Reactor Neutrino experiments Dmitry V.Naumov JINR

1

Top discoveries with reactor experiments

- Discovery of anti-neutrino (1956) Reines & Cowan
- Discovery of neutrino oscillation due to Δm_{12}^2
- Discovery of geo-neutrino
- Discovery of neutrino oscillation due to Δm_{31}^2 and measurement of θ_{13} Daya Bay

Preparing for next breakthrough

Neutrino mass ordering

JUNO

Lepton mixing parameters with precision of quark sector

JUNO & Daya Bay

Precision coherent scattering

CONUS, RED-100, vgen, texono,...

Key facts

Energies of reactor $\overline{\nu}_e$ span in $\approx (1.8,8)$ MeV for inverse beta decay (IBD) reaction

Building up so huge detector is anyway expensive

Therefore, the detector will be unique with a great performance

Thus, it opens up a huge physics program beyond the main goal

Nuclear Reactor. Basics

* Refer to A.Hayes lecture for more details

Source: Wikipedia

- Nuclear plant gets its energy via fissions of U and Pu isotopes
 About 11% of world energy is produced in reactors
- 437 nuclear power plants operating in 31 countries
- 200 MeV/fission, β decays and six $\overline{\nu}_e$

Source: Wikipedia

Source: wano.info

Source: Wikipedia

- Nuclear plant gets its energy via fissions of U and Pu isotopes
- About 11% of world energy is produced in reactors
- 437 nuclear power plants operating in 31 countries
- 200 MeV/fission, β decays and six $\overline{\nu}_e$
- **3 GW reactor emits about** $6 \cdot 10^{20} \overline{\nu}/s$

Stability and instability Of nuclei

Isotopes off the stability valley are unstable

Fissions are asymmetric

0

 ${}^{A}_{Z}\mathbf{X} \to {}^{A}_{Z+1}\mathbf{X'} + e^{-} + \overline{\nu}_{e}$

Neutron-rich isotopes β -decay

Chain reaction with 235U

0

0

²³⁹Pu production

0

14

Chain reaction with ²³⁵U

• Neutron-rich isotopes β -decay ${}^{A}Z \rightarrow {}^{A}Z_{+1}X' + e^- + \overline{\nu}_e$

Can we understand ≈ 6 antineutrinos per fission? $m_A = m_N N + m_p Z - E_B$ <-- Mass of a nucleus

Semi-empirical mass formula (Bethe-Weizcacker)

$$E_{B} = \underbrace{a_{V}A}_{volume} - \underbrace{a_{S}A^{2/3}}_{surface} - \underbrace{a_{C}\frac{Z^{2}}{A^{1/3}}}_{Coulomb} - \underbrace{a_{A}\frac{(A-2Z)^{2}}{A}}_{asymmetry} \pm \underbrace{\delta(A,Z)}_{pairing}$$

 E_B increases if

 $Z \rightarrow 0$ assuming $a_A = 0$ $Z \rightarrow N$ assuming $a_C = 0$

Can we understand ≈ 6 antineutrinos per fission?

Z(A) corresponds to most stable nucleus

 $\longrightarrow Z(A) = \frac{A/2}{1 + \frac{a_c}{1 + \frac{a_c}{2} A^{2/3}}$

Fissions produce nuclei with (A,Z) following a «line»

17

Can we understand ≈ 6 antineutrinos per fission?

Can we understand ≈ 6 antineutrinos per fission?

Solution Number of β decays $\approx 4.2 + 3.8 = 8$

Detection Method $\overline{\nu}_e + p \rightarrow e^+ + n$

00: **14** *µS*

Why Gd? Can we understand 28 µs @Daya Bay?			
A 64 Gd	$\sigma(n + {}^{A}_{64}\mathbf{Gd} \rightarrow {}^{A+1}_{64}\mathbf{Gd}), \ \mathbf{Cbl}$	Abundance,	7.
A = 154	85	2.18	
A = 155	60900	14.80	
<i>A</i> = 156	1.8	20.47	
A = 157	254000	15.65	
<i>A</i> = 158	2.2	24.84	
A = 160	1.4	21.86	

Can we understand $28 \mu s$ @Paya Bay? $v_n = \sqrt{\frac{2kT}{m_n}} \approx 2.2 \ km/s$ $\tau = \frac{1}{v_n \langle \sigma \rangle N_{Gd}}$ $N_{Gd} = 0.103\% \cdot \rho \cdot \frac{N_A}{\langle A \rangle}$ $= 0.00103 \cdot 0.86g/cm^3 \cdot 6.022 \cdot 10^{23}/157.25g/cm^3$ $= 3.39 \cdot 10^{18} g/cm^3$ $\langle \sigma \rangle = (0.148 \cdot 60900 + 0.1565 \cdot 254000) \cdot 10^{-24} cm^2$ $= 4.876 \cdot 10^{-22} cm^2$ Good agreement with $\tau = \frac{1}{v_n \langle \sigma \rangle N_{Gd}} = 28.3 \mu s$ observations

