VIII International Pontecorvo Neutrino Physics School

 \mathbf{v}_2

http://theor.jinr.ru/~neutrino

neutrino experiments

Solar

 v_3

JINR (DLNP), Dubna

Oleg Smirnov,

Neutrino fluxes in nature

How the Sun shines

Core temperature~ 10^7 K (~1 keV).

Helium is lighter comparing to 4 protons(0,7%)-

this energy is feeding the Sun. pp-cycle is very slow reaction (time scale 7,9 \cdot 10⁹ y). Energy release = 26,7 MeV, 2 neutrinos are emitted. Sun power is L = 38 \cdot 10²⁶ W (380 YW) \rightarrow

Sun power is $L_{Sun}=3.8\cdot10^{26}$ W (380 YW) \rightarrow 6.5·10¹⁰ neutrino/s/cm².

Stellar Nuclear reactions occurs in the narrow energy range below 100 keV, the so called Gamow peak.

Reaction cross sectons are very low: pico and femto barns

CNO-cycle

The CNO cycle (carbon-nitrogenoxygen) is a catalytic cycle. CNO cycle dominates in stars more massive than about 1.3 times the mass of the Sun. pp-chain reactions start occurring at temperatures around 4×10⁶K. A self-maintaining CNO chain starts at ~15×10⁶ K, but its energy output rises much more rapidly with increasing temperatures and at ~ 17×10⁶ K, the **CNO cycle becomes dominant. The** Sun has a core temperature of around 15.7×10⁶ K and only 1.7% of He-4 nuclei being produced in the Sun are born in the CNO cycle.

The simplest CN-cycle (CNO-I, or Bethe cycle or carbon cycle) was proposed by Hans Bethe in 1938 and, independently, in 1939 by Carl Friedrich von Weizsäcker).

Solar neutrino experiments

Radiochemical detection of neutrinos.

neutrino capture via Inverse Beta Decay (IBD) in a target chemical element with (A, Z). The product element (A,Z+1) is unstable with half-life $T_{1/2}$.

v_e + (A,Z) $\rightarrow e^-$ +(A,Z+1)*

* counting techique: no neutrino direction or energy information is available *the targets must be huge, containing many tons of material.

*requires sensitive radiochemical methods to separate few atoms of product element (Z+1) from the target Z.

*the experiments are done deep underground to minimize cosmic-ray interactions in the target that can produce protons, (p,n) reactions mimic neutrino capture.

*runs are done in a batch mode, with exposure times on the order of $2T_{1/2}$. *typically ~10 product atoms are separated from ~10³⁰ target atoms with efficiency ≥90%.

Radiochemical detection of Solar neutrinos.

Radiochemical experiments: proposals

Target	Reaction	T _{1/2}	Threshold MeV	Status
Chlorine	$^{37}\text{Cl} \rightarrow ^{37}\text{Ar}$	35.0 d	0.814	closed
Gallium	71 Ga \rightarrow 71 Ge	11.4 d	0.233	Running (SAGE)
lodine	127 I \rightarrow 127 Xe	36 d	0.789	Prototype (Lande at al.) at Homestake; abondoned
Molybdenum	⁹⁸ Mo → ⁹⁸ Tc	4∙10 ⁶ yr	>1.74	(Wolfsberg et al.) failed, no funding to repeat
Lithium	$^{7}Li \rightarrow ^{7}Be$	53 d	0.862	R&D
Bromine	$^{81}\text{Br} \rightarrow ^{81}\text{Xe}$	2·10⁵ yr	0.470	R&D
Tantalum	205 Tl $\rightarrow ^{205}$ Pb	14∙10 ⁶ yr	0.054	R&D
Ytterbium	176 Yb $\rightarrow ^{176}$ Lu*		0.301	R&D (exLENS)
Indium	115 In $\rightarrow ^{115}$ Sn*		0.114	R&D (LENS)

Homestake.

Homestake Mine- mine in South Dacota.

Tank filled with 600 tones of perchloroethylene (C_2CI_4) at the depth of 1.5 km underground.

Detector was taking data from 1970 to 1994

Raymod Davis Jr. (1914-2006). Nobel prize in 2002 "for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

Solar Neutrino Problem

John Norris Bahcall (1934 – 2005)

"We argued that, if our understanding of nuclear processes in the interior of the sun was correct, then solar neutrinos would be captured at a rate Davis could measure with a large tank filled with cleaning fluid...

Our sole motivation for urging this experiment was to use neutrinos to enable us to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars. As we shall see, Davis and I did not anticipate some of the most interesting aspects of this proposal.

Davis performed the experiment and in 1968 announced the first results. He measured fewer neutrinos than I predicted. As the experiment and the theory were refined, the disagreement appeared more robust. Scientists rejoiced that solar neutrinos were detected but worried why there were fewer neutrinos than predicted.

What was wrong? Was our understanding of how the sun shines incorrect? Had I made an error in calculating the rate at which solar neutrinos would be captured in Davis's tank? Was the experiment wrong? Or, did something happen to the neutrinos after they were created in the sun? Over the next twenty years, many different possibilities were examined by hundreds, and perhaps thousands, of physicists, chemists, and astronomers. Both the experiment and the theoretical calculation appeared to be correct."

