Livingston detector have been subtracted, as
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LIGO, Virgo, Fermi GBM, and INTEGRAL ApJ Lett (2017)

LIGO, Virgo, PRL (2017)



In the mid-1960s, gamma-ray bursts (GRBs) were discovered
by the Vela satellites, and their cosmic origin was first established
by Klebesadel et al. (1973). GRBs are classified as long or short,
based on their duration and spectral hardness(Dezalay et al. 1992;
Kouveliotou et al. 1993). Uncovering the progenitors of GRBs
has been one of the key challenges in high-energy astrophysics
ever since(Lee & Ramirez-Ruiz 2007). It has long been
suggested that short GRBs might be related to neutron star
mergers (Goodman 1986; Paczynski 1986; Eichler et al. 1989;
Narayan et al. 1992).

In 2005, the field of short gamma-ray burst (sGRB) studies
experienced a breakthrough (for reviews see Nakar 2007; Berger
2014) with the identification of the first host galaxies of sGRBs
and multi-wavelength observation (from X-ray to optical and
radio) of their afterglows (Berger et al. 2005; Fox et al. 2005;
Gehrels et al. 2005; Hjorth et al. 2005b; Villasenor et al. 2005).
These observations provided strong hints that sGRBs might be
associated with mergers of neutron stars with other neutron stars
or with black holes. These hints included: (i) their association with
both elliptical and star-forming galaxies (Barthelmy et al. 2005;
Prochaska et al. 2006; Berger et al. 2007; Ofek et al. 2007; Troja
et al. 2008; D’Avanzo et al. 2009; Fong et al. 2013), due to a very
wide range of delay times, as predicted theoretically(Bagot et al.
1998; Fryer et al. 1999; Belczynski et al. 2002); (ii) a broad
distribution of spatial offsets from host-galaxy centers(Berger
2010; Fong & Berger 2013; Tunnicliffe et al. 2014), which was
predicted to arise from supernova kicks(Narayan et al. 1992;
Bloom et al. 1999); and (iii) the absence of associated
supernovae(Fox et al. 2005; Hjorth et al. 2005c, 2005a;
Soderberg et al. 2006; Kocevski et al. 2010; Berger et al.
2013a). Despite these strong hints, proof that sGRBs were
powered by neutron star mergers remained elusive, and interest
intensified in following up gravitational-wave detections electro-
magnetically(Metzger & Berger 2012; Nissanke et al. 2013).

Evidence of beaming in some sGRBs was initially found by
Soderberg et al. (2006) and Burrows et al. (2006) and confirmed

by subsequent sGRB discoveries (see the compilation and
analysis by Fong et al. 2015 and also Troja et al. 2016). Neutron
star binary mergers are also expected, however, to produce
isotropic electromagnetic signals, which include (i) early optical
and infrared emission, a so-called kilonova/macronova (hereafter
kilonova; Li & Paczyński 1998; Kulkarni 2005; Rosswog 2005;
Metzger et al. 2010; Roberts et al. 2011; Barnes & Kasen 2013;
Kasen et al. 2013; Tanaka & Hotokezaka 2013; Grossman et al.
2014; Barnes et al. 2016; Tanaka 2016; Metzger 2017) due to
radioactive decay of rapid neutron-capture process (r-process)
nuclei(Lattimer & Schramm 1974, 1976) synthesized in
dynamical and accretion-disk-wind ejecta during the merger;
and (ii) delayed radio emission from the interaction of the merger
ejecta with the ambient medium (Nakar & Piran 2011; Piran et al.
2013; Hotokezaka & Piran 2015; Hotokezaka et al. 2016). The
late-time infrared excess associated with GRB 130603B was
interpreted as the signature of r-process nucleosynthesis (Berger
et al. 2013b; Tanvir et al. 2013), and more candidates were
identified later (for a compilation see Jin et al. 2016).
Here, we report on the global effort958 that led to the first joint

detection of gravitational and electromagnetic radiation from a
single source. An ∼ 100 s long gravitational-wave signal
(GW170817) was followed by an sGRB (GRB 170817A) and
an optical transient (SSS17a/AT 2017gfo) found in the host
galaxy NGC 4993. The source was detected across the
electromagnetic spectrum—in the X-ray, ultraviolet, optical,
infrared, and radio bands—over hours, days, and weeks. These
observations support the hypothesis that GW170817 was
produced by the merger of two neutron stars in NGC4993,
followed by an sGRB and a kilonova powered by the radioactive
decay of r-process nuclei synthesized in the ejecta.

