Heavy sterile v's

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

VIII International Pontecorvo

Neutrino Physics School

Sinaia, Romania

Dmitry Gorbunov (INR)

Outline

- 1 Sterile neutrinos: the simplest model
- 2 What is the mass scale of sterile neutrinos ?
- 3 Matter-antimatter asymmetry of the Universe
 - Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

Outline

- 2 What is the mass scale of sterile neutrinos ?
- 3 Matter-antimatter asymmetry of the Universe
- 4 Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

Standard Model: Major Problems

Gauge fields (interactions): γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe (PHENO)
 - Neutrino oscillations
 - Dark matter (Ω_{DM})
 - Baryon asymmetry (Ω_B)
 - Inflationary stage

(THEORY)

- Dark energy (Ω_Λ)
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity

???

Only direct evidence for New Physics

Sterile neutrinos: the simplest model

Neutrino oscillations: masses and mixing angles

Solar 2×2 "subsector"

Atmospheric 2 × 2 "subsector"

 $\substack{\text{arXiv:0806.2237}\\ m_2 > 0.05\,eV}$

http://hitoshi.berkeley.edu/neutrino/

 $m_1 > 0.008 \, {\rm eV}$

DAYA-BAY, RENO, T2K: $sin^2 2\theta_{13} \approx 0.08$

Dmitry Gorbunov (INR)

Physics behind the neutrino oscillations is still elusive

- nature of neutrino mass (Dirac vs Majorana)
- neutrino mass hierarchy
- CP-violation
- relevance for the matter-antimatter asymmetry
- neutrino anomalies
 - $\blacktriangleright \text{ LSND} \rightarrow \text{MiniBooNE}$
 - SAGE & GALLEX (gallium anomaly)
 - reactor antineutrinos → DANSS, NEUTRINO-4

do not fit to 3v

These issues must be fixed before suggesting v as a tool

- Explore entire structures of Earth and Sun
- Investigate the SN explosion mechanism
- Monitor nuclear reactors (nuclear power plants, etc)
- ... see Lecture by A.Hayes

New Physics can interfere if its scale is low

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and (add to) the cosmological problems

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and (add to) the cosmological problems

Phenomenological problems of the Standard Model

Gauge fields (interactions) – γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe
 - Neutrino oscillations : active neutrino masses via mixing
 - Dark matter (Ω_{DM}) : sterile neutrino as DM
 - Baryon asymmetry : leptogenesis via sterile neutrino decays or oscillations

- Sterile neutrinos explain the oscillations
- and (add to) the cosmological problems

Sterile neutrinos: NEW ingredients

One of the optional physics beyond the SM:

sterile:new fermions uncharged under the SM gauge groupneutrino:explain observed oscillations by mixing with SM (active)neutrinos

Attractive features:

- possible to achieve within renormalizable theory
- only N = 2 Majorana neutrinos needed
- baryon asymmetry via leptogenesis
- dark matter (with $N \ge 3$ at least)
- light(?) sterile neutrinos might be responsible for neutrino anomalies...?

Disappointing feature:

Major part of parameter space is UNTESTABLE

Dmitry Gorbunov (INR)

Sterile neutrinos: the simplest model

Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}i\partial N - f\overline{L}_{e}^{c}\widetilde{H}N - \frac{M_{N}}{2}\overline{N}^{c}N + \text{h.c.}$$

Higgs gains $\langle H \rangle = v / \sqrt{2}$ and then see Lecture by S.Bilenky and Lectures by A.Smirnov

$$\mathscr{V}_{N} = \frac{1}{2} \left(\overline{v}_{e}, \overline{N}^{c} \right) \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{f}{\sqrt{2}} & M_{N} \end{pmatrix} \begin{pmatrix} v_{e} \\ N \end{pmatrix} + \text{h.c.}$$

For a hierarchy $M_N \gg M^D \equiv v \frac{f}{\sqrt{2}}$ we have

flavor state $v_e = Uv_1 + \theta N$ with $U \approx 1$ and

active-sterile mixing:
$$\theta = \frac{M^D}{M_N} = \frac{v f}{2M_N} \ll 1$$

and mass eigenvalues

$$\approx M_N$$
 and $-m_{active} = \theta^2 M_N \ll M_N$

Dmitry Gorbunov (INR)

Violation of L, C and CP symmetries

$$\mathscr{L}_N = \overline{N}i\partial N - f\overline{L}_e^c \widetilde{H}N - \frac{M_N}{2}\overline{N}^c N + \text{h.c.}$$

- f = 0 \longrightarrow free fermion, no need to call 'sterile'
- $M_N = 0 \longrightarrow N$ and v form pure Dirac neutrino, the most boring case, worth than we have with the Higgs boson one may refuse to call it 'new physics'
- $f \neq 0$, $M_N \neq 0$ \longrightarrow introduces new massive parameter, violates lepton symmetry *L* see Lecture by G.Mitselmakher (and *C*- and *CP*-symmetry with several *N*'s)

Sterile neutrinos: the simplest model

Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha}^{c} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

When Higgs gains $\langle H \rangle = v / \sqrt{2}$ we get in neutrino sector

$$\mathscr{V}_{N} = \frac{1}{2} \left(\overline{v}_{1}, \dots, \overline{N}_{1}^{c} \dots \right) \begin{pmatrix} 0 & v \frac{\hat{f}}{\sqrt{2}} \\ v \frac{\hat{f}^{T}}{\sqrt{2}} & \hat{M}_{N} \end{pmatrix} (v_{1}, \dots, N_{1} \dots)^{T} + h.c.$$

Then for $M_N \gg \hat{M}^D = v \frac{\hat{\tau}}{\sqrt{2}}$ we find the eigenvalues:

active-sterile

$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -(\hat{M}^D)^T \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$

Mixings: flavor state $v_{\alpha} = U_{\alpha i}v_i + \theta_{\alpha I}N_I$

neither $U_{\alpha i}$ nor $\theta_{\alpha l}$ is unitary

13/81

active-active mixing: $U^{\dagger} \hat{M}^{v} U = diag(m_1, m_2, m_3)$

mixing:
$$\theta_{\alpha l} = \frac{(M^D)_{\alpha l}^T}{M_l} \propto \hat{f}^T \frac{v}{M_N} \ll 1$$

- 2) What is the mass scale of sterile neutrinos?
- 3 Matter-antimatter asymmetry of the Universe
- Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