John N. Bahcall

SAGE, GALLEX - GNO

The main problem – the quantity of Gallium necessary to provide reasonable neutrino count was comparable with its yearly world production. In 1981 and 1985 the Gallium project was rejected in USA, NSF recommended to collaborate with Europe and USSR

1984 group headed by Till Kirsten from Max Plank Institute presented a project of gallium experiment and started to form GALLEX collaboration

Till Kirsten

In USSR works were started as early as in 1975, collaboration SAGE was formed in the end of 80

Vladimir Gavrin

GALLEX and SAGE

Gallex/GNO

Liquid metallic Ga in the window of chemical reactor of SAGE experiment

Solar neutrino with Radiochemical detectors : results

Experiment	Years	Target mass	Reaction	Thres hold keV	Result in SNU [or as a fraction of SSM prediction]
Homestake	1967-1995 1970-1994 108 cycles	C ₂ Cl ₄ ; 615 t	ν_{e} + ³⁷ Cl \rightarrow ³⁷ Ar + e ⁻	814	[2.55 ± 0.25 SNU] 0.336 ± 0.090
SAGE (operating)	1990-2011: 211 cycles	Met.Ga ; 50-57 t		233	[65.1 +3.7-3.8 SNU]
Gallex	1991-1997 67 cycles	GaCl ₃ ;	$v_{e} + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-1}$		0.605 ± 0.103
GNO-30	1998-2003 58 cycles	30.3 t			0.491 ± 0.081
Gallex+GNO					0.541 ± 0.081 [67.6± 5.1 SNU]
Gallex+GNO	+SAGE	[66.1 ± 3.1 SNU]			

Solar Neutrino Unit, SNU= 1 event per 10³⁶ target atoms in 1 second

CI : pp(0%) + $^{7}Be(13\%)$ + pep(2.7%) + CNO(2.4%) + $^{8}B(82\%)$ Ga: pp(55%) + $^{7}Be(28\%)$ + pep(2.3%) + CNO(3.4%) + $^{8}B(11\%)$

Calibration with artificial neutrino sources

Calibration with artificial neutrino sources

Best status

neutrino flux measurment: $^{71}\text{Ga} + v_e \rightarrow \ ^{71}\text{Ge} + e^-$

2 detector volumes: for the flux cross check

geometry is chosen: to search for \simeq 1 eV neutrino must be sterile...

data taking: July–September 2019 $\tau_{51Cr} = 27.7d$

REAL TIME DETECTORS

KamiokaNDE and SuperKamiokaNDE

The first one, KamiokaNDE-II, started in 1988 in Japan (at the 1000 m depth in the Kamioka mine). Water Cherenkov detector

$v + e^- \rightarrow v + e^-$

- SuperKamiokande (or Super-K) updated (scaled) version of Kamiokande-II, located 180 miles to the north from Tokyo. Japan-USA collaboration. Construction ended in 1996.
- 50 ktones of higly purified water.
- Equipped with 11146 PMTs

Some pictures

Masatoshi Koshiba (future Nobel prize winner, 2002) is happy to see new PMT with large area photocathode, specially designed by Hamamatsu photonics

Neutrino detectión in SuperKamiokande. Points – PMTs, light ring – Cherenkov light from relativistic recoil electrons. Neutrinogram of the Sun (angle coordinates), obtained during first 500 days of the data taking by SuperK. Intensity of color corresponds to the number of detected neutrinos in corresponding direction.

KamiokaNDE and SuperKamiokaNDE results

Detector		years	FV mass	PMT Cover age	E _{Thr} MeV	Result [x10 ⁶ sm ⁻² s ⁻¹]
Kamioka II+ Kamioka	NDE- NDE-III	87-90 90-95 2079 d	H ₂ 0 3 kt	20% 25%	7.0	2.82 ^{+0.25} -0.24 ±0.27
SuperK	I	96-01 1496 d	H ₂ 0 22.5 kt	40%	5.5	2.380±0.024 ^{+0.064} -0.076
	II	02-05 791 d		19%	7.0	2.41±0.05 ^{+0.16} -0.15
	ш	06-08 548 d	22.5 (>5.5MeV) 13.3 (<5.5MeV)	40%	4.5	2.404±0.039±0.053
	IV (T2K	08-now 1664 d (2014)	22.5 (>5.5MeV) 13.3 (4.5 <e<5.5)< td=""><td>40%</td><td>3.5</td><td>2.308±0.020±0.04 (2016)</td></e<5.5)<>	40%	3.5	2.308±0.020±0.04 (2016)
	phase)	2860 d	8.8 (<4.5MeV)			2.29±0.02±0.04 (2018)
HyperKamiokaNDE		?	1 Mt	20%	4.5-7.0	Project

SK in 2018 had in total 5695 days of data

Combined (2016) : 2.345±0.014±0.036 (2016) [1.6%]

Solar Neutrino Problem

- a large discrepancy between the predicted and measured fluxes of solar neutrinos:
 - Cl & KamiokaNDE \approx 1/3 of predicted
 - Ga: ≈1/2 of predicted

A lot of solutions have been proposed, now mainly of historical interest.