Figure 1. Localization of the gravitational-wave, gamma-ray, and optical signals. The left panel shows an orthographic projection of the 90% credible regions from
LIGO (190 deg2; light green), the initial LIGO-Virgo localization (31 deg2; dark green), IPN triangulation from the time delay between Fermi and INTEGRAL (light
blue), and Fermi-GBM (dark blue). The inset shows the location of the apparent host galaxy NGC 4993 in the Swope optical discovery image at 10.9 hr after the
merger (top right) and the DLT40 pre-discovery image from 20.5 days prior to merger (bottom right). The reticle marks the position of the transient in both images.

958 A follow-up program established during initial LIGO-Virgo observations
(Abadie et al. 2012) was greatly expanded in preparation for Advanced LIGO-
Virgo observations. Partners have followed up binary black hole detections,
starting with GW150914 (Abbott et al. 2016a), but have discovered no firm
electromagnetic counterparts to those events.
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Localization and search for counterpart

• GW localization: ~30 deg2

• Virgo non-detection helped

• Overlap with Fermi GRB

• GW: binary neutron star merger

• Distance: ~40 Mpc (+-10)

• GCN notice issued within 30min

• Over 60 observatories searched for counterparts 

(gamma-ray, X-ray, UVOIR, radio, neutrino)

• Optical transient found within 11h
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NGC 4993 SSS17a

Hubble Space Telescope Swope TelescopeAugust 17, 2017April 28, 2017

A B

Figure 4 30 ⇥ 30 images centered on NGC 4993 with North up and East left. Panel A: Hubble
Space Telescope F606W-band (broad V ) image from 4 months before the GW trigger (25, 35).
Panel B: Swope image of SSS17a. The i-band image was obtained on 2017 August 17 at 23:33
UT by the Swope telescope at Las Campanas Observatory. SSS17a is marked with the red
arrow. No object is present in the Hubble image at the position of SSS17a (25, 35).
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Detection of a kilonova

• NGC 4993 --- 40 Mpc
• 2 kpc from center
• i = 17.5 mag
• Very close distance --- 1m telescopes could make significant contribution
• Use of galaxy catalogs



Figure 2. Timeline of the discovery of GW170817, GRB 170817A, SSS17a/AT 2017gfo, and the follow-up observations are shown by messenger and wavelength
relative to the time tc of the gravitational-wave event. Two types of information are shown for each band/messenger. First, the shaded dashes represent the times when
information was reported in a GCN Circular. The names of the relevant instruments, facilities, or observing teams are collected at the beginning of the row. Second,
representative observations (see Table 1) in each band are shown as solid circles with their areas approximately scaled by brightness; the solid lines indicate when the
source was detectable by at least one telescope. Magnification insets give a picture of the first detections in the gravitational-wave, gamma-ray, optical, X-ray, and
radio bands. They are respectively illustrated by the combined spectrogram of the signals received by LIGO-Hanford and LIGO-Livingston (see Section 2.1), the
Fermi-GBM and INTEGRAL/SPI-ACS lightcurves matched in time resolution and phase (see Section 2.2), 1 5×1 5 postage stamps extracted from the initial six
observations of SSS17a/AT 2017gfo and four early spectra taken with the SALT (at tc+1.2 days; Buckley et al. 2017; McCully et al. 2017b), ESO-NTT (at
tc+1.4 days; Smartt et al. 2017), the SOAR 4 m telescope (at tc+1.4 days; Nicholl et al. 2017d), and ESO-VLT-XShooter (at tc+2.4 days; Smartt et al. 2017) as
described in Section 2.3, and the first X-ray and radio detections of the same source by Chandra (see Section 3.3) and JVLA (see Section 3.4). In order to show
representative spectral energy distributions, each spectrum is normalized to its maximum and shifted arbitrarily along the linear y-axis (no absolute scale). The high
background in the SALT spectrum below 4500Å prevents the identification of spectral features in this band (for details McCully et al. 2017b).
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From M and q, we obtain a measure of the component
masses m1 ∈ ð1.36; 2.26ÞM⊙ and m2 ∈ ð0.86; 1.36ÞM⊙,
shown in Fig. 4. As discussed in Sec. I, these values are
within the range of known neutron-star masses and below
those of known black holes. In combination with electro-
magnetic observations, we regard this as evidence of the
BNS nature of GW170817.
The fastest-spinning known neutron star has a dimension-

