# **Reactor Neutrino Experiments** (I)

### Yifang Wang Institute of High Energy Physics, Beijing

#### Pontecorvo School, Aug. 2017

#### **Neutrinos from Reactors**



The most likely fission products have a total of 98 protons and 136 neutrons, hence on average there are 6 n which will decay to 6p, producing 6 neutrinos



Neutrino flux of a commercial reactor with 3 GW<sub>thermal</sub> :  $6 \times 10^{20}$  /s  $^{2}V$ 

### **Neutrinos Discovered at Reactors**

 Reines' first attempt: during nuclear bomb explosion through the reaction using liquid scintillator:

 $\overline{v}_e + p \rightarrow e^+ + n$ 

- Second attempt— Hanford experiment in 1953: backgrounds more than signals
- Third attempt—Savannah River experiment in 1956: successfully found neutrinos by adding anti-coincidence veto detectors



Frederick Reines 1997 Nobel prize



### Neutrino Detection: Inverse-β Decays in Liquid Scintillator

$$\overline{v}_e + p \rightarrow e^+ + n$$



Neutrino energy:

$$E_{\overline{\nu}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{e^+}$$

10-40 keV 1.8 MeV: Threshold

 $\tau \approx 180 \text{ or } 28 \ \mu\text{s}(\textbf{0.1\% Gd})$ 

n + p 
$$\rightarrow$$
 d +  $\gamma$  (2.2 MeV)  
n + Gd  $\rightarrow$  Gd\* +  $\gamma$  (8 MeV)

Neutrino Event: coincidence in time, space and energy

#### Why LS:

Being both the target and detector Proton rich material Good energy resolution Easy handling for large volume Relatively Cheap

### **Reactor Neutrino Spectrum**

- Three ways to obtain reactor neutrino spectrum:
  - Direct measurement
  - First principle calculation
  - Sum up neutrino spectra.
     <sup>235</sup>U, <sup>239</sup>Pu, <sup>241</sup>Pu from their measured β spectra,
     <sup>238</sup>U from calculation (10%)





### **Reactor Neutrinos: a Brief History**

#### **Oscillation:**

- ⇒ Early searches(70's-90's):
  - ✓ Reines, ILL, Bugey, … Palo Verde, Chooz
- $\Rightarrow$  Determination of  $\theta_{12}(90^{\circ}s-00^{\circ}s)$ :
  - ✓ KamLAND
- $\Rightarrow$  Discovery of  $\theta_{13}$  (00's-10's):
  - ✓ Daya Bay, Double Chooz, RENO
- ⇒ Mass hierarchy(10's-20's):
  - ✓ JUNO, RENO-50
- Magnetic moments (90's-now)
  - ➡ Texono, MUNU, GEMMA, …
- Sterile neutrinos(10's):
  - ⇒ Nucifer, Stereo, Solid …

**Oscillation signal:**  $N_{obs}/N_{exp} < 1$ 



6

# Savannah River experiment — "Observation of neutrino oscillation"

 <sup>3</sup>He neutron detectors immersed in 268 kg D<sub>2</sub>O tank placed 11.2m m from reactor :

$$\overline{\nu}_e + d < \stackrel{n+n+e^+}{n+p+\overline{\nu}_e} (\operatorname{cc} d)$$

• Neutron signal:

 $n+^{3}He \rightarrow p + ^{3}H + 764 \text{ keV}$ 

- Single/double neutron rate → ccd/ncd
- Observed R  $\equiv r^{exp}_{ccd/ncd} / r^{theo}_{ccd/ncd}$ = 0.40 ± 0.22





F. Reines et al., PRL 45(1980) 1307

### **ILL: First Debate**

- Baseline: 8.7 m
- 377 / Liquid scintillator detector
- Neutrons: by 4 <sup>3</sup>He planes in between LS cells(τ=150 μs)
- Techniques used until now: shielding, veto, background, on/off Comparison, efficiency, spectrum, stability, etc.
- Neutrino flux: P. Vogel PRC19(1979)2259
- N<sub>exp</sub>/N<sub>theo</sub>.= 0.89±
   0.04(stat.)±
   0.14(syst.)

F. Boehm et al., PLB97(1980)310 H.Kwon et al., PRD24(1981)1097





68%

0.5

 $\sin^2 2\theta$ 

1.0

0.15

0.1

# Bugey: a new claim

1.2

1.1

20 1.

0.9

0.8

 $3\sigma$  effect

E(e+) (Mex)

- Modules made of 98 SS cells, each of 0.85 m long, 8.5 cm ×8.5 cm in cross section, filled with PC based liquid scintillator doped with 0.15% <sup>6</sup>Li, and viewed by two PMTs at both ends
- Neutron signal ( $\tau = 30 \ \mu s$ ):  $n+{}^{6}Li \rightarrow {}^{4}He+{}^{3}H+4.8MeV$   $E_{vis}= 0.53 MeV +$ PSD  $Q_{delayed}/Q_{total}$
- Compare neutrino rate at 14 and 18 m from reactors



J.F. Cavaignac et al, Phys. Lett. B 148(1984)387

### **Disapproved Again by F. Boehm: Goesgen**

- Nearly the same Detector as ILL
- Baseline: 37.9, 45.9, 64.7
- Good agreement with expectation: rate and spectrum





### A new era: Atmospheric neutrino anomaly

Muon Veto

Water

Buffer

oil

optical

fiber

9m

LED

scintillator

4.5m

LED

oil

optical

fiber

- Atmospheric neutrino results stimulate new experiments
  - If atmospheric  $v_{\mu} \rightarrow v_{e}$
  - Baseline: ~1km
- F. Boehm: San Onofre → Palo Verde (early 90's  $\rightarrow$  00's)
  - From Goesgen
  - Difficult stories (California Gnatcatcher)
- Chooz (early 90's)
  - From Bugey+Russians
  - a successful story
  - New techniques: larger detector, Gd-LS, MC, HEP software & analysis method ...