MSW/LMA has been established as the true solution of the SNP (take a chance to hear the details from the author of the theory this night)

Missing neutrino were found by SNO (Sudbury Neutrino Observatory)

17.8m dia. PMT Support Structure 9456 20-cm dia. PMTs 56% coverage

12.01m dia. acrylic vessel

1700 tonnes of inner shielding H₂O

5300 tonnes of outer shielding H_2O

heavy water Cherenkov detector

1006

tonnes

surfac

to

km

N

Urylon

Neutrino detection in heavy water Cherenkov detector

cc
$$v_e + d \rightarrow p + p + e^{-}$$

- measurement of ν_e energy
- Weak directionality:

 $1-0.340\cos\theta$

NC
$$v + d \rightarrow p + n + v$$

• Measurement of the total ⁸B v flux • $\sigma(v_e) = \sigma(v_\mu) = \sigma(v_\tau)$

$$\begin{array}{c|c} \mathsf{ES} & v & + & \mathsf{e}^- & \longrightarrow & v & + & \mathsf{e}^- \\ & & & & & & \\ & & & & & \\ \end{array}$$

- Low statistics
- $\sigma(v_e) \approx 6 \ \sigma(v_\mu) \approx 6 \ \sigma(v_\tau)$
- Strong directionality:

 $heta_e \leq \! 18^\circ$ (T $_e$ = 10 MeV)

Neutrons detection in different phases of the SNO experiment

Phase	Method		
Ι	n+d: γ(single;6.25 MeV)		
II (NaCl)	n+ ³⁵ Cl: γ(multiple;8.6 MeV)		
III	800 meters of ³ He counters		

SNO results

Ph as e		Target, mass	Method	Threshold [MeV]	Result [x10 ⁶ sm ⁻² s ⁻¹]
I	99-01 306.4 d	D ₂ 0 1006 t	v _e +d → p + p + e ⁻ (CC)-1.4 MeV	5.0	1.76±0.05±0.09 (CC) 2.39 ^{+0.24} -0.23 (ES) 5.09 ^{+0.44} -0.43 (NC)
			v_x +d \rightarrow p + n + v_x (NC)-2.22 MeV		
			$v_x + e^- \rightarrow v_x + e^-$ (ES)		
11	01-04 391d	+NaCl 2t	³⁵ Cl+n → ³⁶ Cl+8.6 MeV (2-4 γ)	5.5	1.72±0.05±0.11 (CC) 2.34±0.23 ^{+0.15} -0.14 (ES) 4.81±0.19 ^{+0.28} -0.27 (NC)
I+II	Low energy threshold analysis (LETA: 3.5 MeV)			3.5	5.046 ^{+0.159} -0.152 ^{+0.107} -0.123 (NC)
III	04-06	+ ³ He counters	³ He + n → p + ³ H + 0.76 MeV	6.0	$1.67^{+0.05}_{-0.04} \xrightarrow{+0.07}_{-0.08} (CC)$ $1.77^{+0.24}_{-0.21} \xrightarrow{+0.09}_{-0.10} (ES)$ $5.54^{+0.33}_{-0.31} \xrightarrow{+0.36}_{-0.34} (NC)$

⁸B flux (5.25±3.7%)x10⁶ sm⁻²s⁻¹

Status of MSW solution in 2002

Solar v Angle θ_{12} & Mass² Difference

BOREXINO (in operation from May,2007)

The original BOREX proposal was based on B-loaded scintillator "

R.S.Raghavan, S.Pakvasa, Phys. Rev. D 37, 849 - 857 (1988) "Probing the nature of the neutrino: The boron solar-neutrino experiment"

With a welter of neutrino scenarios and uncertain solar models to be unraveled, can solar-neutrino experiments really break new ground in neutrino physics? A new solar-neutrino detector BOREX, based on the nuclide ¹¹B, promises the tools for a definitive exploration of the nature of the neutrino and the structure of the Sun. Using double-mode detection by neutrino excitation of ¹¹B via the neutral-weak-current- and the charged-current-mediated inverse β decay in the same target, independent measurements of the total neutrino flux regardless of flavor and the survival of electron neutrinos in solar matter and a vacuum can be made. Standard models of the Sun, and almost every proposed nonstandard model of the neutrino, can be subjected to sharp and direct tests. The development of BOREX, based on B-loaded liquid-scintillation techniques, is currently in progress.

Ramaswami (Raju) S. Raghavan

$\nu_x + e \longrightarrow \nu_x + e$	E>0.25 MeV
$\nu_e^{+1}B \rightarrow e^{-}^{+1}C (\rightarrow e^{+}^{+1}B)$	E>4 MeV
$\overline{\nu}_e + H \rightarrow e^+ + n$	E>1.8 MeV
$n+{}^{10}B \rightarrow {}^{7}Li + \alpha(2.3 MeV) + \gamma(0.48 MeV)$	94%
$n+{}^{1}H \rightarrow {}^{2}H + \gamma (2.2 MeV)$	6%

Solar neutrino spectra

(typically: drinking water ~10 Bq/kg; human body in ⁴⁰K: 5 kBq) Low energy->no Cherenkov light->No directionality, no other tags-> extremely pure scintillator is needed