less spin≲0.4 [153], and the possible BNS J1807-2500B has
spin≲0.2 [154], after allowing for a broad range of equations
of state. However, among BNS that will merge within a
Hubble time, PSR J0737-3039A [155] has the most extreme
spin, less than ∼0.04 after spin-down is extrapolated to
merger. If we restrict the spin magnitude in our analysis to
jχj ≤ 0.05, consistent with the observed population, we
recover the mass ratio q ∈ ð0.7; 1.0Þ and component masses
m1 ∈ ð1.36;1.60ÞM⊙ andm2 ∈ ð1.17; 1.36ÞM⊙ (see Fig. 4).
We also recover χeff ∈ ð−0.01; 0.02Þ, where the upper limit
is consistent with the low-spin prior.
Our first analysis allows the tidal deformabilities of the

high-mass and low-mass component, Λ1 and Λ2, to vary
independently. Figure 5 shows the resulting 90% and
50% contours on the posterior distribution with the
post-Newtonian waveform model for the high-spin and

low-spin priors. As a comparison, we show predictions
coming from a set of candidate equations of state for
neutron-star matter [156–160], generated using fits from
[161]. All EOS support masses of 2.01 # 0.04M⊙.
Assuming that both components are neutron stars described
by the same equation of state, a single function ΛðmÞ is
computed from the static l ¼ 2 perturbation of a Tolman-
Oppenheimer-Volkoff solution [103]. The shaded regions in
Fig. 5 represent the values of the tidal deformabilitiesΛ1 and
Λ2 generated using an equation of state from the 90% most
probable fraction of the values ofm1 andm2, consistent with
the posterior shown in Fig. 4. We find that our constraints on
Λ1 and Λ2 disfavor equations of state that predict less
compact stars, since the mass range we recover generates
Λ values outside the 90% probability region. This is con-
sistent with radius constraints from x-ray observations of
neutron stars [162–166]. Analysis methods, in development,
that a priori assume the same EOS governs both stars should
improve our constraints [167].
To leading order in Λ1 and Λ2, the gravitational-wave

phase is determined by the parameter

~Λ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
ð1Þ

[101,117]. Assuming a uniform prior on ~Λ, we place a 90%
upper limit of ~Λ ≤ 800 in the low-spin case and ~Λ ≤ 700 in
the high-spin case. We can also constrain the functionΛðmÞ
more directly by expanding ΛðmÞ linearly about m ¼
1.4M⊙ (as in [112,115]), which gives Λð1.4M⊙Þ ≤ 1400
for the high-spin prior and Λð1.4M⊙Þ ≤ 800 for the low-
spin prior. A 95% upper bound inferred with the low-spin
prior, Λð1.4M⊙Þ ≤ 970, begins to compete with the 95%
upper bound of 1000 derived from x-ray observations
in [168].
Since the energy emitted in gravitational waves depends

critically on the EOS of neutron-star matter, with a wide
range consistent with constraints above, we are only able to
place a lower bound on the energy emitted before the onset
of strong tidal effects at fGW∼600Hz asErad > 0.025M⊙c2.
This is consistent with Erad obtained from numerical
simulations and fits for BNS systems consistent with
GW170817 [114,169–171].
We estimate systematic errors from waveform modeling

by comparing the post-Newtonian results with parameters
recovered using an effective-one-body model [124] aug-
mented with tidal effects extracted from numerical relativity
with hydrodynamics [172]. This does not change the
90% credible intervals for component masses and effective
spin under low-spin priors, but in the case of high-spin priors,
we obtain the more restrictive m1 ∈ ð1.36; 1.93ÞM⊙, m2 ∈
ð0.99; 1.36ÞM⊙, and χeff ∈ ð0.0; 0.09Þ. Recovered tidal
deformabilities indicate shifts in the posterior distributions
towards smaller values, with upper bounds for ~Λ and
Λð1.4M⊙Þ reduced by a factor of roughly (0.8, 0.8) in the

FIG. 4. Two-dimensional posterior distribution for the compo-
nent massesm1 andm2 in the rest frame of the source for the low-
spin scenario (jχj < 0.05, blue) and the high-spin scenario
(jχj < 0.89, red). The colored contours enclose 90% of the
probability from the joint posterior probability density function
for m1 and m2. The shape of the two dimensional posterior is
determined by a line of constant M and its width is determined
by the uncertainty inM. The widths of the marginal distributions
(shown on axes, dashed lines enclose 90% probability away from
equal mass of 1.36M⊙) is strongly affected by the choice of spin
priors. The result using the low-spin prior (blue) is consistent with
the masses of all known binary neutron star systems.
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Information in Gravitational Waves