# KamLAND



If solar neutrino problem is due to  $v_e$  oscillation, reactor  $v_e$  can be used to look at it, if CPT is valid and if LMA solution is correct  $\rightarrow$  a very brave move

# **KamLAND Results**





R=0.658±0.044(stat) ±0.047(syst)

Excluded neutrino decay at 99.7% CL Excluded decoherence at 94% CL Firmly established neutrino oscillation



2017-8-25

# **Experiments for** $\theta_{13}$

- Once  $\theta_{\rm 23}$  and  $\theta_{\rm 12}$  established in 2003, interests mount on  $\theta_{\rm 13}$
- No good reason(symmetry) for  $sin^2 2\theta_{13} = 0$
- Even if  $\sin^2 2\theta_{13} = 0$  at tree level,  $\sin^2 2\theta_{13}$  will not vanish at low energies with radiative corrections
- Theoretical models predict  $\sin^2 2\theta_{13} \approx 0.1-10 \%$





# Why at reactors

- Clean signal, no cross talk with  $\delta~$  and matter effects
- Relatively cheap compare to accelerator based experiments
- Can be very quick

**Reactor experiments:** 

 $P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{13}^2 L/E) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E)$ 

Long baseline accelerator experiments:

 $P_{\mu e} \approx \sin^2 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{23}^2 L/E) + \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 (1.27 \Delta m_{12}^2 L/E) - A(\rho) \cdot \cos^2 \theta_{13} \sin \theta_{13} \cdot \sin(\delta)$ 



#### **Reactor Experiment: comparing observed/expected neutrinos:**



**Precision of past experiments:** 

- Reactor power: ~1%
- v spectrum: ~0.3%
- Fission rate: ~ 2%
- Backgrounds: ~1-3%
- Target mass: ~1-2%
- Efficiency: ~2-3%

#### We need a precision of ~ 0.4%

PMT type EMI 9350 Diameter - 8 inches Coverage - 20%, PMT Number - 842

# First idea: Kr2Det

- Krasnoyarsk underground reactor
- Near-far cancellation

L.A. Mikaelyan et al., hep-ex/9908047 V. Martemyanov et al., hep-ex/0211070







### **Proposed Reactor Experiments**

#### Krasnoyarsk, Russia

RENO.

Daya Bas

KASKA, Japan

China

Korea

#### Braidwood, USA

#### Double Chooz, France

#### Diablo Canyon, USA

#### Angra, Brazil

#### 8 proposals, most in 2003 (3 on-going)

- Fundmental parameter
- Gateway to v-CPV and Mass Hierachy measurements
- Less expensive

### How to Reach 0.5% Precision ?

- Increase statistics:
  - Powerful nuclear reactors
  - Larger target mass
- Reduce systematic uncertainties:
  - Reactor-related:
    - Optimize baseline for the best sensitivity
    - Near and far detectors to minimize reactor-related errors
  - Detector-related:
    - Use "Identical" pairs of detectors to do *relative* measurement
    - Comprehensive programs for the detector calibration
    - Interchange near and far detectors (optional)
  - Background-related
    - Go deep to reduce cosmic-induced backgrounds
    - Enough active and passive shielding

# How to Design a Good Detector ?

#### **Lessons from past:**

- **CHOOZ:** 
  - ⇒ bad Gd-LS
  - ▷ PMT in contact with LS
- Palo Verde:
  - ⇒ Bad shielding
  - Segmented detctor

#### **KamLAND:**

 ⇒ Fiducial volume cut introduce uncertainties on target mass

- Energy threshold less than 0.9 MeV
- Homogeneous detector
- Scintillator mass well determined
- Target scintillator all from one batch, mixing procedures well controlled
- Not too large detector
- Comprehensive calibration program
- Background well controlled → good shielding
- Be able to measure everything(Veto ineff., background, energy/position bias, ...)
- A lot of unforeseen effects will occur when looking at 0.1% level

### Layout of the Daya Bay Experiment



- Near-Far relative mea. to cancel correlated syst. err.
  - 2 near + 1 far
- Multiple modules per site to reduce uncorrelated syst. err. and cross check each other (1/sqrt(N))
  - 2 at each near site and 4 at far site
- Multiple muon veto detectors at each site to reach highest possible eff. for reducing syst. err. due to backgrounds
   <sup>2017-8-25</sup>/<sub>4</sub> layer of RPC + 2 layer of Cerenkov detector

# <u>θ<sub>13</sub>: Three on-going experiments</u>

| Experiment      | Power         | Baseline(m)  | Detector(t) | <b>Overburden</b> | Designed    |
|-----------------|---------------|--------------|-------------|-------------------|-------------|
|                 | ( <b>GW</b> ) | Near/Far     | Near/Far    |                   | Sensitivity |
|                 |               |              |             | Near/Far          | (90%CL)     |
| Daya Bay        | 17.4          | 470/576/1650 | 40//40/80   | 250/265/860       | ~ 0.008     |
| Double<br>Chooz | 8.5           | 400/1050     | 8.2/8.2     | 120/300           | ~ 0.03      |
| Reno            | 16.5          | 409/1444     | 16/16       | 120/450           | ~ 0.02      |

#### **Daya Bay Double Chooz** Reno Near Detector Ling Ao II Ling Ao NPP edf Near Detector Far Detector L = 400m L = 1050m Daya Bay NPP 10m<sup>3</sup> target 10m<sup>3</sup> target Chooz Reactors Far 120m.w.e. 300m.w.e. 4.27GW<sub>th</sub> x 2 cores Detect April 2011 2013~ 23

#### **Three experiments: Double Chooz**



### **Double Chooz detector**



 Identification of cosmic-ray μ Inner Veto (90m<sup>3</sup> Liquid scint.&78 PMTs) Detection of cosmic-ray μ and fast neutrons Steel vessel & PMT support structure Buffer (110m<sup>3</sup> Mineral oil & 390 PMT's) Reduction of fast neutron and environmental  $\gamma$  from outside Acrylic vessel  $\gamma$ -catcher(22.3m<sup>3</sup> Liquid scintillator) Measurement of γ's from n-capture by Gd in target volume

Outer Veto (Plastic scint.)