Liquid Scintillator Radiopurity

Isotope	Typical abundance (source)	Borexino goals	Borexino-I	Borexino-II
¹⁴ C / ¹² C, g/g	10 ⁻¹² (cosmogenic)	~ 10 ⁻¹⁸	2.7·10 ⁻¹⁸	2.7.10 ⁻¹⁸
²³⁸ U, g/g (²¹⁴ Bi- ²¹⁴ Po)	10 ⁻⁶ -10 ⁻⁵ (dust)	∼10 ⁻¹⁶ (1 µBq/t)	(1.6±0.1)·10 ⁻¹⁷	<9.5· 10 ⁻²⁰ (95%)
²³² Th, g/g (²¹² Bi- ²¹² Po)	10 ⁻⁶ -10 ⁻⁵ (dust)	~ 10 ⁻¹⁶	(6.8±1.5)· 10 ⁻¹⁸	<7.2· 10 ⁻¹⁹ (95%)
²²² Rn (²³⁸ U), ev/d/100 t	100 atoms/cm ³ (air)	10	1	0.1
⁴⁰ K, g[K _{nat}]/g	2⋅10 ⁻⁶ (dust)	~ 10 ⁻¹⁵	<1.7·10 ⁻¹⁵ (95%)	
²¹⁰ Po, ev/d/t	Surface contamination	~10 ⁻²	<mark>80 (</mark> initial), T _{1/2} =134 days;	2 (initial)→0.2
²¹⁰ Bi, ev/d/100 t	Inequilibrium with ²²² Rn or ²¹⁰ Pb	Not specified	20-70	~20
⁸⁵ Kr ev/d/100 t	1 Bq/m ³ (technogenic, air)	~1	30.4±5 cpd/100t	6.8±1.8
³⁹ Ar ev/d/100 t	17 mBq/m ³ (cosmogenic in air)	~1	<< ⁸⁵ Kr	

Banana equivalent

- 1 gramm of natural K
 : 32 Bq ⁴⁰K
- 19 Bq in 150 g banana.
- ⁴⁰K content in Borexino is <2.4x10⁻⁷ (95% C.L.) of banana equivalent (or 36 μg)

Borexino since the start of the data taking

2014+ \rightarrow Phase II data used; the last update of the results published in 2018

Detection

Neutrino detection:

elastic scattering off electrons

Both electron and non-electron flavours are detected, $\sigma(v_e) \approx 6 \sigma(v_{\mu,\tau})$.

Detection

• Detected signal contains a mixure of both contributions :

$$R(E_{\nu},T) = P_{ee}(E_{\nu})\varphi_{\nu}(E_{\nu})\frac{d\sigma_{e}(E_{\nu},T)}{dT} + (1 - P_{ee}(E_{\nu}))\varphi_{\nu}(E_{\nu})\frac{d\sigma_{\mu,\tau}(E_{\nu},T)}{dT}$$

• Elastic scattering cross section for monoenergetic v has "step-like" form (quasi-Compton) with $T_{max} = \frac{E_v}{1 + \frac{m_e}{2E_v}}$

Example for ⁷Be neutrinos (0.862 MeV):

Data selection for solar neutrino analysis

Phase I/Phase II

Phase II: lower ⁸⁵Kr and ²¹⁰Bi, reduced ²¹⁰Po

Phase I data : devoted analysis for each of the neutrino species with restricted

Phase II data : analysis in the extended energy range, including pp, ⁷Be and pep species (also limits on CNO are obtained in the same energy range)

1000

(Expected) contributions to the observed spectrum (MC)

MC input counting rates are quoted in cpd/100 t

Three-fold Coincidence technique (TFC) for ¹¹C tagging

• muon dE/dx and number of muon clusters in an event

The TFC algorithm has $(92\pm4)\%$ ¹¹C-tagging eciency, while preserving $(64.28\pm0.01)\%$ of the total exposure in the TFC-subtracted spectrum.

e⁺/e⁻ discrimination

Multivariate approach

Originally developed for pep-neutrino analysis (2012) to separate electron spectra from overhelming contribution of ¹¹C

Technique consists in including in the likelihood:

- Energy spectrum split into complementary TFC-tagged (¹¹C enriched) and TFC-subtracted (¹¹C depleted) spectra →next slide for details.
- Pulse-shape discriminator (PS-L_{PR}) of e⁺/e⁻: (¹¹C decays emiting β⁺) based on the difference of the scintillation time profile for e⁻ and e⁺ due to:
 - 50% of e⁺ annihilation is delayed by orthopositronium formation (τ~3 ns);
 - e⁺ energy deposit is not point-like because of the two annihilation gammas;
- Radial distribution (allows to separate external backgrounds from uniformly distributed signals);

Multivariate fit example

L(Rad) x

Multivariate fit is sensitive to pp, ⁷Be and pep contributions.

Note: CNO-neutrino energies are in the ROI and are included in the fit, but the sensitivity is limited because of the similarity to ²¹⁰Bi spectrum \rightarrow pp/pep rates ratio constrained in the fit to the predictions of HZ/LZ models

CNO (MSW/LMA): HZ: (4.91±0.56) cpd/100t LZ: (3.62±0.37) cpd/100t

Zoom into low-energy part of the spectrum

In this plot pep-neutrino characteristic shoulder is made visible by applying more stringent cuts (R<2.8 m and L_{PS}<4.8)

Results (2018)

•

- **Data-set:** Dec 14th 2011- May 21st 2016
- **Total exposure**: 1291.51 days x 71.3 tons
 - Fit range: (0.19-2.93) MeV