to the one observed at the LIGO-Livingston detector during
GW170817. After applying the glitch subtraction tech-
nique, we found that the bias in recovered parameters
relative to their known values was well within their
uncertainties. This can be understood by noting that a
small time cut out of the coherent integration of the phase
evolution has little impact on the recovered parameters. To
corroborate these results, the test was also repeated with a
window function applied, as shown in Fig. 2 [73].
The source was localized to a region of the sky 28 deg2

in area, and 380 Mpc3 in volume, near the southern end of
the constellation Hydra, by using a combination of the
timing, phase, and amplitude of the source as observed in
the three detectors [138,139]. The third detector, Virgo, was
essential in localizing the source to a single region of the
sky, as shown in Fig. 3. The small sky area triggered a
successful follow-up campaign that identified an electro-
magnetic counterpart [50].
The luminosity distance to the source is 40þ8

−14 Mpc, the
closest ever observed gravitational-wave source and, by
association, the closest short γ-ray burst with a distance
measurement [45]. The distance measurement is correlated
with the inclination angle cos θJN ¼ Ĵ · N̂, where Ĵ is the
unit vector in the direction of the total angular momentum
of the system and N̂ is that from the source towards the
observer [140]. We find that the data are consistent with an
antialigned source: cos θJN ≤ −0.54, and the viewing angle
Θ≡minðθJN; 180° − θJNÞ is Θ ≤ 56°. Since the luminos-
ity distance of this source can be determined independently
of the gravitational wave data alone, we can use the
association with NGC 4993 to break the distance degen-
eracy with cos θJN . The estimated Hubble flow velocity
near NGC 4993 of 3017 % 166 km s−1 [141] provides a
redshift, which in a flat cosmology with H0 ¼ 67.90 %
0.55 km s−1 Mpc−1 [90], constrains cos θJN < −0.88 and
Θ < 28°. The constraint varies with the assumptions made
about H0 [141].

From the gravitational-wave phase and the ∼3000 cycles
in the frequency range considered, we constrain the chirp
mass in the detector frame to be Mdet ¼ 1.1977þ0.0008

−0.0003M⊙
[51]. The mass parameters in the detector frame are related
to the rest-frame masses of the source by its redshift z as
mdet ¼ mð1þ zÞ [142]. Assuming the above cosmology
[90], and correcting for the motion of the Solar System
Barycenter with respect to the Cosmic Microwave
Background [143], the gravitational-wave distance meas-
urement alone implies a cosmological redshift of
0.008þ0.002

−0.003 , which is consistent with that of NGC 4993
[50,141,144,145]. Without the host galaxy, the uncertainty
in the source’s chirp mass M is dominated by the
uncertainty in its luminosity distance. Independent of the
waveform model or the choice of priors, described below,
the source-frame chirp mass is M ¼ 1.188þ0.004

−0.002M⊙.
While the chirp mass is well constrained, our estimates

of the component masses are affected by the degeneracy
between mass ratio q and the aligned spin components χ1z
and χ2z [38,146–150]. Therefore, the estimates of q and
the component masses depend on assumptions made
about the admissible values of the spins. While χ < 1
for black holes, and quark stars allow even larger spin
values, realistic NS equations of state typically imply
more stringent limits. For the set of EOS studied in [151]
χ < 0.7, although other EOS can exceed this bound. We
began by assuming jχj ≤ 0.89, a limit imposed by
available rapid waveform models, with an isotropic prior
on the spin direction. With these priors we recover q ∈
ð0.4; 1.0Þ and a constraint on the effective aligned spin of
the system [127,152] of χeff ∈ ð−0.01; 0.17Þ. The aligned
spin components are consistent with zero, with stricter
bounds than in previous BBH observations [26,28,29].
Analysis using the effective precessing phenomenological
waveforms of [128], which do not contain tidal effects,
demonstrates that spin components in the orbital plane are
not constrained.

TABLE I. Source properties for GW170817: we give ranges encompassing the 90% credible intervals for different assumptions of the
waveform model to bound systematic uncertainty. The mass values are quoted in the frame of the source, accounting for uncertainty in
the source redshift.