#### v-target

(10.3m<sup>3</sup> Gd loaded (1g/l) liquid scint.)
Target for neutrino signals

#### Construction @ DC far lab.



#### Buffer PMT installed

#### PMT ID: 10" x 390PMTs (Hamamatsu R7081 MOD (low-BG for DC)) IV: 8" x 78PMTs (Hamamatsu R1408)



# Target and γ-catcher acrylic vessels installed

# RENO

35

, 2005.01.28 14:52

### **RENO & sensitivity**



- 354 10" Inner PMTs : 14% surface coverage
- 67 10" Outer PMTs

|                  | Inner<br>Diameter<br>(cm) | Inner<br>Height<br>(cm) | Filled with      | Mass<br>(tons) |
|------------------|---------------------------|-------------------------|------------------|----------------|
| Target<br>Vessel | 280                       | 320                     | Gd(0.1%)<br>+ LS | 16.5           |
| Gamma<br>catcher | 400                       | 440                     | LS               | 30.0           |
| Buffer<br>tank   | 540                       | 580                     | Mineral<br>oil   | 64.4           |
| Veto<br>tank     | 840                       | 880                     | water            | 352.6          |

#### 90% CL Limits



# Race to Measure $\theta_{13}$

#### P. Huber et al., JHEP 0911:044,2009



Proposals from Russia, Japan, US and Brazil not approved

### **Anti-neutrino Detector (AD)**

- Three zones modular structure:
   I. target: Gd-loaded scintillator
  - II. γ-catcher: normal scintillatorIII. buffer shielding: oil
- 192 8" PMTs/module
- Two optical reflectors at the top and the bottom, Photocathode coverage increased from 5.6% to 12%





Target: 20 t, 1.6m γ-catcher: 20t, 45cm Buffer: 40t, 45cm Total weight: ~110 t

### **Comprision with other detectors**





#### **Double Chooz**

#### Daya Bay

|                 | PMT     | Coverage | pe yield   | ΜΟ     | Acc. Bkg.   | $\Delta B/B$ |
|-----------------|---------|----------|------------|--------|-------------|--------------|
| Daya Bay        | 192 8'' | ~6%      | 163 pe/MeV | 50 cm  | 1.4%/4.0%   | 1.0%/1.4%    |
| RENO            | 354 10" | ~15%     | 230 pe/MeV | 70 cm  | 0.56%/0.93% | 1.4%/4.4%    |
| Double<br>Chooz | 390 10" | ~16%     | 200 pe/MeV | 105 cm | 0.6%        | 0.8%         |

### **Gd-Loaded Liquid Scintillator: a challenge**

#### **Issue: transparency, aging, ...**

#### **Currently produced Gd-loaded liquid scintillators**

| Groups       | Solvent      | Complexant for Gd<br>compound | Quantity(t) |
|--------------|--------------|-------------------------------|-------------|
| Chooz        | IPB          | alcohol                       | 5           |
| Palo Verde   | PC+MO        | EHA                           | 12          |
| Double Chooz | PXE+dodecane | <b>Beta-Dikotonates</b>       | 8           |
| Reno         | LAB          | ТМНА                          | 40          |
| Daya Bay     | LAB          | ТМНА                          | 185         |





# Water Buffer & VETO

- 2.5 m water buffer to shield backgrounds from neutrons and γ's from lab walls
- Cosmic-muon VETO Requirement:
  - Inefficiency < 0.5%</p>
  - known to <0.25%</p>
- Solution: multiple detectors
  - cross check each other to control uncertainties
- Design:
  - 4 layers of RPC at TOP +
  - 2 layers of water detector

#### **RPC** over scintillator: insensitive to $\gamma$ backgrounds



### **Background Estimate**



|                                                         | Daya Bay Near | Ling Ao Near        | Far Hall            |
|---------------------------------------------------------|---------------|---------------------|---------------------|
| Baseline (m)                                            | 363           | 481 from Ling Ao    | 1985 from Daya Bay  |
|                                                         |               | 526 from Ling Ao II | 1615 from Ling Ao's |
| Overburden (m)                                          | 98            | 112                 | 350                 |
| Radioactivity (Hz)                                      | <50           | <50                 | <50                 |
| Muon rate (Hz)                                          | 36            | 22                  | 1.2                 |
| Antineutrino Signal (events/day)                        | 930           | 760                 | 90                  |
| Accidental Background/Signal (%)                        | < 0.2         | < 0.2               | < 0.1               |
| Fast neutron Background/Signal (%)                      | 0.1           | 0.1                 | 0.1                 |
| <sup>8</sup> He+ <sup>29</sup> Li Background/Signal (%) | 0.3           | 0.2                 | 0.2 34              |