	Borexino experimental results		В	16(GS98)-HZ	B16(AGSS09)-LZ	
Solar ν	Rate	Flux	Rate	Flux	Rate	Flux
	[cpd/100t]	$[cm^{-2}s^{-1}]$	[cpd/100t]	$[\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	[cpd/100 t]	$\left[\mathrm{cm}^{-2}\mathrm{s}^{-1}\right]$
pp	$134 \pm 10 {}^{+6}_{-10}$	$(6.1 \pm 0.5 \ ^{+0.3}_{-0.5}) \times 10^{10}$	131.0 ± 2.4	$5.98 (1 \pm 0.006) \times 10^{10}$	132.1 ± 2.3	$6.03(1\pm0.005)\times10^{10}$
$^{7}\mathrm{Be}$	$48.3 \pm 1.1 \ ^{+0.4}_{-0.7}$	$(4.99 \pm 0.13 {}^{+0.07}_{-0.10}) \times 10^9$	47.8 ± 2.9	$4.93(1\pm0.06)\times10^9$	43.7 ± 2.6	$4.50(1\pm0.06)\times10^9$
pep (HZ)	$2.43 \pm 0.36 \ ^{+0.15}_{-0.22}$	$(1.27 \pm 0.19 {}^{+0.08}_{-0.12}) \times 10^8$	2.74 ± 0.05	$1.44(1\pm0.009)\times10^{8}$	2.78 ± 0.05	$1.46(1\pm0.009)\times10^{8}$
pep (LZ)	$2.65 \pm 0.36 {}^{+0.15}_{-0.24}$	$(1.39 \pm 0.19 \stackrel{+0.08}{_{-0.13}}) \times 10^8$	2.74 ± 0.05	$1.44(1\pm0.009)\times10^{8}$	2.78 ± 0.05	$1.46(1\pm0.009)\times10^{8}$
CNO	$< 8.1 (95\% \mathrm{C.L.})$	$< 7.9 \times 10^8 $ (95% C.L.)	4.91 ± 0.56	$4.88(1\pm0.11)\times10^8$	3.52 ± 0.37	$3.51(1\pm0.10)\times10^8$

Backgrounds

Background	Rate
	[cpd/100 t]
$^{14}C [Bq/100 t]$	40.0 ± 2.0
85 Kr	6.8 ± 1.8
$^{210}\mathrm{Bi}$	17.5 ± 1.9
$^{11}\mathrm{C}$	26.8 ± 0.2
210 Po	260.0 ± 3.0
Ext. 40 K	1.0 ± 0.6
Ext. 214 Bi	1.9 ± 0.3
Ext. 208 Tl	3.3 ± 0.1

Systematics

	pp		⁷ Be		pep		-
Source of uncertainty	-%	+%	-%	+%	-%	+%	-
Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0	-
Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4	
Pile-up modeling	-2.5	0.5	0	0	0	0	
Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0	
Fit models	-4.5	0.5	-1.0	0.2	-6.8	2.8	²¹⁰ Bi, E-scale, response
Inclusion of 85 Kr constraint	-2.2	2.2	0	0.4	-3.2	0	R(⁸⁵ Kr)<7.5 @ 95%
Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05	ר
Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05	 LS mass
Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6	J
Total systematics $(\%)$	-7.1	4.7	-1.5	0.8	-9.0	5.6	-

Borexino results (2018)

Rates	Borexino new results cpd/100t	Uncertainty reduction	Expected HZ cpd/100t	Expected LZ cpd/100t
рр	$134 \pm 10^{+6}_{-10}$	11 -> 9%	131.0 ± 2.4	132.1 ± 2.4
⁷ Be (862+384 keV)	$48.3 \pm 1.1^{+0.4}_{-0.7}$	4.7 -> 2.7 %	47.8 ± 2.9	43.7 ± 2.6
Pep (CNO fixed at HZ)	$2.43 \pm 0.36^{+0.15}_{-0.22}$	22 -> 16%	2.74 ± 0.05	2.78 ± 0.05
Pep (CNO fixed at LZ)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	22 -> 16%	2.74 ± 0.05	2.78 ± 0.05
⁸ B (E _{e-} > 3MeV)	$0.223 + 0.015 - 0.006 \pm 0.006$	18 -> 8%	0.211± 0.025	0.173± 0.021
Hep (E _{e-} > 11MeV)	<0.002 (90% C.L.)		(8.0 <u>+</u> 2.2) x10 ⁻⁵	(7.5 <u>+</u> 0.9) x10 ⁻⁵
CNO	< 8.1 (95% C.L.)		4.91 <u>+</u> 0.56	3.62 <u>+</u> 0.37

Solar metallicity problem

 Global fit to all solar + Kamland data (including the new ⁷Be result from BX)

$$f_{Be} = \frac{\Phi(Be)}{\Phi(Be)_{HZ}} = 1.01 \pm 0.03$$
$$f_{B} = \frac{\Phi(B)}{\Phi(B)_{HZ}} = 0.93 \pm 0.02$$

• a hint towards the HM :

LZ is excluded by BX data at 96.6% C.L. (1.8 σ) level

theoretical errors are dominating

$$R \equiv \frac{<^{3} \text{He} + {}^{4} \text{He} >}{<^{3} \text{He} + {}^{3} \text{He} >} = \frac{2\phi({}^{7}\text{Be})}{\phi(\text{pp}) - \phi({}^{7}\text{Be})}$$

R(HZ)=0.180±0.011 R(LZ)=0.161±0.010

From the pp and ⁷Be fluxes measurement

What is new in Borexino results

>5σ evidence of pep signal (including systematics)