Low-spin priors ðjχj ≤ 0.05Þ High-spin priors ðjχj ≤ 0.89Þ
Primary mass m1 1.36–1.60 M⊙ 1.36–2.26 M⊙
Secondary mass m2 1.17–1.36 M⊙ 0.86–1.36 M⊙
Chirp mass M 1.188þ0.004

−0.002M⊙ 1.188þ0.004
−0.002M⊙

Mass ratio m2=m1 0.7–1.0 0.4–1.0
Total mass mtot 2.74þ0.04

−0.01M⊙ 2.82þ0.47
−0.09M⊙

Radiated energy Erad > 0.025M⊙c2 > 0.025M⊙c2
Luminosity distance DL 40þ8

−14 Mpc 40þ8
−14 Mpc

Viewing angle Θ ≤ 55° ≤ 56°
Using NGC 4993 location ≤ 28° ≤ 28°
Combined dimensionless tidal deformability ~Λ ≤ 800 ≤ 700
Dimensionless tidal deformability Λð1.4M⊙Þ ≤ 800 ≤ 1400
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to the one observed at the LIGO-Livingston detector during
GW170817. After applying the glitch subtraction tech-
nique, we found that the bias in recovered parameters
relative to their known values was well within their
uncertainties. This can be understood by noting that a
small time cut out of the coherent integration of the phase
evolution has little impact on the recovered parameters. To
corroborate these results, the test was also repeated with a
window function applied, as shown in Fig. 2 [73].
The source was localized to a region of the sky 28 deg2

in area, and 380 Mpc3 in volume, near the southern end of
the constellation Hydra, by using a combination of the
timing, phase, and amplitude of the source as observed in
the three detectors [138,139]. The third detector, Virgo, was
essential in localizing the source to a single region of the
sky, as shown in Fig. 3. The small sky area triggered a
successful follow-up campaign that identified an electro-
magnetic counterpart [50].
The luminosity distance to the source is 40þ8

−14 Mpc, the
closest ever observed gravitational-wave source and, by
association, the closest short γ-ray burst with a distance
measurement [45]. The distance measurement is correlated
with the inclination angle cos θJN ¼ Ĵ · N̂, where Ĵ is the
unit vector in the direction of the total angular momentum
of the system and N̂ is that from the source towards the
observer [140]. We find that the data are consistent with an
antialigned source: cos θJN ≤ −0.54, and the viewing angle
Θ≡minðθJN; 180° − θJNÞ is Θ ≤ 56°. Since the luminos-
ity distance of this source can be determined independently
of the gravitational wave data alone, we can use the
association with NGC 4993 to break the distance degen-
eracy with cos θJN . The estimated Hubble flow velocity
near NGC 4993 of 3017 % 166 km s−1 [141] provides a
redshift, which in a flat cosmology with H0 ¼ 67.90 %
0.55 km s−1 Mpc−1 [90], constrains cos θJN < −0.88 and
Θ < 28°. The constraint varies with the assumptions made
about H0 [141].

From the gravitational-wave phase and the ∼3000 cycles
in the frequency range considered, we constrain the chirp
mass in the detector frame to be Mdet ¼ 1.1977þ0.0008

−0.0003M⊙
[51]. The mass parameters in the detector frame are related
to the rest-frame masses of the source by its redshift z as
mdet ¼ mð1þ zÞ [142]. Assuming the above cosmology
[90], and correcting for the motion of the Solar System
Barycenter with respect to the Cosmic Microwave
Background [143], the gravitational-wave distance meas-
urement alone implies a cosmological redshift of
0.008þ0.002

−0.003 , which is consistent with that of NGC 4993
[50,141,144,145]. Without the host galaxy, the uncertainty
in the source’s chirp mass M is dominated by the
uncertainty in its luminosity distance. Independent of the
waveform model or the choice of priors, described below,
the source-frame chirp mass is M ¼ 1.188þ0.004

−0.002M⊙.
While the chirp mass is well constrained, our estimates

of the component masses are affected by the degeneracy
between mass ratio q and the aligned spin components χ1z
and χ2z [38,146–150]. Therefore, the estimates of q and
the component masses depend on assumptions made
about the admissible values of the spins. While χ < 1
for black holes, and quark stars allow even larger spin
values, realistic NS equations of state typically imply
more stringent limits. For the set of EOS studied in [151]
χ < 0.7, although other EOS can exceed this bound. We
began by assuming jχj ≤ 0.89, a limit imposed by
available rapid waveform models, with an isotropic prior
on the spin direction. With these priors we recover q ∈
ð0.4; 1.0Þ and a constraint on the effective aligned spin of
the system [127,152] of χeff ∈ ð−0.01; 0.17Þ. The aligned
spin components are consistent with zero, with stricter
bounds than in previous BBH observations [26,28,29].
Analysis using the effective precessing phenomenological
waveforms of [128], which do not contain tidal effects,
demonstrates that spin components in the orbital plane are
not constrained.