10

### **Reactor Neutrino Flux**

$$\mathbf{S}(\boldsymbol{E}_{\nu}) = \frac{\boldsymbol{W}_{\boldsymbol{th}}}{\sum_{i} \left(\frac{f_{i}}{F}\right) \cdot \boldsymbol{e}_{i}} \sum_{i} \left(\frac{f_{i}}{F}\right) \cdot \boldsymbol{S}_{i} \left(\boldsymbol{E}_{\nu}\right)$$

- Energy release per fission e<sub>i</sub> (database)
- Thermal Power W<sub>th</sub> (Provided by NPP)
- Neutrino spectra of Isotopes (ILL+Vogel, Huber+Mueller, Vogel, Fallot, etc.)
- Fission Fraction (f<sub>i</sub>/F) (Provided by NPP or independent core simulation)
- Small corrections
- Correlation among uncertainties.

| Isotope            | $E_{fi}$ , MeV/fission |
|--------------------|------------------------|
| $^{235}\mathrm{U}$ | $201.92 \pm 0.46$      |
| $^{238}\mathrm{U}$ | $205.52 \pm 0.96$      |
| $^{239}$ Pu        | $209.99 \pm 0.60$      |
| $^{241}$ Pu        | $213.60 \pm 0.65$      |

Kopeikin et al, Physics of Atomic Nuclei, Vol. 67, No. 10, 1892 (2004)



### **Neutrino Spectra of Isotopes**

- Ab initio: Nuclear database, Σ fragments, Σ chains, Σ branches → 10% uncertainty (e.g. Vogel et al., PRC24, 1543 (1981)).
- **Conversion:** ILL measured the  $\beta$ -spectra  $\rightarrow$  convert to neutrino spectra
  - ➡ ILL spectra: Use spectra of 30 virtual (allowed) decays, fit amplitude and endpoints (ILL-Vogel spectra)
  - $\Rightarrow$  Mueller: 90% ab initio + 10% fit  $\rightarrow$  rate anomaly
  - ⇒ Huber: fit w/ improved nuclear effects (Huber-Mueller spectra)
  - ⇒ 1.34% at 3 MeV to 9.2% at 8 MeV.



A.A. Hahn et al. PLB160, 325 (1985)


### **Fission Fraction**

- Initial 4.45% U235, Others:U238 and O
- U238  $\rightarrow$  n capture  $\rightarrow$  Pu239  $\rightarrow$ 2x n capture  $\rightarrow$  Pu241
- Four major fission isotopes
  - ➡ U235, Pu239, Pu241
  - ➡ U238 fission w/ fast n

#### ♦ Burnup: MW·day/ton U





## Sensitivity to $Sin^2 2\theta_{13}$



### **Tunnel and Underground Lab**

大亚湾反应堆中微子实验站隧道 及实验厅洞室布置示意图









A total of ~ 3000 blasting right next reactors. No one exceeds safety limit set by National Nuclear Safety Agency (0.007g)

### **Detector Assembly**









3m AV





**Top reflector** 



### **Detector Installation**









### Three ADs installed in Hall 3 Physics Data Taking Started on Dec.24, 2011



## **Neutrino Event Selection**

#### Pre-selection

- ⇒ Reject Flashers
- Reject Triggers within (-2 μs, 200 μs) to a tagged water pool muon

#### Neutrino event selection

- ⇒ Multiplicity cut
  - Prompt-delayed pairs within a time interval of 200 μs
  - ✓ No triggers(E > 0.7MeV) before the prompt signal and after the delayed signal by 200 µs
- ⇒ Muon veto
  - ✓ *Is* after an AD shower muon
  - ✓ *1ms* after an AD muon
  - ✓ *0.6ms* after an WP muon
- $\Rightarrow$  0.7MeV < E<sub>prompt</sub> < 12.0MeV
- $\Rightarrow 6.0 \mathrm{MeV} < \mathrm{E}_{\mathrm{delayed}} < 12.0 \mathrm{MeV}$
- $\Rightarrow 1\mu s < \Delta t_{e^+-n} < 200\mu s$

Data reduction



2017-8-25

### **Selected Signal Events**



### Signal+Backgound Spectrum



## Backgrounds

# Fully understood all backgrounds. No unknown components.

| Sources                              | Eł                | 11                | > Data                             |
|--------------------------------------|-------------------|-------------------|------------------------------------|
|                                      | Rate<br>(/day/AD) | Fraction          | Ši 15000 Sum<br>Si                 |
| AmC neutron                          | 271+-10           | 26.3+-1.0         |                                    |
| <sup>12</sup> B/ <sup>12</sup> N     | 478+-13           | 46.4+-1.3%        |                                    |
| <sup>8</sup> Li/ <sup>8</sup> B      | 216+-18           | 21.0+-1.8%        | °Li                                |
| <sup>9</sup> C                       | 40+-16            | <b>3.8+-1.6</b> % |                                    |
| <sup>9</sup> Li/ <sup>8</sup> He     | 4+-2              | 0.4+-0.2%         |                                    |
| <sup>11</sup> Be                     | 7+-4              | 0.7+-0.4%         |                                    |
| IBD e <sup>+</sup> (n captured on H) | 14+-1             | 1.4+-0.1%         |                                    |
| Sum                                  | 1030+-29          | 100.0+-2.9%       |                                    |
| All singles                          | 1030+-7           |                   | ۲ ۵ ۵ ۵ ۹ ۱۵ ۱۲ ۲۵<br>Energy [MeV] |

## **Energy Calibration**

- LED (PMT gain, timing)
- Ge68 (positron threshold 1.022 MeV)
- ♦ Co60 (2.506 MeV) + Am-C (neutron)