	Earlier result (cpd/100t)	Actual result (cpd/100t)	Precision
рр	144±13±10	134±10 ⁺⁶ ₋₁₀	11%
⁷ Be ^(*)	46.0±1.5 ^{+1.6} -1.5	46.3±1.1 ^{+0.4} -0.7	4.7→2.7%
рер	3.1±0.6±0.3	(HZ) 2.43±0.36 ^{+0.15} _{-0.22} (LZ) 2.65±0.36 ^{+0.15} _{-0.24}	22→16%

*Result for ⁷Be 862 keV line is quoted Precision improved by 10,43, and 39% correspondingly in simultaneous fit of all 3 components

Solar luminosity: $L_v^{\text{Borexino}} = (3.9 \pm 0.4) \times 10^{33} \text{ erg/s}$, is in agreement with measured photon luminosity $L_\gamma = (3.846 \pm 0.015) \times 10^{33} \text{ erg/s}$

CNO: 95% C.L. limit on CNO rate : R(CNO)<8.1 cpd/100 t flux : ϕ (CNO)<7.9-10⁸ cm⁻²s⁻¹

Less stringent constraints on pep in the CNO contribution analysis compared to Phase I

Expected (HZ) 4.91±0.56 (LZ) 3.62±0.37 cpd/100 t (2σ apart)

Improved measurement of ⁸B solar neutrinos with 1.5 kt y of Borexino exposure

What is improved in analysis:

- Better understanding of backgrounds (external γs, cosmogenic)
- No FV cut : 1.5 ktons-yr exposure between 2008 and 2016 (x11.5 of the Phase I analysis)
- Lowest energy threshold among RT detectors
- Identified new source of background due to n capture on C and Fe
- New estimate of the cosmogenic ¹¹Be

 $R_{LE} = 0.133^{+0.013}_{-0.013} (stat) {}^{+0.003}_{-0.003} (syst) \text{ cpd}/100 \text{ t},$

 $R_{HE} = 0.087^{+0.08}_{-0.010} (stat)^{+0.005}_{-0.005} (syst) \text{ cpd}/100 \text{ t},$

$$R_{LE+HE} = 0.220^{+0.015}_{-0.016} (stat) {}^{+0.006}_{-0.006} (syst) \text{ cpd}/100 \text{ t.}$$

Expected rate in the LE+HE range:

0.211± 0.025 cpd/100 t

Assuming B16(G98) SSM and MSW+LMA

 φ (hep)<2.2 × 10⁵ cm⁻² s⁻¹ (90% C.L.) vs 7.98/8.25 × 10³ in HZ/LZ SSM.

Solar experiments vs models

MSW/LMA : electron neutrino survival probabilities

High metallicity SSM

Low metallicity SSM

MSW errors (1σ) are shown by rose band

Total error on P_{ee}:

- for pp and pep neutrinos, contribution of experimental errors dominates (easy to predict, difficult to measure)
- for ⁷Be and ⁸B theoretical predictions of the Solar model are worse than measurements

Survival probabilities from all solar v results

"Upturn" predicted by standard MSW is not seen yet.

Non-standard interactions

The absence of the visible upturn triggered speculations on NSI

NSIs modifies Pee...

... and cross sections

Constrains on NSI

Effective magnetic moment of Solar neutrino

Phys. Rev D 96, 091103(R) (2017)

Borexino is spectroscopical detector.

Solar neutrino analysis (spectral fit) is performed assuming SM cross sections The shapes can be adjusted to take into account any non-standard interactions (NSI), including neutrino EM interactions

Limits on mm of neutrino flavours and mass eigenstates

In Solar neutrino experiments we measure: In frames of the MSW/LMA solution:

$$(\mu_{\nu})_{eff}^{2} = \sum_{\alpha} P_{e\alpha}(\mu_{\nu})_{\alpha}^{2}$$

$$\mu_{eff}^{2} = P^{3\nu}\mu_{e}^{2} + (1 - P^{3\nu})(\cos^{2}\theta_{23}\mu_{\mu}^{2} + \sin^{2}\theta_{23}\mu_{\tau}^{2})$$

$\mu_{ u_e} < 3.9$ $\mu_{ u_\mu} < 5.8$ $\mu_{ u_\tau} < 5.8$		GEMMA: LSND: DONUT:	$\mu_{ u_e} < 2.9$ $\mu_{ u_\mu} < 68$ $\mu_{ u_\tau} < 3900$	DO	All @90% C.L. units of $10^{-11}\mu$	B B B B B B B B B B B B B B
Mass eigenstates	•	$ \mu_{11} \leq 3$	$ \mu_{22} \le$	5.1	$ \mu_{33} \le 18.7$	DWARFS Litem Burrach E
basis:		$ \mu_{12} \le 2$	$ \mu_{13} \leq$	3.4	$ \mu_{23} \leq 5.0$	o B A F G K 30,00 ±10,00 €.000 €.000 eccess

Astropysics: $\mu_{\nu}^2 = \sum_{\alpha,\beta} |\mu_{\nu}^{\alpha\beta}|^2 < 3 \cdot 10^{-12}$

Solar CNO- neutrino cycle:

a clue to the chemical composition of the Sun

dominates in massive stars (~1% of solar luminosity)

"bottle-neck" $N(p,\gamma)$ reaction, slower than expected (LUNA result).

Very sensitive to the solar abundance problem. A direct test of the heavily debated solar C, N and O abundances would come from measuring the CNO neutrinos.