N

Active neutrino masses without new fields

Dimension-5 operator

 $\Delta L = 2$

appeared at energy scale Λ

$$\mathscr{L}^{(5)} = rac{F_{\alpha\beta}}{4\Lambda} \bar{L}_{\alpha} \tilde{H} H^{\dagger} L^{c}_{\beta} + \text{h.c.}$$

 L_{α} are SM leptonic doublets, $\alpha = 1, 2, 3$, $\tilde{H}_{a} = \varepsilon_{ab}H_{b}^{*}$, a, b = 1, 2; in a unitary gauge $H^{T} = (0, (v+h)/\sqrt{2})$ see Lecture by S.Bilenky

$$\mathscr{L}_{\nu\nu}^{(5)} = \frac{v^2 F_{\alpha\beta}}{4\Lambda} \times \frac{1}{2} \bar{v}_{\alpha} v_{\beta}^c + \text{h.c.} = m_{\alpha\beta} \times \frac{1}{2} \bar{v}_{\alpha} v_{\beta}^c + \text{h.c.}$$

where

 Λ is the scale of new dynamics

only their ratio is fixed

 $F_{\alpha\beta}$ is the strength of new dynamics

by the scale of active neutrino masses

What is the mass scale of sterile neutrinos ?

Perturbative regime for model parameters

$$\frac{v^2 F_{\alpha\beta}}{4\Lambda} = m_{\alpha\beta}$$

$$F_{lphaeta}\lesssim 1 \qquad \Longrightarrow \qquad \Lambda\lesssim 3 imes 10^{14}\,{
m GeV} imes \left(rac{3 imes 10^{-3}\,{
m eV}^2}{\Delta m_{
m atm}^2}
ight)^{1/2}$$

The model has to be UV-completed at the scale $\Lambda \rightarrow$ New physics

What is above Λ ?

Dmitry Gorbunov (I	INR)
--------------------	------

What is the mass scale of sterile neutrinos ?

Producing the effective dim-5 operator below M_N

integrating out the Heavy sterile neutrinos

see Lecture by S.Bilenky

thus we obtain

$$\propto rac{f^2}{M_N} lh lh
ightarrow rac{F(LH)(LH)}{\Lambda}$$

Seesaw mechanism: sterile neutrino scale

For $M_N \gg \hat{M}^D = v \frac{\hat{t}}{\sqrt{2}}$ we found the eigenvalues: $\simeq \hat{M}_N$ and $\hat{M}^v = -(\hat{M}^D)^T \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$ SEESAW says nothing about the sterile neutrino scale M_I !

Unitarity:
$$f \lesssim 1 \implies M_N \lesssim 3 \times 10^{14} \text{ GeV} \times \left(\frac{3 \cdot 10^{-3} \text{ eV}^2}{\Delta m_{atm}^2}\right)^{1/2} \longrightarrow \Lambda \text{ in } (LH)^2 / \Lambda$$

At given M_N without fine tuning the scale of Yukawas \hat{t} and strength of active-sterile mixing $\theta_{\alpha l} = \frac{(M^D)_{\alpha l}^T}{M_l} \propto \hat{t}^T \frac{v}{M_N} \ll 1$ are fixed see Lecture by G.Mitselmakher 1203.3825

Dmitry Gorbunov (INR)

Seesaw mechanism: sterile neutrino scale

For $M_N \gg \hat{M}^D = v \frac{\hat{t}}{\sqrt{2}}$ we found the eigenvalues: see Lectures by A.Smirnov $\simeq \hat{M}_N$ and $\hat{M}^v = -(\hat{M}^D)^T \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$

SEESAW says nothing about the sterile neutrino scale M_l !

Unitarity:
$$f \lesssim 1 \implies M_N \lesssim 3 \times 10^{14} \text{ GeV} \times \left(\frac{3 \cdot 10^{-3} \text{ eV}^2}{\Delta m_{atm}^2}\right)^{1/2} \longrightarrow \Lambda \text{ in } (LH)^2 / \Lambda$$

At given M_N without fine tuning the scale of Yukawas \hat{t} and strength of active-sterile mixing $\theta_{\alpha l} = \frac{(M^D)_{\alpha l}^T}{M_l} \propto \hat{t}^T \frac{v}{M_N} \ll 1$ are fixed see Lecture by G.Mitselmakher 1203.3825

Dmitry Gorbunov (INR)

What is the mass scale of sterile neutrinos ?

Where is sterile neutrino scale?

eigenvalues:
$$\simeq \hat{M}_N$$
 and $\hat{M}^v = -\hat{M}^{DT} \frac{1}{\hat{M}_N} \hat{M}^D \propto f^2 \frac{v^2}{M_N} \ll M_N$

SEESAW says nothing about the sterile neutrino scale M_N !

Unitarity:
$$f \lesssim 1 \implies M_N \lesssim 3 \times 10^{14} \text{ GeV} \times \left(\frac{3 \cdot 10^{-3} \text{ eV}^2}{\Delta m_{atm}^2}\right)^{1/2} \longrightarrow \Lambda \text{ in } (LH)^2/\Lambda$$

Integrating out sterile neutrinos get dim-5 operator

 $-f_{\alpha l}\overline{L}_{\alpha}\widetilde{H}N_{l}-\frac{M_{N_{l}}}{2}\overline{N}_{l}^{c}N_{l}\rightarrow f^{2}(LH)^{2}/M_{N}$

SM Higgs without NP at EW-scale favors sterile neutrinos at EW-scale (or below) !

• Majorana mass violates scale-invarinace
$$\implies$$
 finite corrections $\delta m_h^2 \propto f^2 M_N^2$
• Scale invariance helps to abandon infinite corrections $\delta m_h^2 \propto f^2 \Lambda^2$
• In SM scale invariance is broken by the Higgs mass and running of coupling constants $T_{\mu}^{\mu} \propto \beta(\alpha) \times \hat{O} + (m_h^2 + \alpha \Lambda^2) \times h^2 \implies$ quadratic divergences are irrelevant $\delta m_h^2 \lesssim m_h^2$ then $M_N \lesssim 10^7 \,\text{GeV}$ see Lectures by A.Smirnov W.Bardeen (1995)
Dmitry Gorbunov (INB) Heavy sterile v's 05.09.2019. Pontecorvo-2019 19/81

What is the mass scale of sterile neutrinos ?