TABLE I. Source properties for GW170817: we give ranges encompassing the 90% credible intervals for different assumptions of the
waveform model to bound systematic uncertainty. The mass values are quoted in the frame of the source, accounting for uncertainty in
the source redshift.

Low-spin priors ðjχj ≤ 0.05Þ High-spin priors ðjχj ≤ 0.89Þ
Primary mass m1 1.36–1.60 M⊙ 1.36–2.26 M⊙
Secondary mass m2 1.17–1.36 M⊙ 0.86–1.36 M⊙
Chirp mass M 1.188þ0.004

−0.002M⊙ 1.188þ0.004
−0.002M⊙

Mass ratio m2=m1 0.7–1.0 0.4–1.0
Total mass mtot 2.74þ0.04

−0.01M⊙ 2.82þ0.47
−0.09M⊙

Radiated energy Erad > 0.025M⊙c2 > 0.025M⊙c2
Luminosity distance DL 40þ8

−14 Mpc 40þ8
−14 Mpc

Viewing angle Θ ≤ 55° ≤ 56°
Using NGC 4993 location ≤ 28° ≤ 28°
Combined dimensionless tidal deformability ~Λ ≤ 800 ≤ 700
Dimensionless tidal deformability Λð1.4M⊙Þ ≤ 800 ≤ 1400
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low-spin case and (1.0, 0.7) in the high-spin case. Further
analysis is required to establish the uncertainties of these
tighter bounds, and a detailed studyof systematics is a subject
of ongoing work.
Preliminary comparisons with waveform models under

development [171,173–177] also suggest the post-
Newtonian model used will systematically overestimate
the value of the tidal deformabilities. Therefore, based on
our current understanding of the physics of neutron stars,
we consider the post-Newtonian results presented in this
Letter to be conservative upper limits on tidal deform-
ability. Refinements should be possible as our knowledge
and models improve.

V. IMPLICATIONS

A. Astrophysical rate

Our analyses identified GW170817 as the only BNS-
mass signal detected in O2 with a false alarm rate below
1=100 yr. Using a method derived from [27,178,179], and
assuming that the mass distribution of the components of
BNS systems is flat between 1 and 2 M⊙ and their
dimensionless spins are below 0.4, we are able to infer
the local coalescence rate density R of BNS systems.
Incorporating the upper limit of 12600 Gpc−3 yr−1 from O1
as a prior, R ¼ 1540þ3200

−1220 Gpc−3 yr−1. Our findings are

consistent with the rate inferred from observations of
galactic BNS systems [19,20,155,180].
From this inferred rate, the stochastic background of

gravitational wave s produced by unresolved BNS mergers
throughout the history of the Universe should be compa-
rable in magnitude to the stochastic background produced
by BBH mergers [181,182]. As the advanced detector
network improves in sensitivity in the coming years, the
total stochastic background from BNS and BBH mergers
should be detectable [183].

B. Remnant

Binary neutron star mergers may result in a short- or long-
lived neutron star remnant that could emit gravitational
waves following the merger [184–190]. The ringdown of
a black hole formed after the coalescence could also produce
gravitational waves, at frequencies around 6 kHz, but the
reduced interferometer response at high frequencies makes
their observation unfeasible. Consequently, searches have
been made for short (tens of ms) and intermediate duration
(≤ 500 s) gravitational-wave signals from a neutron star
remnant at frequencies up to 4 kHz [75,191,192]. For the
latter, the data examined start at the time of the coalescence
and extend to the end of the observing run on August 25,
2017. With the time scales and methods considered so far
[193], there is no evidence of a postmerger signal of

FIG. 5. Probability density for the tidal deformability parameters of the high and low mass components inferred from the detected
signals using the post-Newtonian model. Contours enclosing 90% and 50% of the probability density are overlaid (dashed lines). The
diagonal dashed line indicates the Λ1 ¼ Λ2 boundary. The Λ1 and Λ2 parameters characterize the size of the tidally induced mass
deformations of each star and are proportional tok2ðR=mÞ5. Constraints are shown for the high-spin scenario jχj ≤ 0.89 (left panel) and
for the low-spin jχj ≤ 0.05 (right panel). As a comparison, we plot predictions for tidal deformability given by a set of representative
equations of state [156–160] (shaded filled regions), with labels following [161], all of which support stars of 2.01M⊙. Under the
assumption that both components are neutron stars, we apply the function ΛðmÞ prescribed by that equation of state to the 90% most
probable region of the component mass posterior distributions shown in Fig. 4. EOS that produce less compact stars, such as MS1 and
MS1b, predict Λ values outside our 90% contour.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-7
• More common than we expected
• Consistent with galactic BNS observations
• Tidal effects are not taken into account
• Neutron star maximum mass: ~2.2 Msun
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Fig. 5. Model schematics considered in this paper. In each panel, the eye indicates 
the line of sight to the observer. (A) A classical, on-axis, ultra-relativistic, weak short 
gamma-ray burst (sGRB). (B) A classical, slightly off-axis, ultra-relativistic, strong 
sGRB. (C) A wide-angle, mildly-relativistic, strong cocoon with a choked jet. (D) A 
wide-angle, mildly-relativistic, weak cocoon with a successful off-axis jet. 
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GW170817