### **Functional Identical Detectors**

- Why systematics is so small? c.f. An et al. NIM. A 685 (2012) 78
  - ⇒ Idea of ''identical detectors'' throughout the procedures of design / fabrication / assembly / filling.
  - ➡ For example: Inner Acrylic Vessel, designed D=3120±5 mm
    - Variation of D by geometry survey=**1.7mm**, Var. of volume: 0.17%
    - Target mass var. by load cell measurement during filling: 0.19%

| Diameter       | IAV1    | IAV2    | IAV3    | IAV4    | IAV5    | IAV6    |
|----------------|---------|---------|---------|---------|---------|---------|
| Surveyed(mm)   | 3123.12 | 3121.71 | 3121.77 | 3119.65 | 3125.11 | 3121.56 |
| Variation (mm) | 1.3     | 2.0     | 2.3     | 1.8     | 1.5     | 2.3     |

⇒ "Same batch" of liquid scintillator



## **Daily Neutrino Rate**

- Three halls taking data synchronously allows near-far cancellation of reactor related uncertainties
- **Rate changes reflect the reactor on/off.**



#### **Prediction:**

- **Baseline** (3.5cm,  $\sim 0.002\%$
- Target mass (3kg, 0.015%)
- **Reactor neutrino flux**

**Predictions are absolute,** multiplied by a normalization factor from the fitting

49

### **Uncertainties**

|                               | Dete       | ctor                  |                |  |
|-------------------------------|------------|-----------------------|----------------|--|
|                               | Efficiency | Correlated            | Uncorrelated   |  |
| Target Protons                |            | 0.47%                 | 0.03%          |  |
| Flasher cut                   | 99.98%     | 0.01%                 | 0.01%          |  |
| Delayed energy cut            | 90.9%      | 0.6%                  | 0.12%          |  |
| Prompt energy cut             | 99.88%     | 0.10%                 | 0.01%          |  |
| Multiplicity cut              |            | 0.02%                 | < 0.01%        |  |
| Capture time cut              | 98.6%      | 0.12%                 | 0.01%          |  |
| Gd capture ratio              | 83.8%      | 0.8%                  | < 0.1%         |  |
| Spill-in                      | 105.0%     | 1.5%                  | 0.02%          |  |
| Livetime                      | 100.0%     | 0.002%                | < 0.01%        |  |
| Combined                      | 78.8%      | 1.9%                  | 0.2%           |  |
|                               | Rea        | cto Design: (         | 0.18 - 0.38) % |  |
| Correlated                    | d          | Uncorrelated          |                |  |
| Energy/fission                | 0.2%       | Power                 | 0.5%           |  |
| $\overline{\nu}_{e}$ /fission | 3%         | Fission fraction 0.6% |                |  |
|                               |            | Spent fuel 0.3%       |                |  |
| Combined                      | 3%         | Combined              | 0.8%           |  |

Side-by-side Comparison



Expectation: R(AD1/AD2) = 0.982 Measurement: 0.981± 0.004

## χ<sup>2</sup> Analysis

$$\chi^2 = \sum_{d=1}^6 \frac{\left[M_d - T_d(1 + \varepsilon + \sum_r \omega_r^d \alpha_r + \varepsilon_d) + \eta_d\right]^2}{M_d + B_d} + \sum_r \frac{\alpha_r^2}{\sigma_r^2} + \sum_{d=1}^6 \left(\frac{\varepsilon_d^2}{\sigma_d^2} + \frac{\eta_d^2}{\sigma_B^2}\right),$$

### **3 equivalent** $\chi^2$ function:

- K parameter fitting, where K is number of correlated errors.
- ➤ K×K matrix inversion
- N×N matrix inversion, where
   N is number of data points

J. Pumplin et. al. PRD65,014011(2001)





### **A New Type of Oscillation Discovered**

#### **Electron anti-neutrino disappearance:** $R = 0.940 \pm 0.011 \text{ (stat)} \pm 0.004 \text{ (syst)}$

announced on Mar. 8, 2012



## **Another Lucky Story**

- It is big !
- Everybody can see it
- Easy for future experiments: mass hierarchy, CP phase, etc.







- Data taking started on Aug. 11, 2011
- First physics results based on 228 days data taking(up to Mar. 25, 2012) released on April 3, 2012, revised on April 8, 2012, published on May 11, 2012:

Sin<sup>2</sup>2θ<sub>13</sub>=0.113±0.013(Stat)±0.019(Syst), 4. 9σ for non-zero θ<sub>13</sub>

### **Double Chooz**



- Far detector starts data taking at the beginning of 2011
- First results based on 85.6 days of data taking reported in Nov. 2011
   Sin<sup>2</sup>2θ<sub>13</sub>=0.086±0.041(Stat)±0.030(Syst), 1.7σ for non-zero θ<sub>13</sub>
- Updated results based on 228 days of data taking reported on June 4, 2012 at Neutrino 2012

 $\sin^2 2\theta_{13} = 0.109 \pm 0.030 (Stat) \pm 0.025 (Syst), 3.1\sigma$  for non-zero  $\theta_{13}$ 



## **Spectral Information**

#### **Rate-only Analysis:**

 $\frac{N_{far}}{N_{near}} = \frac{N_{protons,far}}{N_{protons,near}} \frac{L_{near}^2}{L_{far}^2} \frac{\epsilon_{far}}{\epsilon_{near}} \frac{\int_{E_{min}}^{E_{max}} dE P_{surv}(E, L_{far}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}{\int_{E_{min}}^{E_{max}} dE P_{surv}(E, L_{near}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}$ 

Advantages: Fewer systematic uncertainties Disadvantages: Less sensitive, Unable to constrain  $\Delta m_{ee}^2$ 

#### **Rate + Spectrum Analysis:**

$$\frac{\frac{dN_{far}}{dE}}{\frac{dN_{near}}{dE}} = \frac{N_{protons,far}}{N_{protons,near}} \frac{L_{near}^2}{L_{far}^2} \frac{\epsilon_{far}}{\epsilon_{near}} \frac{P_{surv}(E, L_{far}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}{P_{surv}(E, L_{near}; \theta_{13}, \Delta m_{ee}^2) \sigma(E) \Phi(E)}$$

Advantages: Each energy bin is an independent oscillation measurement,  $\Delta m_{ee}^2$ Disadvantages: Requires detailed understanding of detector energy response.