Sterile neutrino mass scale: $\hat{M}_{v} = -v^{2}\hat{f}^{T}\hat{M}_{N}^{-1}\hat{f}$

NB: With fine tuning in \hat{M}_N and \hat{f} we can get a hierarchy in sterile neutrino masses, and 1 keV and even 1 eV sterile neutrinos

Sterile neutrino lagrangian

Most general renormalizable with 2(3...) right-handed neutrinos N_l

$$\mathscr{L}_{N} = \overline{N}_{I} i \partial N_{I} - f_{\alpha I} \overline{L}_{\alpha} \widetilde{H} N_{I} - \frac{M_{N_{I}}}{2} \overline{N}_{I}^{c} N_{I} + \text{h.c.}$$

Parameters to be determined from experiments

9(7): active neutrino sector	11: <i>N</i> = 2 sterile neutrinos	18: $N = 3$ starile neutrinos:
2 Δm_{ij}^2 : oscillation experiments 3 θ_{ij} : oscillation experiments 1 CP-phase: oscillation experiments 2(1) Majorana phases: 0 vee , 0 $v\mu\mu$ 1(0) m_v : ³ H \rightarrow ³ He+ $e+\bar{v}_e$, cosmology,	(works if $m_v = 0$!!!) 2: Majorana masses M_{N_I} 9: New Yukawa couplings $f_{\alpha I}$ which form 2: Dirac masses $M^D = f\langle H \rangle$ 3+1: mixing angles 2+1: CP-violating phases 4 new parameters in total	18: $N = 3$ sterile neutrinos:3: Majorana masses M_{N_l} 15: New Yukawa couplings $f_{\alpha l}$ which form3: Dirac masses $M^D = f\langle H \rangle$ 3+3: mixing angles3+3: CP-violating phases9 new parameters in total

Profit: can suggest why neutrinos are so light, $m_v \sim 0.1 - 0.01 \text{ eV}$

Dmitry Gorbunov (INR)

- 2) What is the mass scale of sterile neutrinos ?
- 3 Matter-antimatter asymmetry of the Universe
- 4 Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

Baryogenesis

– Need BAU $\eta_B \equiv n_B/n_\gamma \approx 6 \times 10^{-10}$ starting from BBN epoch, $T \lesssim 1 \mbox{ MeV}$

- The same number at recombination and later
- Sakharov conditions of successful baryogenesis
 - B-violation $(\Delta B \neq 0) XY \dots \rightarrow X'Y' \dots B$
 - C- & CP-violation $(\Delta C \neq 0, \Delta CP \neq 0) \bar{X} \bar{Y} \cdots \rightarrow \bar{X}' \bar{Y}' \dots \bar{B}$
 - processes above are out of equilibrium $X'Y' \dots B \rightarrow XY \dots$

At 100 GeV $\lesssim T \lesssim 10^{12}$ GeV nonperturbative processes (EW-sphalerons) violate *B*, L_{α} , so that only three charges are conserved out of four, e.g.

$$B-L$$
, L_e-L_μ , L_e-L_τ

Leptogenesis: Baryogenesis from lepton asymmetry of the Universe ... due to sterile neutrinos

Bonus: depends on the sterile neutrino mass range

NB: With fine tuning in \hat{M}_N and \hat{f} we can get a hierarchy in sterile neutrino masses, and 1 keV and even 1 eV sterile neutrinos

 $M_N \sim 1 \, {\rm eV}{-}100 \, {\rm GeV}$

- keV-scale dark matter
- BAU via leptogenesis
- Neutrino anomalies (1 eV sterile neutrinos?)

direct searches!

 $M_N \sim 100\,{
m GeV}$ -5 TeV

There are different regions:

BAU via leptogenesis

 $f \sim 10^{-6} \simeq Y_e$

but with fine tuning or new global or gauge symmetries (e.g. $SU(2)_L \times SU(2)_R$)

direct searches at colliders

 $\begin{array}{l} {\it L}_e-{\it L}_\mu-{\it L}_\tau \text{ or discrete symmetries} \\ {\it Froggatt-Nielsen mechanism} \\ {\it Extended seesaw} \end{array}$

 $M_N \sim 10^{12} \cdot 10^{14} \, {\rm GeV}$

BAU via leptogenesis

 $f \simeq 0.01 - 1$

Untestable...? or already confirmed?

prefered by many, see Lectures by S.Bilenky, A.Smirnov

Dmitry Gorbunov (INR)

Heavy sterile v's

05.09.2019, Pontecorvo-2019 24 / 81

Lepton asymmetry δ at 1-loop level $f_{I\alpha} \overline{L}_{\alpha} N_I \widetilde{H}$

$$\Gamma(N_1 \to lh) = \frac{M_1}{8\pi} \cdot \sum_{\alpha} \left| f_{1\alpha} + \frac{1}{8\pi} \sum_{\beta,l} F\left(\frac{M_1}{M_l}\right) \cdot f_{1\beta}^* f_{l\alpha} f_{l\beta} \right|^2, \quad m_v \ll M_l$$

$$\delta \equiv \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to \overline{l}h)}{\Gamma_{tot}} = -\frac{1}{8\pi} \sum_{I=2,3} \operatorname{Im} \left[F\left(\frac{M_1}{M_I}\right) \right] \cdot \frac{\operatorname{Im} \left(\sum_{\alpha} f_{1\alpha} f_{l\alpha}^*\right)^2}{\sum_{\gamma} |f_{1\gamma}|^2} \,.$$

for $M_{2,3} \gg M_1 \,, f\left(\frac{M_1}{M_I}\right) = -\frac{3}{2} \frac{M_1}{M_I} \,, \ \delta = \frac{3M_1}{16\pi} \frac{1}{\sum_{\gamma} |y_{1\gamma}|^2} \sum_{\alpha\beta I} \operatorname{Im} \left[y_{1\alpha} y_{1\beta} \left(y_{l\alpha}^* \frac{1}{M_I} y_{l\beta}^* \right) \right] \,.$

Dmitry Gorbunov (INR)