Key to the Solar metallicity : CNO neutrino flux

Expected spectrum assuming ν (CNO) HZ flux and other rates from last solar analysis

Main background from ²¹⁰Bi : ~20 cpd/100 t

Measure ²¹⁰Bi with few counts precision \rightarrow

constrain it in the spectral fit \rightarrow extract the CNO flux.

Predictions:

- HZ : 4.91±0.56 cpd/100 t
 - LZ: 3.62±0.37 cpd/100 t

Another background in the region of sensitivity is pepneutrino flux. Can be constrained through pp/pep ratio, using theoretical prediction for pp (luminosity constraint) or pp measured value.

Strategy towards CNO measurement

- Main route: using ²¹⁰Bi-²¹⁰Po temporal evolution to measure "support term" for ²¹⁰Po (secular equilibrium in ²¹⁰Pb sub-chain)
 210
- Option: further purification of the LS by water extraction to reduce ²¹⁰Bi

Instabilities observed in the temporal evolution of the ²¹⁰Po (making impossible precision evaluation of the ²¹⁰Bi) were found to be the result of the temperature instabilities of the surrounding

Hardware solution for thermal stabilization : thermal insulation of the external tank

²¹⁰Po in std FV

Hemishell Analysis

day 1300: insulation (summer 2015)

Hemi-shell #27

Hemi-shell #26

CNO sensitivity

Depends on both ²¹⁰Bi and pep-neutrino rates.

Assumed that ²¹⁰Bi will be measured (10-20%) and

pep-rate can be constrained by constraining pp/pep ratio in the fit.

 ν (CNO) median p-value (LZ/HZ hypothesis)

TIME VARIATIONS OF THE SOLAR NEUTRINO SIGNAL
Time variations of the solar neutrino signal

- seasonal : elliptic Earth orbit
- diurnal (day/night) : regeneration in the Earth. MSW/LMA predicts ~3% day/night asymmetry of ⁸B count and no asymmetry for ⁷Be
- **other** time variations?

Borexino : no diurnal variations of ⁷Be neutrino flux

"negative" result on day/night assimetry with 3 years statistics (380.63 "nights" + 360.25 "days") is in agreement with MSW/LMA predictions:

$$ADN = \frac{N - D}{N + D} = 0.001 \pm 0.012(stat) \pm 0.007(syst)$$

G. Bellini et al., Phys. Lett. B 707 (2012).

SuperK : first Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation

Seasonal modulations of ⁷Be neutrino flux

M. Agostini et al. / Astroparticle Physics 92 (2017) 21-29

The duration of the astronomical year is measured from underground using neutrino!

Time variations of Solar neutrino flux

±3.5% variations due to the seasonal variation of Earth-Sun distance

- 2005: the variation at a period of one year is consistent with modulation of the neutrino flux by the Earth's orbital eccentricity. No significant sinusoidal periodicities between 1 day and 10 years.
- 2009: 3 additional analyses:
- 1) frequencies 1/day to 144/day, sensitivity to sinusoidal signals with amplitudes \geq 12%
- 2)regions in which g-mode signals (24 h 10 min) have been claimed by experiments aboard the SoHO satellite, sensitive to signals with amplitudes of 10% or greater.
- 3) extra power across the entire frequency band.
- No statistically significant signal was detected in any of the three searches.

SuperK-I+SuperK-II

1.5 months bins Solid line: 1/r² The SK-I and II 1-year binned solar flux data gives an agreement of $\chi^2/N.D.F. = 6/11$ (52% c.l.) when compared to a straight line.

Gallex+GNO

GNO/GALLEX signal vs. heliocentric distance of the Earth. The straight line indicates the expected flux variation due to purely geometrical (1/d²) effect

90 % CL exclusion plot in the frequency/amplitude plane from the analysis of GALLEX and GNO data

15

17.5 20 22.5 Frequency (1/year)

Gallex+GNO (grouped in periods)

results are consistent with a flat behaviour; however a weak time dependency (of unknown origin) is not excluded (13.2/6 vs 10.8/5)

FUTURE EXPERIMENTS

SNO+

780 tons of Linear Alkyl Benzene (LAB)
contained in a spherical acrylic vessel (AV) of
12 m diameter and 5 cm thickness;
9500 PMTs provides coverage of 54%.
The PMTs and the AV are located in a cavity
excavated in the rock filled with about 7000
tons of ultrapure water.

A radon seal and Urylon liner provide a second layer of shielding to avoid any contact of the detector with the mine air. The 6000 m.w.e. rock shielding : 3 µ/hour.

LAB was chosen as scintillator for the SNO+ experiment due to its chemical compatibility with acrylic, its high light yield (50 - 100 times higher than heavy water), the good optical transparency and low scattering. Moreover, high purity levels are easily available and due to the fast decay it is possible to discriminate between beta and alpha particles.

SNO+ Solar neutrino phase

⁷Be and ⁸B neutrinos

pep & CNO neutrinos: U and Th < 10^{-17} g/g. Amongst the diffrerent daughters ²¹⁰Bi is the most important since it partially falls in the region of interest.

3600 pep events/(kton-year), for electron recoils >0.8 MeV goal: ±5% total uncertainty after 3 years (including systematic and SSM) CNO measurement goal: ±10% after 3 years.