an off-axis GRB

• First GW+high-energy discovery

Ø Already very informative

• Afterglow observations point to structured jet. 

(Margutti, Ghirlanda, Lazzati, Mooley, … )

Ø ~30% of GWs from BNS will have GRB counterpart.

Ø Significant fraction (10%) of GRBs should be nearby.

(Gupte & Bartos 2018)

• How does TeV emission look like at large viewing angles?

Ø Fermi-LAT did not detect this event.

Ø Can help differentiate between emission mechanisms.

Ø This will be central to whether CTA will see 

LIGO/Virgo sources.

Margutti+ 2018

Kasliwal+ 2017



Ultra-high energy emission from neutron star mergers?

ANTARES, IceCube, Pierre Auger, LIGO, Virgo 2017

• High-energy neutrinos:
• Probe PeV+ particle acceleration
• All-sky detectors --- rapidly provide precise location
• n’s can escape environments g-rays cannot

• High-energy (TeV-PeV) neutrinos could have been 
detected for on-axis GW170817.

• Relativistic outflow will interact with slower ejecta 
à alter neutrino emission 
à can probe jet structure.

Kimura, Murase, Bartos, Ioka, Heng, Meszaros 2018

IceCube

Pierre Auger

ANTARES



sensitivity timeline

KAGRA, LIGO, Virgo 2017, Barsotti+  2018

• Currently: ~1 BBH / week
~1 BNS / month

Prospects for Observing and Localizing GW Transients with aLIGO, AdV and KAGRA 7
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Fig. 2 The planned sensitivity evolution and observing runs of the aLIGO, AdV and KAGRA detectors
over the coming years. The colored bars show the observing runs, with the expected sensitivities given by
the data in Figure 1 for future runs, and the achieved sensitivities in O1 and in O2. There is significant
uncertainty in the start and end times of planned the observing runs, especially for those further in the future,
and these could move forward or backwards relative to what is shown above. The plan is summarised in
Section 2.2.

2015 – 2016 (O1) A four-month run (12 September 2015 – 19 January 2016) with the
two-detector H1L1 network at early aLIGO sensitivity (60 – 80 Mpc BNS range).
This is now complete.

2016 – 2017 (O2) A nine-month run with H1L1, joined by V1 for the final month.
O2 began on 30 November 2016, with AdV joining 1 August 2017 and ended on
25 August 2017. The expected aLIGO range was 80 – 120 Mpc, and the achieved
range was in the region of 60 – 100 Mpc; the expected AdV range was 20 – 65 Mpc,
and the initial range was 25 – 30 Mpc

2018 – 2019 (O3) A year-long run with H1L1 at 120 – 170 Mpc and with V1 at 65 –
85 Mpc beginning about a year after the end of O2.

2020+ Three-detector network with H1L1 at full sensitivity of 190 Mpc and V1 at
65 – 115 Mpc, later increasing to design sensitivity of 125 Mpc.

2024+ H1L1V1K1I1 network at full sensitivity (aLIGO at 190 Mpc, AdV at 125 Mpc
and KAGRA at 140 Mpc). Including more detectors improves sky localization [61,
62,63,64] as well as the fraction of coincident observational time. 2024 is the
earliest time we imagine LIGO-India could be operational.

This timeline is summarized in Figure 2; we do not include observing runs with
LIGO-India yet, as these are still to be decided. Additionally, GEO 600 will continue
observing, with frequent commissioning breaks, during this period. The observational
implications of these scenarios are discussed in Section 4.
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Fig. 1 Regions of aLIGO (top left), AdV (top right) and KAGRA (bottom) target strain sensitivities as a
function of frequency. The binary neutron star (BNS) range, the average distance to which these signals
could be detected, is given in megaparsec. Current notions of the progression of sensitivity are given for early,
mid and late commissioning phases, as well as the final design sensitivity target and the BNS-optimized
sensitivity. While both dates and sensitivity curves are subject to change, the overall progression represents
our best current estimates.