Superheavy sterile neutrinos: $M_N \simeq 10^{12} \cdot 10^{14} \, \text{GeV}$

- Motivation: close to GUT scales, e.g. SO(10)
- Bad fact: huge finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \gg m_H^2 (\Rightarrow M_N < 10^7 \text{ GeV})$ SUSY solution? (New fileds...new problems: e.g. gravitino overproduction with high T_{reh} for leptogenesis)
- Good fact: If *T* > *M_N* decays of thermal sterile neutrino yield the lepton asymmetry in the early Universe: M.Fukugita, T.Yanagita (1986)

$$\delta \equiv \frac{\Gamma(N_1 \to lh) - \Gamma(N_1 \to \overline{l}h)}{\Gamma_{tot}} = \frac{1}{8\pi} \sum_{l=2,3} f\left(\frac{M_{N_1}}{M_{N_l}}\right) \cdot \frac{\operatorname{Im}\left(\sum_{\alpha} f_{1\alpha} f_{l\alpha}^*\right)^2}{\sum_{\gamma} |f_{1\gamma}|^2} \,.$$

Needs $M_{N_1} \gtrsim 10^9 \,{
m GeV}$ or $M_{N_1} \gtrsim 10^{12} \,{
m GeV}$ without fine tuning in \hat{f}

• Exciting fact: to avoid washing out of Δ_L in $hI_{\alpha} \leftrightarrow h\overline{I}_{\beta}$ we need ...

 $M^{v} < 0.1 - 0.3 \,\mathrm{eV}$!!!

 $\bullet\,$ Cooling down: No way to test further. Can get $\Delta_B \sim 10^{-10}$ even with

 $\theta_{13} = \delta_{CP} = 0!$

NB: can work for nonthermal case as well

production by inflaton decay G.Lazaridies, Q.Shafi (1991)

e.g. in *R*²-inflation D.G., A.Panin (2010)

Very heavy sterile neutrinos: $M_N \simeq 100 \text{ GeV-5 TeV}$

- Good fact: small finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \ll m_H^2$ No hierarchy between Λ_v and Λ_{EW}
- Bad fact: Without extra symmetries, fine tuning or new interactions generation of lepton asymmetry and hence No BAU
- Way out: fine tunning can help: e.g. resonant enhancement of CP-violation in out-of-equilibrium sterile neutrino decays:
 leptogenesis for M_N ≥ 1 TeV if ΔM_N ~ Γ_N
- Further cooling down:
 can be directly produced but at a tiny amount only: as small as f ~ 10⁻⁶!
- Conclusion: Seesaw type I is generally untestable in direct searches: Yuakawa couplings are too small, while sterile neutrinos are quite heavy.

To make interesting either NEW fields or fine tuning (larger *f*) or symmetries, e.g. $SU(2)_L \times SU(2)_R$ are required!!!

Very heavy sterile neutrinos: $M_N \simeq 50 \text{ GeV-5 TeV}$

- Without fine tuning or extra symmetries:
 can be directly produced but @ tiny amount: f ~ 10⁻⁶!
- With extra symmetries and/or interactions, e.g. $SU(2)_L \times SU(2)_R$ can be studied at LHC $pp \rightarrow W_R \rightarrow \mu N$
- Indirect searches ... $\Delta L = 2$ processes $pp \rightarrow ... \mu^+ \mu^+ ..., t \rightarrow b\mu^+ \mu^+ W^-$

 Conclusion: Seesaw type I is testable only indirectly for this range of masses. To make interesting NEW fields (symmetries) are required!!!

Dmitry Gorbunov (INR)

Outline

- Sterile neutrinos: the simplest model
- 2 What is the mass scale of sterile neutrinos ?
- 3 Matter-antimatter asymmetry of the Universe
- Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

Present: Limits and (future) searches

Heavy sterile neutrinos: $M_N \simeq 1 \text{ keV-100 GeV}$

- Good fact: small finite quantum corrections $\delta m_H^2 \propto f^2 M_N^2 \ll m_H^2$ True low-energy scale modification of the SM
- Good fact: At *T* > 100 GeV active-sterile neutrino oscillations produce lepton asymmetry in the early Universe, if Δ*M_N* ≪ *M_N* E.Akhmedov, V.Rubakov, A.Smirnov (1998)
- can be directly produced !!

Weak decays due to mixing

More on direct searches

 Searches for production of N: S ∝ θ²
 Searches for decays of N: If the decay length is shorter than the detector size, but with θ² → 0 arrive at
 e.g. peaks in p_μ
 e.g. peaks in p_μ
 S ∝ θ²

Dmitry Gorbunov (INR)

And More...

• Amplification of production ini 1 \rightarrow 2 (chirality)

$$\Gamma(M\to N+I)\propto \theta^2 M_N^2$$

• heavy N decay is fast

$$\tau = \frac{\tau_{\mu}}{\theta^2} \times \left(\frac{m_{\mu}}{M_N}\right)^5 = 10^{-10} \,\mathrm{s} \times \frac{10^{-6}}{\theta^2} \times \left(\frac{10 \,\mathrm{GeV}}{M_N}\right)^5$$

tends to decay inside the detector

Dmitry Gorbunov (INR)

ä

Limits 10 years ago...

Dmitry Gorbunov (INR)

Indirect searches: $\Delta L = 2$ processes

0νββ

limits are only for one sterile neutrino...

for light sterile neutrinos

$$\langle m \rangle_{\ell_i \ell_j}^2 = \left| \sum_{I} U_{\ell_i I} U_{\ell_j I} M_{N_i} \right|^2$$

for heavy sterile neutrinos

$$\left|\sum_{I}\frac{V_{\ell_{i}I}V_{\ell_{j}I}}{M_{N_{I}}}\right|^{2},$$

ä

How far we should go?