SNO+⁸B neutrino

1 yr of data simulation

SNO+ water phase; 114.7 days

Phys.Rev. D 99, 012012 (2019)

Data Sig. + Bkg. Fit 70 Syst. Uncertainty Counts / 114.7 Days / 0.05 60 $5.0 < T_o < 15.0 \text{ MeV}$ 50 40 30 -1.0-0.8-0.6-0.4-0.20.00.2 0.4 0.6 0.8 1.0 $\cos\theta_{sun}$ 45 Data - Sig. + Bkg. Fit 40 Syst. Uncertainty Counts / 114.7 Days / 0.05 35 $6.0 < T_e < 15.0 \text{ MeV}$ 30 25 20 15 -0.8-0.6 -0.4-0.20.2 0.4 -1.00.00.6 0.8 1.0 $\cos\theta_{sun}$

 $\Phi_{^{8}B} = 5.95^{+0.75}_{-0.71}(\text{stat})^{+0.28}_{-0.30}(\text{syst}) \times 10^{6} \text{ cm}^{-2} \text{ s}^{-1}$

Compatible with SNO measurement

- Baseline 52.5 km
- Overburden 700 m (1900 m.w.e.)

- 20 kt LAB-based LS
- sphere in cylindrical water pool
- 10⁵ IBD events/6 yr
- Res(E)=3% @ 1 MeV
 - 18,000 20" PMTs + 25,000 3" PMTs
- LY~1200 p.e./MeV
- 75% geometric coverage
- Needs good position reconstruction
- Cosmic muons tracking : water pool (Cherenkov detector) + top tracker

Solar neutrino with JUNO

JUNO is large volume LS detector, bigger than successful Borexino with better resolution, but at shallower depth. Radiopurity?

"single" events (non tagged) from *ve* elastic scattering

Source	Rate $[cpd/1kt]$
$pp \nu$	1378
$^{7}\mathrm{Be}~ u$	517
pep $ u$	28
$^{8}\mathrm{B}~\nu$	4.5
$^{13}{ m N}/^{15}{ m O}/^{17}{ m F}~\nu$	7.5/5.4/0.1

Internal radiopurity requirements					
	baseline	ideal			
$^{210}\mathrm{Pb}$	$5 \times 10^{-24} [g/g]$	$1 \times 10^{-24} [g/g]$			
$^{85}\mathrm{Kr}$	$500 \ [counts/day/kton]$	$100 \; [\text{counts/day/kton}]$			
$^{238}\mathrm{U}$	$1 \times 10^{-16} [g/g]$	$1 \times 10^{-17} [g/g]$			
232 Th	$1 \times 10^{-16} [{ m g/g}]$	$1 \times 10^{-17} [g/g]$			
$^{40}\mathrm{K}$	$1 \times 10^{-17} [g/g]$	$1 \times 10^{-18} [g/g]$			
$^{14}\mathrm{C}$	$1 \times 10^{-17} [g/g]$	$1 \times 10^{-18} [g/g]$			

JUNO low-energy "singles" spectrum for "ideal" radiopurity

KamLAND. Solar phase

- KamLAND provided ⁷Be flux measurement (20%) analyzing data from the reactor phase
- Apparently the Solar neutrino program was abondoned, the detector is taking data in the KL-zen phase (0vββ search in ¹³⁶Xe).

LENA (Low Energy Neutrino Astronomy)

50 kt scale; ~200 p.e./MeV LS: LAB + PPO and Bis-MSB as solutes is favored

low-energy range with neutrino energies up to a few tens of MeV:

Galactic Supernova neutrinos Diffuse Supernova neutrinos Geo/Reactor antineutrino Solar neutrinos

Source	Channel	EW [MeV]	$m_{\rm fid}$ [kt]	Rate [cpd]
pp	$\nu e \to e \nu$	>0.25	30	40
pep		0.8 - 1.4	30	2.8×10^{2}
$^{7}\mathrm{Be}$		>0.25	35	1.0×10^{4}
$^{8}\mathrm{B}$		>2.8	35	79
CNO		0.8 - 1.4	30	$1.9{ imes}10^2$
⁸ B	$^{13}\mathrm{C}$	>2.2	35	2.4

Megatonne scale WC detectors

Well-proven technology of water Cherenkov detectors

- HyperK (Japan) (arXiv 1109.3262)
- MEMPHYS (Frejus)
- LBNE-WC (US) (arXiv:1204.2295; 350 pp)

200kton fiducial volume

Remaining ? in Solar neutrino physics

- Solar metallicity problem; will it be solved by Borexino?
- CNO neutrino flux measurement
- "Upturn" in the ⁸B spectrum. Is it a hint for the NSIs or just a statistical fluctuation?
- The "tension" between SK and KL parameters
- The observation of the D/N variations of the ⁸B signal still missing

Instead of conclusion

 "It is now well realized that the Sun and the Earth were created for neutrino oscillation experiments. The Earth–Sun distance was chosen as the oscillation length, solar matter density was selected specially to include the Mikheev-Smirnov–Wolfenstein effect, and the Sun was prepared in the form of an ideal electron neutrino source. When all was done, Bruno Pontecorvo was created to invent the idea of neutrino oscillations, John Bahcall was created to calculate the solar neutrino fluxes, Ray Davis was created to accomplish the first neutrino experiment, and all other individuals in solar neutrino physics were created to finalize this hard job..."

M. Goodman, cited by V. Berezinsky.