Neutron capture time @Paya Bay

IBD spectrum

Short History Of Reactor Neutrinos

Reactor Neutrinos - Decades of Measurements

0

F.Reines & C.Cowan. 1956 Discovery of $\overline{\nu}_{\rho}$ The proposed detection method is now standard

Reactor Neutrinos - Decades of Measurements

F.Reines & C.Cowan.
1956 Discovery of $\overline{\nu}_e$

 The proposed detection method is now standard

F.Reines lead the group which discovered atmospheric neutrinos in 1965

F.Reines with IMB observed SN1987A in 1987

NP to F.Reines in 1995

Reactor Neutrinos - Decades of Measurements BUGEY, ILL, ROVNO, ... flux Good agreement with no oscillation model at short distances

No agreement at larger distances

Neutrino Oscillation Δm_{21}^2 driven

More than 50 reactors around at $\langle L \rangle \approx 180$ km

KamLAND &S detector

Neutrino Oscillation Race for θ_{13}

Photo by Kam-Biu Luk

Two modes of oscillations

Why θ_{13} was not measured earlier?

- Upper limit by CHOOZ $\sin^2 2\theta_{13} < 0.15$
- Main limitations:
 - Incertainty in the $\overline{\nu}_e$ flux
 - Incertainty in the detection efficiency

θ_{13} escaped detection

A receipt for θ_{13}

The flux:

near and far detectors for relative measurements

41

- Correlated systematics largely reduced
- Proposal by Mikaelyan & Sinev

Lnear

A receipt for θ_{13}

A receipt for
$$\theta_{13}$$

 $N_{near}(E) \propto \frac{1}{L_{near}^2} \Phi(E) \cdot \sigma \cdot N_{near} \cdot \varepsilon \cdot P_{osc}(L_{near}/E)$

$$N_{far}(E) \propto \frac{1}{L_{far}^2} \Phi(E) \cdot \sigma \cdot N_{far} \cdot \varepsilon \cdot P_{osc}(L_{far}/E)$$

Ratio cancels correlated uncertainties

$$\frac{N_{near}(E)}{N_{far}(E)} \propto \frac{L_{far}^2}{L_{near}^2} \frac{N_{near} \cdot \varepsilon_{near}}{N_{far} \cdot \varepsilon_{far}} \cdot \frac{P_{osc}(L_{near}/E)}{P_{osc}(L_{far}/E)}$$

A receipt for θ_{13}

The baseline optimization

A receipt for θ_{13}

The statistics:
 Powerfull source
 Large detector

The background:
As low as possible

Detector efficiency:
 Calibrations

The big three

	Power	GdLS mass	Distance	Overburden	Running
	[GW _{th}]	Near/Far [t]	Near/Far [m]	[mwe]	until
Daya Bay	17.4	2×2×20 4×20	365, 490 1650	250 860	2020
Double	16.8	8	400	120	Dec 2017
Chooz		8	1050	300	(Finished)
RENO	8.5	16 16	290 1380	120 450	2020-2021

3D Map of Daya Bay experiment

Detector design Daya Bay & RENO Double Chooz

Gadolinium-doped liquid scintillator

Daya Bay & RENO

Liquid scintillator x-catcher

Daya Bay & RENO

Non-scintillating transparent mineral oil with PMTs

Daya Bay & RENO

Cherenkov detector for shielding and cosmic muon detection

Daya Bay

4-layer RPC (Daya Bay)

Plastic scintillator for muons

Importance of Relative Measurement

	Reactor flux		IBD detection		
	Correlated	Uncorrelated	Correlated	Uncorrelated	
Daya Bay	1.5%	0.2%	1.2%	0.13%	
Double Chooz	1.7%	0.1%	0.5%	0.2%	
RENO	2.0%	0.9%	0.97%	0.13%	

- Essentially only uncorrelated uncertainties matter for the relative far/near measurement
- Correlated uncertainties play role in absolute measurement of reactor neutrino flux and spectrum (see later)

Non-zero θ_{13} discovered!

Oscillation Results

sin²2θ₁₃

- Daya Bay precision 3.4% best known mixing angle
- I o tension between Daya Bay and Double Chooz

Δm_{32}^2

- Daya Bay's result is consistent and of comparable precision to that of accelerator experiments
- Further improvement by JUNO (see later)

The 2016 Breakthrough Prize in Fundamental Physics: SuperK, SNO, T2K, KamLAND & Daya Bay

Source: Steve Jennings/Getty

Absolute measurements

ABSOLUT Country of Sweden

Every drop of this superb vodka has been crafted only with Swedish winter wheat near the small town of Ahus and continues a determined commitment to the pursuit of perfection since 1879.