### **Energy Response Model**

Mapping the true energy  $E_{true}$  to the reconstructed kinetic energy  $E_{rec}$ :



- Build models taking into account:
  - Electronics non-linearity: timedependent charge collection efficiency
  - Scintillator non-linearity: Quench effect & Cerenkov radiation
  - Complicated e<sup>+</sup>,e<sup>-</sup>, γ's interactions in LS, from simulation
- Constraint parameters by a fit to all calibration data
- Model difference → systematic errors < 1%</p>



PRD 95, 072006 (2017)

### Latest Result: Rate + Spectral Analysis



## Latest Results on Sin<sup>2</sup>2θ<sub>13</sub>



 $=0.086 \pm 0.006(stat.) \pm 0.005(syst.)$  RENO  $(\pm 9.1\%)$ 

 $=0.119 \pm 0.016(stat. + syst.)$  Double Chooz ( $\pm 13.4\%$ )



EPS2017 (up to Sep. 2015)

using data collected up to July 2015 (1230 days, >2.5 million IBDs)

(PhysRevD.95.072006)

not yet publication with

near+far detectors (near

2015)

(EPS2017)

## Latest Results on ∆m<sup>2</sup><sub>ee</sub>



## **Jointly Determine CP** ?



CP phase is ~ -90° at ~  $2\sigma$  level !

Daya Bay

3

## **Future Prospects: Daya Bay**

- Data taking for θ<sub>13</sub> until 2020
   Precision can reach Δ(sin<sup>2</sup>2θ<sub>13</sub>) ~ 3%; the best for the foreseeable future
- Other physics topics:
  - Cosmogenic isotope production
  - ⇒ Supernova neutrinos
  - ➡ Correlated cosmic-ray events







### **Future Prospects: Other Experiments**

#### • Double Chooz

- end of data taking: ~end of 2017
- RENO
  - end of data taking: end of 2018
    - possible extension up to 2021
  - goal: reach 6% precision on  $\theta_{13}$



### **Reactor Flux and Spectrum**

- Daya Bay measured the flux and energy spectrum:
  - ⇒ Absolute flux
  - ⇒ Absolute e<sup>+</sup> energy spectrum
  - ⇒ Unfolded absolute v energy spectrum
  - Evolution of neutrino flux

**Reactor anomaly**?

**Sterile neutrinos** ?

- All three experiments, Daya Bay, Double Chooz and RENO, observed a "bump" at ~5 MeV
  - $\Rightarrow$  No effect to  $\theta_{13}$  if near-far configuration applied(Daya Bay & RENO)
  - Under control even if only far detector is used(Double Chooz)
  - ⇒ Not large enough to explain the reactor anomaly

### **Reactor Neutrino Anomaly**

- By a new flux calculation, there may exist a reactor neutrino flux deficit: 0.943  $\pm$  0.023. A 3 $\sigma$  effect ?
- Later confirm by other calculations
- Oscillation with sterile neutrinos ?
  - Other experimental "hints": LSND, MiniBooNE, Gallex...
  - Global fit of all "hints": severe tensions
  - Cosmological bounds: not so favored



T.A. Mueller et al., PRC83:054615,2011 P. Huber et al., PRC84:024617,2011. C. Zhang et al., arXiv: 1303.0900

## Reactor anomaly Sterile Neutrinos ?

- Radioactive source exp.:
  - CeLAND(<sup>144</sup>Ce in KamLAND), SoX(<sup>51</sup>Cr in Borexino),...
- Accelerator exp.:
  - IsoDAR, Icarus/Nessie, nuSTORM...
- Reactor exp.:
  - Nucifer, Stereo, Solid, Prospect, SCARR, ...
    - Backgrounds near reactors
    - Precision better than 1%

## **Absolute Flux and Spectrum**

#### Absolute Flux

- Data/(Huber+Mueller):  $0.946 \pm 0.022$
- Data/(ILL+Vogel): 0.991  $\pm$  0.023
- Consistent with others
- Absolute v spectrum:
  - After non-linearity correction
  - Unfolding the e+ spectrum
    - Between 1.5 and 7MeV: 1.0% at 3.5 MeV, 6.7% at 7 MeV
    - Above 7 MeV it is larger than 10%
- New prediction from direct measurement for future experiments
- Aim at 1% for JUNO



### **Precision Spectrum with Gas TPC**

- How to reach 1% spectrum uncertainty?
- Improving Daya Bay
  - ➡ Electronics non-linearity
    - 192 channels Flash ADC for AD1. Data taking completed.
  - ➡ Liquid scintillator non-linearity
    - Replaced LS in AD1 for JUNO R&D
       → Consequence: Daya Bay from 8 AD to 7 AD since Dec. 2016
    - Testing detector responses with 13 different LS configurations (PPO from 0.5g/L to 4g/L, bis-MSB from 0.1-15 mg/L)

→ Building precision Monte Carlo

- ➡ Relative meas. to cancel non-linearity btwn Daya Bay and JUNO
- Other experiments, like PROSPECT (4.5% energy resolution)
- Gas TPC detector at ~20 m from a reactor (Prototyping at IHEP)
  - → v-e scattering
  - ⇒ High energy resolution (1%/sqrt(E), Daya Bay 8%, JUNO 3%)
  - $\Rightarrow$  Other motivations:  $\theta$ w, abnormal magnetic moment (to 10<sup>-12</sup>)