T.Asaka, S.Blanchet, M.Shaposhnikov (2005)

see Lectures by A.Smirnov

- Seesaw mechanism is provided mostly by two 'heavy' sterile neutrinos
 lightest active is almost massless
- They are (highly) degenerate in mass, ΔM_N ≪ M_N producing matter-antimatter asymmetry of the Universe via leptogenesis in primordial plasma at T > 100 GeV mixing is constrained from above and from below !!
- The third 'light' sterile neutrino, $M_N \simeq 1-10$ keV, is almost decoupled and serve as dark matter

mixing is constrained from above and from below !!

the model explain while the previous experiments fail...

the model can be fully explored

Dmitry Gorbunov (INR)

Heavy sterile v's

Heavy sterile neutrinos: direct searches

Weak decays due to mixing

Dmitry Gorbunov (INR)

Heavy sterile neutrinos on example of vMSM

D.G, M.Shaposhnikov (2007) lower bound at $\times 10^{-4}$ Br $(D \rightarrow IN) \lesssim 2 \cdot 10^{-8}$ Br $(D_s \rightarrow IN) \lesssim 3 \cdot 10^{-7}$ Br $(D \rightarrow KIN) \lesssim 2 \cdot 10^{-7}$ Br $(D \rightarrow K'IN) \lesssim 5 \cdot 10^{-8}$ Br $(D \rightarrow K^*IN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow DIN) \lesssim 7 \cdot 10^{-8}$ Br $(B \rightarrow D^*IN) \lesssim 4 \cdot 10^{-7}$ Br $(B_s \rightarrow D_s^*IN) \lesssim 3 \cdot 10^{-7}$

Heavy sterile neutrinos on example of vMSM

D.G. M.Shaposhnikov (2007) lower bound at $\times 10^{-4}$ $Br(D \rightarrow IN) \lesssim 2 \cdot 10^{-8}$ $Br(D_s \rightarrow IN) \lesssim 3 \cdot 10^{-7}$ $Br(D \rightarrow KIN) \lesssim 2 \cdot 10^{-7}$ $Br(D_s \rightarrow \eta IN) \lesssim 5 \cdot 10^{-8}$ $Br(D \rightarrow K^* IN) \lesssim 7 \cdot 10^{-8}$ $Br(B \rightarrow DIN) \lesssim 7 \cdot 10^{-8}$ $Br(B \rightarrow D^* IN) \lesssim 4 \cdot 10^{-7}$ $Br(B_s \rightarrow D_s^*IN) \lesssim 3 \cdot 10^{-7}$

Heavy sterile v's

Towards a dedicated experiment

Dmitry Gorbunov (INR)

AN AN

1904.09124

Dmitry Gorbunov (INR)

Present limits and expectations

Dmitry Gorbunov (INR)

LHC-HL: expectations for a displaced vertex

New projects...

1904.09124

Dmitry Gorbunov (INR)

Lowest mixing to falsify Seesaw type I

D.G., A.Panin (2013)

Outline

- Sterile neutrinos: the simplest model
- 2 What is the mass scale of sterile neutrinos ?
- 3 Matter-antimatter asymmetry of the Universe
- Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

Sterile neutrino: a vast region of mass

Within the seesaw paradigm, as far as

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

Any set (mass scale M_N , Yukawa coupling f) is viable

And with special tunning or symmetry larger (but not smaller) mixing is viable

$$\hat{m}_a \sim \hat{f}^T \frac{1}{\hat{M}_N} \hat{f} v^2$$

Dark Matter properties from cosmology:

p = 0

(If) particles:

- stable on cosmological time-scale requires new (almost) conserved quantum number
- 2 produced in the early Universe at $T > 100 \, \text{eV}$
- In onrelativistic particles long before RD/MD-transition (T = 0.8 eV) (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$) Otherwise no small-size structures, like dwarf galaxies: smoothed out by free streaming

If were in thermal equilibrium:

- (almost) collisionless
- (almost) electrically neutral
- In all matter inhomogeneities (perturbations) are adiabatic:

$$\delta\left(\frac{n_B}{n_{DM}}\right) = \delta\left(\frac{n_B}{n_{\gamma}}\right) = \delta\left(\frac{n_v}{n_{\gamma}}\right) = 0$$

 $M_X \gtrsim 1 \text{ keV}$ $p = 0, V_{\text{sound}} = 0$

CMB distortion

Sterile neutrino: well-motivated keV-mass Dark Matter

massive fermions giving mass to active neutrino through mixing (seesaw)

$$m_a \sim \frac{f^2 v^2}{M_N^2} M_N \sim \theta^2 M_N$$

• unstable, $N \rightarrow \nu \nu \nu$ is always open but exceeding the age of the Universe if

(applicable for $M_N < M_W$)

$$\tau_{N\to 3\nu} \sim 1/\left(G_F^2 M_N^5 \theta_{\alpha N}^2\right) \implies \theta^2 < 1.5 \times 10^{-7} \left(\frac{50 \,\text{keV}}{M_N}\right)^5$$

• with seesaw constraint $m_a \sim \theta^2 M_N$

$$au_{N
ightarrow 3
u} \sim 1 / \left(G_F^2 M_N^4 m_{
u}
ight) \sim 10^{11} \, {
m yr} \left(10 \, {
m keV} / M_N
ight)^4$$

Sterile neutrino: indirect searches

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

unstable, but exceeding the age of the Universe if

$$\frac{\theta^2}{3\times 10^{-3}} < \left(\frac{10\,\text{keV}}{M_N}\right)^5$$

 DM sterile neutrinos can be searched at X-ray telescopes because of two-body radiative decay
 give limits in absence of the feature

a narrow line
$$(\delta E_{\gamma}/E_{\gamma} \sim v \sim 10^{-3})$$
 at photon frequency $E_{\gamma} = M_N/2$

$$\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_N}\right)^4$$

$$F_{\gamma} \propto \Gamma_N \rho_N / M_N ...$$

Can seesaw neutrino serve as DM ?

$$\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_N}\right)^4$$

$$\frac{\theta^2}{10^{-5}} \sim \left(\frac{m_a}{0.1\,\mathrm{eV}}\right) \left(\frac{10\,\mathrm{keV}}{M_N}\right)$$

one order down

. . .

$$\frac{\theta^2}{10^{-7}} \lesssim \left(\frac{1 \text{ keV}}{M_N}\right)^4 \qquad \qquad \frac{\theta^2}{10^{-4}} \sim \left(\frac{m_a}{0.1 \text{ eV}}\right) \left(\frac{1 \text{ keV}}{M_N}\right)$$

How light can be this dark matter ?