60 – 80 Mpc range. Subsequent observing runs have increasing duration and sensitivity.
O2 began 30 November 2016, transitioning from the preceding engineering run which
began at the end of October, and ended 25 August 2017. The achieved sensitivity
across the run has been typically in the range 60 – 100 Mpc [19]. Assuming that no
unexpected obstacles are encountered, the aLIGO detectors are expected to achieve a
190 Mpc BNS range by 2020. After the first observing runs, it might be desirable to
optimize the detector sensitivity for a specific class of astrophysical signals, such as
BNSs. The BNS range may then become 210 Mpc. The sensitivity for each of these
stages is shown in Figure 1.

The H2 detector will be installed in India once the LIGO-India Observatory is
completed, and will be configured to be identical to the H1 and L1 detectors. We refer
to the detector in this state as I1 (rather than H2). Operation at the same level as the
H1 and L1 detectors is anticipated for no earlier than 2024.

The AdV interferometer (V1) [4] officially joined O2 on 1 August 2017. We
aimed for an early step with sensitivity corresponding to a BNS range of 20 – 65 Mpc;

4 KAGRA Collaboration, LIGO Scientific Collaboration and Virgo Collaboration

In Section 2.1 we present the commissioning plans for the aLIGO, AdV and
KAGRA detectors. A summary of expected observing runs is in Section 2.2.

2.1 Commissioning and observing roadmap

The anticipated strain sensitivity evolution for aLIGO, AdV and KAGRA is shown
in Figure 1. As a standard figure of merit for detector sensitivity, we use the range,
the volume- and orientation-averaged distance at which a compact binary coalescence
consisting of a particular mass gives a matched filter signal-to-noise ratio (SNR)
of 8 in a single detector [33]. We define Vz as the orientation-averaged spacetime
volume surveyed per unit detector time; for a population with a constant comoving
source-frame rate density, Vz multiplied by the rate density gives the detection rate
of those sources by the particular detector. We define the range R as the distance
for which (4p/3)R3 = Vz. In Table 1 we present values of R for different detector
networks and binary sources. For further insight into the range, and a discussion of
additional quantities such as the median and average distances to sources, please see
[34]. The BNS ranges, assuming two 1.4M� neutron stars, for the various stages of
the expected evolution are provided in Figure 1, and the BNS and BBH ranges are
quoted in Table 1.

Table 1 Plausible target detector sensitivities. The different phases match those in Figure 1. We quote the
range, the average distance to which a signal could be detected, for a 1.4M�+1.4M� binary neutron star
(BNS) system and a 30M�+30M� binary black hole (BBH) system.

LIGO Virgo KAGRA
BNS BBH BNS BBH BNS BBH

range/Mpc range/Mpc range/Mpc range/Mpc range/Mpc range/Mpc
Early 40 – 80 415 – 775 20 – 65 220 – 615 8 – 25 80 – 250
Mid 80 – 120 775 – 1110 65 – 85 615 – 790 25 – 40 250 – 405
Late 120 – 170 1110 – 1490 65 – 115 610 – 1030 40 – 140 405 – 1270
Design 190 1640 125 1130 140 1270

There are currently two operational aLIGO detectors. The original plan called
for three identical 4-km interferometers, two at Hanford (H1 and H2) and one at
Livingston (L1). In 2011, the LIGO Lab and IndIGO consortium in India proposed
installing one of the aLIGO Hanford detectors (H2) at a new observatory in India
(LIGO-India) [35]. In early 2015, LIGO Laboratory placed the H2 interferometer
in long-term storage for use in India. The Government of India granted in-principle
approval to LIGO-India in February 2016.

The first observations with aLIGO have been made. O1 formally began 18 Septem-
ber 2015 and ended 12 January 2016; however, data from the surrounding engineering
periods were of sufficient quality to be included in the analysis, and hence the first
observations span 12 September 2015 to 19 January 2016. The run involved the H1
and L1 detectors; the detectors were not at full design sensitivity [36]. We aimed
for a BNS range of 40 – 80 Mpc for both instruments (see Figure 1), and achieved a
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Summary
ü After many decades of  development, gravitational-wave 

astrophysics finally started in 2016.

ü Gravitational waves opened a new window on the 
universe---there are many open questions that can now be 
answered.

ü Growing number of  discoveries. The rate of  discoveries is 
rapidly increasing.

ü Multi-messenger astrophysics---we can learn the most 
about the universe by combining all information available.