## **Fuel Evolution**

- correlations between fuel evolution and changes in the reactor antineutrino flux and energy spectrum.
- Combined fit for major fission isotopes <sup>235</sup>U and <sup>239</sup>Pu
- σ235 is (7.8±2.7)% lower than Huber-Mueller model
- σ239 is consistent with the prediction (6% meas. uncertainty)
- 2.8σ disfavor equal deficit (H-M model & sterile hypothesis)



PRL118, 251801 (2017)

### **Search for Sterile Neutrinos**

- Precise reactor neutrino spectrum from Daya Bay near site can test the sterile neutrino hypothesis
- But ~400 m baseline is not ideal for the reactor anomaly
- In addition to accelerator and radioactive source experiment for sterile neutrinos, we also need experiments very close to the reactor for sterile neutrinos AND JUNO type of experiments:
  - High precision reactor spectrum measurement(statistics ~ 1-10 M events, energy resolution ~ 1-2%, event vertex ~ 10 cm, ...)

$$P(\bar{\nu}_e o \bar{\nu}_e) \simeq 1 - \cos^4 heta_{14} \sin^2 2 heta_{13} \sin^2 \left(rac{\Delta m_{ee}^2 L}{4E_{
u}}
ight) - \sin^2 2 heta_{14} \sin^2 \left(rac{\Delta m_{41}^2 L}{4E_{
u}}
ight)$$



### **Excess in [4,6] MeV Region**

- Significance ~ 4  $\sigma$
- Events are reactor power related & time independent
- Events are IBD-like:
  - Disfavors unexpected backgrounds
- A single β-branch or monoenergetic line cannot simulate the bump
- Possible explanations:
  - Decays of prominent fission daughter isotopes (~ 42% rate from <sup>96</sup>Y, <sup>92</sup>Rb, <sup>142</sup>Cs, <sup>97</sup>Y, <sup>93</sup>Rb, <sup>100</sup>Nb, <sup>140</sup>Cs, <sup>95</sup>Sr)

#### PRL112: 2021501; PRL114:012502

⇒ Energy non-linearity calibration
 2017-8-25 arXiv: 1705.09434



## **Still a Lot of Unknowns**

#### Neutrino oscillation:

- ⇒ Neutrino mass hierarchy ?
- ⇒ Unitarity of neutrino mixing matrix ?
- $\Rightarrow \Theta_{23}$  is maximized ?
- CP violation in the neutrino mixing matrix as in the case of quarks ? Large enough for the matter-antimatter asymmetry in the Universe ?
- What is the absolute neutrino mass ?
- Neutrinos are Dirac or Majorana ?
- Are there sterile neutrinos?
- Do neutrinos have magnetic moments ?
- Can we detect relic neutrinos ?



. . . . . .
### **The JUNO Experiment**



### **Mass Hierarchy at Reactors**



$$\begin{split} \Delta m_{31}^2 &= \Delta m_{32}^2 + \Delta m_{21}^2 \\ \text{NH}: \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| + |\Delta m_{21}^2| \\ \text{IH}: \ |\Delta m_{31}^2| &= |\Delta m_{32}^2| - |\Delta m_{21}^2| \end{split}$$



L. Zhan et al., PRD78:111103,2008; PRD79:073007,2009

### How to Get Enough Photons ?

|                          | KamLAND      | JUNO          | Needed gain |
|--------------------------|--------------|---------------|-------------|
| Light yield              | 250 p.e./MeV | 1200 p.e./MeV | 5           |
| Photocathode<br>coverage | 34%          | 75%           | 2.2         |
| Light yield              | 1.5g/l PPO   | 3-5g/1 PPO    | 1.5         |
| Attenuation<br>length/R  | 15 m/16m     | 25m/35m       | ~ 0.8       |
| PMT QE*CE                | 20%*60%      | 25-30%        | ~ 2         |

Where to get all these factors ?

Are the estimate of these factors reasonable ?

### **Optimum baseline for MH**

- Optimum at the oscillation maximum of  $\theta_{12}$
- Multiple reactors may cancel the oscillation structure

Baseline difference cannot be more than 500 m



### MC Study: Energy Scale & Resolution

#### Resolution: based on DYB with:

- ⇒ JUNO Geometry
- ⇒ 80% photocathode coverage
- ▷ PMT QE from 25% → 35%
- → Attenuation length of 20 m → 

  →
  - ✓ abs. 60 m + Rayleigh scatt. 30m
- Energy scale
  - ⇒ By introduce a self-calibration (based on ∆M<sup>2</sup><sub>ee</sub> periodic peaks), effects can be corrected and sensitivity is un-affected

Y.F. Li et al., arXiv:1303.6733

 Application of this method:
 Relatively insensitive to continuous backgrounds, non-periodic structures



## Signals & Backgrounds

#### LS without Gd-loading for

#### $\tau \thicksim 200 \ \mu \text{S}$

- $\Rightarrow$  Better attenuation length  $\rightarrow$  better resolution
- Lower irreducible accidental backgrounds from LS, important for a larger detector:
   Overburden 700m
  - ✓ With Gd: ~  $10^{-12}$  g/g → 50,000 Hz
  - ✓ Without Gd: ~  $10^{-16}$  g/g → 5 Hz