Dmitry Gorbunov (INR)

Dark Matter Particle Properties

$$p = 0$$

- In nonrelativistic long before RD/MD-transition (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$, → $M_X \gtrsim 1 \text{keV}$ for thermal production)
- (almost) collisionless
- (almost) electrically neutral

Pauli blocking for fermions in a galaxy: $M_{\rm X} \gtrsim 750 \text{ eV}$ $f(\mathbf{p}, \mathbf{x}) = \frac{\rho_{\rm X}(\mathbf{x})}{M_{\rm X}} \cdot \frac{1}{\left(\sqrt{2\pi}M_{\rm X}v_{\rm X}\right)^3} \cdot e^{-\frac{\mathbf{p}^2}{2M_{\rm X}^2v_{\rm X}^2}} \Big|_{\mathbf{p}=0} \le \frac{g_{\rm X}}{(2\pi)^3}$

Decoupling of relativistic Dark Matter

Assumptions

- OM particles are in equibrium in plasma
- 2 DM decouple from plasma at temperature $T_d \gtrsim M_X$, so they are relativistic

(e.g. neutrino)

Later on

 $n_X a^3 = \text{const}, \quad sa^3 = \text{const} \qquad \implies \frac{n_X}{s} = \text{const} = \# \frac{g_X}{g_*(T_d)}$

DM particle mass M_X fixes Ω_X :

$$\Omega_X = \frac{M_X \cdot n_{X,0}}{\rho_c} = \frac{M_X \cdot s_0}{\rho_c} \frac{n}{s} \approx 0.2 \times \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right)$$

 $n_X(T_d) = g_X \cdot \begin{pmatrix} 1 \\ \frac{3}{4} \end{pmatrix} \cdot \frac{\zeta(3)}{\pi^2} T_d^3$

- NO thermal sterile neutrino DM !!

Pauli blocking prevents fermionic DM

NR

Matter perturbations

- CMB is isotropic, but "up to corrections, of course..."
 - Earth movement with respect to CMB $\frac{\Delta T_{dipole}}{\tau} \sim 10^{-3}$
 - More complex anisotropy: $\frac{\Delta T}{T} \sim 10^{-4}$
- There were matter inhomogenities $\Delta \rho / \rho \sim \Delta T / T$ at the stage of recombination $(e + \rho \rightarrow \gamma + H^*) \implies$
 - Jeans instability in the system of gravitating particles at rest $\implies \Delta \rho / \rho \nearrow$ galaxies (CDM halos)
- $\Delta \rho_{DM} / \rho_{DM} \propto a \propto 1/T$ from T = 0.8 eV, while $\Delta \rho_B / \rho_B \propto a \propto 1/T$ only after recombination T = 0.25 eV

without DM total growth factor would be 1100 not enough to explain structures!

Dmitry Gorbunov (INR)

Heavy sterile v's

Sterile neutrinos produced in plasma...

$$\Omega_N < \Omega_X = \frac{M_X \cdot n_{X,0}}{\rho_c} = \frac{M_X \cdot s_0}{\rho_c} \frac{n}{s} \approx 0.2 \times \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right)$$

typical momenta are

$$\frac{p_X}{M_X} \propto \frac{a_d}{a} \sim \frac{3T}{M_X} \left(\frac{g_*(T)}{g_*(T_d)}\right)^{1/3}$$

at RD/MD transition (equality) their velocities are

$$v\sim rac{T}{1\,\mathrm{eV}}rac{1\,\mathrm{keV}}{M_X}\sim 10^{-3}$$

Warm Dark Matter:

all inhomogeneities of sizes smaller than (roughly)

 $I = v \times t_{Universe}$

are smoothed out due to free streaming

it allows to test the model, but also ...

Dmitry Gorbunov (INR)

Heavy sterile v's

N

CDM Problems at small-scales ...?

- NFW profile fits nicely DM in galaxy clusters $\rho \propto r^{-1}(r+r_c)^{-2}$
- Dwarf galaxy density profiles: ρ_M(r) ∝ r^{-(0.5-1.5)} cusp most DM-dominated objects

Cores observed (?)

5 Clusters in the Fornax dSph

Dmitry Gorbunov (INR)

100 instead of 1000

CDM Problems with small structures ...?

- Missing satellites: $\frac{dN_{obj}}{d \ln M} \propto \frac{1}{M}$
- "Too big to fail" problem
- Solved (?) by Warm Dark Matter (sterile neutrino, gravitino) free-streaming

no-scale

Refined constraint for DM: phase space density

after decoupling $f_i = f_i(\kappa)$ =const and defines psd, which remains intact due to the Liouville theorem even in galaxies with inhomogeneous distribution in space coarse grained phase space density:

$$f(\kappa, \mathbf{x}, t) \leq \max_{\kappa} f_i(\kappa)$$

observation:

$$Q = \frac{\rho}{\langle v_{||}^2 \rangle^{3/2}} \equiv \mathscr{Q} \cdot 1 \frac{M_{\odot}/\text{pc}^3}{(\text{km/s})^3} = \left(5 \cdot 10^{-3} - 2 \cdot 10^{-2}\right) \frac{M_{\odot}/\text{pc}^3}{(\text{km/s})^3}.$$
$$Q \simeq 3^{3/2} \frac{\rho_{DM}}{\langle v_{DM}^2 \rangle^{3/2}} = 3^{3/2} m^4 \frac{n}{\langle P^2 \rangle^{3/2}} = 3^{3/2} m^4 f(\mathbf{P}, \mathbf{x}).$$
$$\frac{m^4}{3^{3/2} \text{max}f_i}$$

Sterile neutrino production in the early Universe

• before the EW transition, $T > T_{EW}$

$$H \rightarrow L + N, \quad \frac{\Gamma_{H \rightarrow v_a N}}{H} \simeq \frac{f_v^2}{16\pi} \frac{T}{H} \ll 1,$$

$$v_L + X \rightarrow N_R + Y$$
, $\Gamma \propto \frac{M_D^2}{T^2}$

Neutrino matter effect:

05.09.2019. Pontecorvo-2019

57 / 81

asymmetry

Production in oscillations

$$\frac{\partial}{\partial t} f_{s}(t, \mathbf{p}) - H\mathbf{p} \frac{\partial}{\partial \mathbf{p}} f_{s}(t, \mathbf{p}) = \frac{1}{2} \Gamma_{\alpha} P(v_{\alpha} \to v_{s}) f_{\alpha}(t, \mathbf{p})$$

 $\Gamma_{\alpha} \propto G_F^2 T^4 E$ is the weak interaction rate in plasma

$$P(v_{\alpha} \rightarrow v_{s}) = \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right),$$

$$t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}},$$

$$\sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}},$$

sign of the effective plasma potential matters:

 $V_{\alpha\alpha} < 0 \implies$ mixing gets suppressed $V_{\alpha\alpha} > 0 \implies$ amplification via resonance

DM from oscillations:

 $(\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{vac})^2$

non-resonant:

$$V_{lphalpha}\sim -\#G_F^2 T^4 E$$

resonant production in the lepton asymmetric plasma

$$V_{lpha lpha} \sim + \# G_F T^2 \mu_{L_{lpha}}$$

BAU-DM relation? $\Omega_B \sim \Omega_{DM}$

Dmitry Gorbunov (INR)

Heavy sterile v's

05.09.2019, Pontecorvo-2019 59 / 81

Sterile neutrino spectra from oscillations

Dmitry Gorbunov (INR)

Refined constraint for DM: phase space density

for non-resonance production

D.G., A.Khmelnitsky, V.Rubakov (2008)

$$m \gtrsim 6 \,\mathrm{keV} \cdot \left(rac{0.2}{\Omega_{DM}}
ight)^{1/3} \left(rac{\mathscr{Q}}{5 \cdot 10^{-3}}
ight)^{1/3} \left(rac{g_*(T_d)}{43/4}
ight)^{1/3},$$

and about 3-6 keV for resonant one

F.Bezrukov, D.G. (work in progress)

A.Schneider (2016)

Sterile neutrino Dark Matter: ... gone?

A.Schneider (2016)

brown: MW satellite counts green and yellow: Lyman- α

production by inflaton

Dmitry Gorbunov (INR)

... present searches

- (not a seesaw $\theta^2 \sim$ $10^{-5}(10 \,\mathrm{keV}/M_N))$
- upper limits on mixing: from X-ray searches
- Iower limits on mass: from structure formation

$$\lambda_{FS} \sim 1 \, \text{Mpc} imes rac{ ext{keV}}{M_N} rac{\langle p_N
angle}{\langle p_V
angle}$$

64 / 81

Most recent result of NuSTAR

1908.09037, see Lectures by A.Smirnov

05.09.2019, Pontecorvo-2019 65 / 81

... 5 years ago: Dark Matter decay observed in X-ray?

Closing sterile neutrino DM? ... in a minimal variant

situation changes with just 1 new d.o.f.

• reopen large mixings with $\Omega_N < \Omega_{DM}$ (part of DM) to avoid X-ray bounds:

$$\theta_{X-ray}^2 = \theta_{\alpha I}^2 \frac{\Omega_N}{\Omega_{DM}}$$

direct searches: Troitsk, KATRIN can be seesaw neutrino

- small mixing: dominant DM testing with future telescopes
- reopen small masses with $v_N \ll v_{WDM}$,
 - e.g. cold sterile neutrino

N

φΝ^cΝ

Searches for DM are deep inside the forbidden region

Larger mixing: Suppression of production

Form only a fraction of DM !!

$$P(v_{\alpha} \to v_{s}) = \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right), \quad \sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha},$$
$$t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}}$$

Most efficient production occurs at

$$T_{max} pprox 133 \,\mathrm{MeV} \left(rac{1\,\mathrm{keV}}{M_N}
ight)^{1/3}$$

It is suppressed if $T_{reh} \ll T_{max}$

G.Gelmini, S.Palomares-Ruiz, S.Pascoli (2004)

Dmitry Gorbunov (INR)

Heavy sterile v's

05.09.2019, Pontecorvo-2019 69 / 81

(DW)

NR

Suppression of cosmological production

Add more ingredientse.g.Scalar? Majoron? $\bar{L}\tilde{H}N + M_N\bar{N}^cN \rightarrow \bar{L}\tilde{H}N + \phi\bar{N}^cN$ (lepton symmetry)

$$P(v_{\alpha} \to v_{s}) = \sin^{2} 2\theta_{\alpha}^{\text{mat}} \cdot \sin^{2} \left(\frac{t}{2t_{\alpha}^{\text{mat}}}\right), \quad \sin 2\theta_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{mat}}}{t_{\alpha}^{\text{vac}}} \cdot \sin 2\theta_{\alpha},$$
$$t_{\alpha}^{\text{mat}} = \frac{t_{\alpha}^{\text{vac}}}{\sqrt{\sin^{2} 2\theta_{\alpha} + (\cos 2\theta_{\alpha} - V_{\alpha\alpha} \cdot t_{\alpha}^{\text{vac}})^{2}}, \quad t_{\alpha}^{\text{vac}} = \frac{2E}{M_{N}^{2}}$$

Coupling to scalar can change the effective neutrino Hamiltonian in the primordial plasma

$$\left(\begin{array}{cc} V_{\alpha\alpha} & M_D \\ M_D & V_{NN} + M_N \end{array}\right)$$

Suppression of production with $\phi \bar{N}^c N$

 strong coupling to scalar or Majoron, which decreases the active-sterile mixing in primordial plasma

e.g. L.Bento, Z.Berezhiani (2001)

$$\phi NN \rightarrow G\bar{N}N\bar{N}N \rightarrow V_{NN}$$

 homogeneous \(\phi = \phi(t)\) makes sterile neutrino mass changing in cosmology, which suppresses the early-time oscillations

F.Bezrukov, A.Chudaykin, D.G. (2017)

$$\phi(t)NN \to M_N = M_N(t) = M_N(T)$$

- sterile neutrinos are massless in the early Universe
- sterile neutrinos are superheavy in the early Universe

Heavy sterile v's

Massless in the early Universe

$$\mathscr{L} = rac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\mu \phi - V(\phi) + rac{f}{2} \phi \bar{N}^c N + ext{h.c.}$$

with a hidden sector... to make the phase transition:

$$T > T_c \implies \langle \phi \rangle = 0, \quad M_N = 0$$

$$T < T_c \implies \langle \phi \rangle = v_\phi, \quad M_N = f v_\phi$$

So the neutrino is pure Dirac fermion at the beginning...

The production in oscillations will be suppressed, if

$$T_c < T_{max} \approx 133 \,\mathrm{MeV} \left(rac{1 \,\mathrm{keV}}{M_N}
ight)^{1/3}$$

there is always a chirality flip contribution $\propto M_D^2/E^2$

similar for $\langle \phi \rangle \neq 0$ disappearing later...