40% ALC./VOL. (80 PROOF) 750 ML

- Flux deficit observed w.r.t. Huber+Muller (new) model
 Daya Bay
 R=0.952±0.014
 Double Chooz
 R=0.945±0.008
 RENO
 R=0.918±0.018
- No flux deficit w.r.t old model
 Daya Bay R=1.001 ± 0.015 ± 0.027

If new (Huber-Muller) model is correct?

YES

Back to nuclear physics Sterile? 0 If yes, $\Delta m^2 \approx 1 \text{ eV}^2$, $\sin^2 2\theta \approx 0.1$ New phenomena?
If yes, $\Delta m^2 \approx 1 \text{ eV}^2$, $\sin^2 2\theta \approx 0.1$

63

NO

0

Sterile Neutrino

* Refer to lectures of A.Hayes, C.Giunti, Yu.Shitov for more details

Spectrum measurement

Reactor Neutrino Spectrum Shape Anomaly

Too many? Are you tired?

You do not know what means to be tired

This is Kirill. Kirill did not reach ... He is tired a bit...

Measurement of neutrino spectrum from individual isotopes

Spectrum of i-th isotope

• Time evolution —> F_{239} evolution

• Observed N_{IBD} + F_{239} evolutions —> individual isotopes
Fuel evolution measured by Daya Bay with unprecedented precision in 2017 PRL 118, 251801 (2017)

73

U235 is off the HM model

PRL 118, 251801 (2017)

- Conclusions:
 - Wrong model for ²³⁵U is behind most of the reactor flux anomaly
 - Explanation of flux anomaly purely by sterile neutrinos \iff equal deficit disfavored at 2.80

Reactor Flux Anomaly Cause	Suggests	Δχ²/NDF	Confidence level
²³⁵ U only	Prediction issues	0.17/1	Very probable
²³⁹ Pu only	Prediction issues	10.0/1	Disfavored at 3.2σ
All isotopes w/ equal deficit	Sterile neutrinos	7.9/1	Disfavored at 2.80

Nevertheless, Daya Bay did not rule out sterile neutrinos completely! Composite model still possible

Coherent Scattering

* Refer to lectures of H.Wong, Y.Sobczyk for more details

JINR low threshold high purity Ge detectors

ν GEN @JINR \sim Energy resolution (FWHM) = 78 eV

Measurements with pulse generator

Source:A.Lubashevski

v GEN ØJINR

Efficiency vs energy

79

Source:A.Lubashevski

v GEN @JINR

Expected spectrum in 30 days of data taking

80

Source: A. Lubashevski

Mass Ordering

Neutrino Mass Ordering

Normal \longrightarrow Inverted $m_3 > m_2 (m_1)$ \longrightarrow $m_3 < m_1 (m_2)$

Expected signal

Therequirements

 20 ktons mass for detector

- 3%/ \sqrt{E} energy resolution
- Powerfull reactors (36 GW)

 \circ JUNO is the first experiment to see both Δm^2

JUNO location

JUNO central detector

- About 40 diameter
 20 ktons
- a 18k 20" PMTs
- 25k 3" PMTs
- 700 m shielding

JUNO Physics Program

Parameter	Current precision (1σ)	Improvement by JUNO
$sin^22\theta_{12}$	5%	<0.7%
Δm_{21}^2	2.3%	<0.6%
Δm ₃₁ 2	2.5% sign unknown	<0.5% sign determination

JUNO Physics Program

Parameter	Current precision (1o)	Improvement by JUNO
$sin^22\theta_{12}$	5%	<0.7%
Δm_{21}^2	2.3%	<0.6%
Δm_{31}^2	2.5% sign unknown	<0.5% sign determination

Other physics:

- Supernova (SN) neutrinos
 - 10⁴ events from SN @ 10 kpc
 - Testing SN models
 - Possibility of independent determination of MH

Diffused SN neutrinos

- 1-4 events per year
- Discovery if measured

Geoneutrinos

• From U/Th decays

- Solar neutrinos
 - ⁷Be neutrinos detected via elastic scattering
- Proton decay
 - p->K++v
- ...and more

Very short baseline experiments

Experiment	Reactor power [MW _{th}]	Distance [m]	Target Mass [t]	Target type
NEOS	2700	25	1	GdLS
DANSS	3000	10-12	0.9	GdPS
STEREO	58	9-11	1.8	GdLS
PROSPECT	85	7-12	1	⁶ LiLS
SOLID	100	6-9	1.6	⁶ LiPS

LS=Liquid Scintillator PS=Plastic Scintillator

- Hunt for sterile neutrinos at ~1 eV scale \Leftarrow explanation of flux anomaly
- Precise measurement of reactor neutrino flux and energy spectrum for different fuel composition
 - Commercial reactors with mixture of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
 - Research reactors with mainly ²³⁵U
- Challenge prediction models measurement of ²³⁵U yield&spectrum

Bonus Jobs Offer @Pubna

https://inspirehep.net/record/1751642 https://inspirehep.net/record/1751641 https://inspirehep.net/record/1751640

Baikal GVD Baikal GVD Baikal & JUNO