Results: large mixing is allowed

for details see 1705.02184

Important:

 $m_a \sim \theta^2 M_N$

- **1** seesaw light sterile neutrino (dashed lines: $m_a \sim 0.008 0.2 \text{ eV}$)
- 2 can be directly tested !! (between green and white lines)
 - Warm, so most probably only a part of DM

Dmitry Gorbunov (INR)

Heavy sterile v's

05.09.2019, Pontecorvo-2019 73 / 81

Sterile neutrinos: a part of dark matter

 10^{5} 0.0 165 10^{4} 150 $P(k)[(Mpc/h)^3]$ -1.5135 10^{5} $\log_{10} f_{\rm ncdm}$ 12010 -3.0 $105\,
m{s}$ 10^{1} 90 $10^{(}$ 75-4.560 10^{-1} $= 10^{3} eV$ 45-6.0 $10^{-1}_{-10^{-1}}$ 10^{1} 10^{2} $\log_{10} m_{\rm ncdm}/{\rm eV}$ Irlb /Maci 10^{0} Fermion 挺 10^{-10} Bosons * 10^{-1} $\simeq 160$ Į♥ ¦Į 10^{-2} 10^{1} $dN_{sat}/d\ln M$ $f_{
m ncdm}$ 10- $10^{(}$ 10^{-1} Ŧ 10^{-1} 10^{-5} 10^{-1} $10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}10^{1}10^{2}10^{3}10^{4}10^{5}$ 10^{-2} 10^{8} 10^{9} 10^{10} 10^{12} 10^{11} $m_{\rm ncdm} \, [eV]$ $M[M_{\odot}/h]$

Dmitry Gorbunov (INR)

1701.03128

The oscillating scalar field

$$\mathscr{L} = \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\mu} \phi - \frac{1}{2} m_{\phi}^2 \phi^2 + \frac{f}{2} \phi \bar{N}^c N + \text{h.c.}$$

homogeneous scalar field in FLRW expanding Universe

 $\ddot{\phi} + \mathbf{3}H\dot{\phi} + m_{\phi}^2\phi = 0$

two-stage evolution:

$$\begin{array}{ll} m_{\phi} < H(t) \implies \phi = \phi_i = {\rm const} \\ m_{\phi} > H(t) \implies \rho = \langle E_k \rangle - \langle E_p \rangle = 0, \quad \rho \sim m_{\phi}^2 \phi^2 \propto 1/a^3 \end{array}$$

- At $m_{\phi} < H(t)$ sterile neutrino mass is $M = M_N + f\phi_i \gg M_N$
- At present sterile neutrino mass is M_N ~ 1 keV

• If at $m_{\phi} > H(t)$ sterile neutrinos are nonrelativistic most time, $m_{\phi} = H_{osc} = \frac{T_{osc}^2}{M_{ex}^2}$

$$M(t) = M_N + f\phi_i \frac{T^3}{T_{osc}^3} > T$$

Dmitry Gorbunov (INR)

Subtleties with Effective neutrino mass

 $-\rho_{\phi} > \rho_N$, so the scalar is DM or, in case of rapid production, must account for the backreaction - Yukawas induce $\lambda \phi^4 \sim f^4/(16\pi^2)\phi^4$ which may dominate instead

- Both L_{osc} and θ_{eff} change with M(t), which oscillates !!

very complicated system: three oscillators with time-dependent couplings

Dmitry Gorbunov (INR)

Cool and Cold sterile neutrinos

sterile neutrino mass

$$M(t) = M_N + f\phi(t) = M_N + f\phi_i \frac{T^3}{T_{OSC}^3} \cos(m_\phi t)$$

1) sometimes crosses zero, which allows for sterile neutrino production by a 'slow' oscillator $m_{\phi} \ll M_N$ with large amplitude the produced sterile neutrinos are almost at rest avoiding limits from structure formation avoiding X-ray limits with tiny mixing angle

2) Both L_{OSC} and θ_{eff} change with M(t), which oscillates !! resonance very complicated system: three oscillators with time-dependent couplings cool

Allowed regions for each mechanism F.Bezrukov, A.Chudaykin, D.G. (2018)

Another option: coupling to light inflaton

Non-resonant production (active-sterile mixing) is ruled out

 $\begin{array}{l} \mbox{Resonant production (lepton asymmetry) requires} \\ \Delta M_{2,3} \lesssim 10^{-16} \mbox{ GeV} \\ \mbox{arXiv:0804.4542, 0901.0011, 1006.4008} \end{array}$

Dark Matter production from inflaton decays in plasma at $T \sim m_{\chi}$

Not seesaw neutrino!

M.Shaposhnikov, I.Tkachev (2006)

 $M_{N_l} \bar{N}_l^c N_l \leftrightarrow f_l X \bar{N}_l N_l$ Can be "naturally" Warm (250 MeV $< m_{\chi} < 1.8 \, \text{GeV}$)

$$M_{
m 1} \lesssim 15 imes \left(rac{m_{\chi}}{
m 300~MeV}
ight)
m keV$$

Outline

- Sterile neutrinos: the simplest model
- 2 What is the mass scale of sterile neutrinos ?
- 3 Matter-antimatter asymmetry of the Universe
- Present: Limits and (future) searches
- 5 Sterile neutrino Dark Matter
- 6 Conclusion

Conclusion

Summary on sterile neutrinos

- Most economic explanation of neutrino oscillations within renormalizable approach: 2-3 Majorana neutrinos enough
- Capable of explaining baryon asymmetry of the Universe even at $\theta_{13} = \delta_{CP} = 0$
- One more neutrino can serve as (naturally Warm) dark matter

this specia does not explain oscillations! there are allowed mechanisms of DM sterile neutrino productions

- 1 eV- sterile neutrino: cosmology vs anomalies (LSND, ...) ...? dark radiation
- The seesaw can be tested, and in some cases (vMSM) fully explored: NA62, Bellell, LHCb, ND of HyperK, DUNE, ... SHiP, MATHUSLA, etc DM searches with X-ray telescopes: ART-X, eROSITA of SRG

Backup slides

M

Limits form SN

1102.5124

1603.05503

X

A sketch of model parameter space

0,1: allowed even w/o scalar field

2: scalar helps to avoid X-ray bound and make $\Omega_N = \Omega_{DM}$, but free-streaming...

3,4: Ω_N is determined by *X*-ray bound

DM from Heavy scalar (Majoron?) decay

Dmitry Gorbunov (INR)

NR

Leptogenesis in 2+1 scheme: $0v2\beta$ decay region

1308.3550

vMSM parameter space with resonant DM

L.Canetti, M.Drewes, M.Shaposhnikov 1204.3902