#### IBD Signal and Backgrounds

Overburden 700m:  $E_{\mu} \sim 211 \text{ GeV}, R_{\mu} \sim 3.8 \text{ Hz}$ Single rates: 5 Hz by LS and 5Hz by PMT muon efficiency ~ 99.5%

| Selection       | IBD efficiency | IBD | $\text{Geo-}\nu\text{s}$ | Accidental             | <sup>9</sup> Li/ <sup>8</sup> He | Fast $n$ | $(\alpha, n)$ |
|-----------------|----------------|-----|--------------------------|------------------------|----------------------------------|----------|---------------|
| -               | -              | 83  | 1.5                      | $\sim 5.7 \times 10^4$ | 84                               | -        | -             |
| Fiducial volume | 91.8%          | 76  | 1.4                      |                        | 77                               | 0.1      | 0.05          |
| Energy cut      | 97.8%          |     |                          | 410                    |                                  |          |               |
| Time cut        | 99.1%          | 73  | 1.3                      |                        | 71                               |          |               |
| Vertex cut      | 98.7%          |     |                          | 1.1                    |                                  |          |               |
| Muon veto       | 83%            | 60  | 1.1                      | 0.9                    | 1.6                              |          |               |
| Combined        | 73%            | 60  |                          |                        | 3.8                              |          |               |

## **Physics Reach: Mass hierarchy**

# For 6 years, JUNO can determine the mass hierarchy:

|                                  | Relative<br>Meas. | <sup>(a)</sup> Use absolute<br>∆m <sup>2</sup> |
|----------------------------------|-------------------|------------------------------------------------|
| <b>Ideal case</b>                | 4σ                | 5σ                                             |
| <sup>(b)</sup> Realistic<br>case | 3σ                | 4σ                                             |

<sup>(a)</sup> If accelerator experiments(NOvA, T2K and ICECUBE) can measure  $\Delta M^2_{\mu\mu}$  to ~1% level

(b) Taking into account multiple reactor cores, uncertainties from energy nonlinearity, etc. Sin<sup>2</sup>2 $\theta_{13} = 0.09$ Detector size: 20kt LS Energy resolution: 3%/ $\sqrt{E}$ Thermal power: 36 GW



Y.F. Li et al., *PRD 88*, *013008 (2013)* arXiv:1303.6733

## **Race for the Mass Hierarchy**



- JUNO is competitive for measuring MH using reactor neutrinos
  - Independent of the yet-unknown CP phase, matter effects and  $\theta_{23}$
- Many other science goals:
  - Precision measurement of  $\Delta m_{31}^2$ ,  $\theta_{12}$ ,  $\Delta m_{21}^2$
  - Geo-, solar, supernova, ..., neutrinos

### **Precision Measurement of Mixing Parameters**

- Fundamental to the Standard Model and beyond
- Probing the unitarity of U<sub>PMNS</sub> to ~1% level !
  - Uncertainty from other oscillation parameters and systematic errors, mainly energy scale, are included



More precise than CKM matrix elements !

## **Supernova Neutrinos**

- Basic facts:
  - Energy:
    - Gravitational binding energy:
      - $E_b \approx 3 \times 10^{53} \text{ erg}$
    - 99% Neutrinos
    - 1% Kinetic energy of explosion (1% of this into cosmic rays)
    - 0.01% Photons, outshine host galaxy
  - Neutrino Energy: 1 50 MeV
- Very good for Supernova study, neutrino mass measurement, and many others
- Frequency: ~ 1/galaxy/100 years



Within our galaxy(~10 kpc), a supernova explosion can happen at any time from now

### **1987A Supernova Neutrinos**



- On Feb. 23, 1987A Supernova exploded, two weeks after the completion of the Kamiokande upgrade.
- Distance: 50 kpc
- No. of neutrino events seen:
  - Kamiokande: 12/3000t
  - IMB: 8/8000t
  - Baksan: 5/ 200t
- Within clock uncertainties, signals are contemporaneous

#### Lesson learned: Large mass Low energy threshold Always on

### **Supernova neutrinos in Giant LS detector**



| Estimated numbers of neutrino | events in JUNO ( | preliminary) |
|-------------------------------|------------------|--------------|
|-------------------------------|------------------|--------------|

|                                | Channel                                                                    | Type                   | Events for different $\langle E_{\nu} \rangle$ values |                   |                  |
|--------------------------------|----------------------------------------------------------------------------|------------------------|-------------------------------------------------------|-------------------|------------------|
| Distance: 10 kpc               |                                                                            |                        | 12  MeV                                               | $14 \mathrm{MeV}$ | $16 { m MeV}$    |
| En every 2: 1053 ever          | $\overline{\nu}_e + p \to e^+ + n$                                         | $\mathbf{C}\mathbf{C}$ | $4.3 \times 10^3$                                     | $5.0 	imes 10^3$  | $5.7 	imes 10^3$ |
| Energy: 3×10 <sup>33</sup> erg | $\nu + p \rightarrow \nu + p$                                              | NC                     | $6.0	imes10^2$                                        | $1.2 	imes 10^3$  | $2.0 	imes 10^3$ |
|                                | $\nu + e \rightarrow \nu + e$                                              | NC                     | $3.6	imes10^2$                                        | $3.6	imes10^2$    | $3.6	imes10^2$   |
|                                | $\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$            | NC                     | $1.7 	imes 10^2$                                      | $3.2 	imes 10^2$  | $5.2	imes10^2$   |
|                                | $\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$            | $\mathbf{C}\mathbf{C}$ | $4.7 	imes 10^1$                                      | $9.4 	imes 10^1$  | $1.6	imes10^2$   |
|                                | $\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$ | $\mathbf{C}\mathbf{C}$ | $6.0	imes10^1$                                        | $1.1 	imes 10^2$  | $1.6	imes10^2$   |

#### Measure energy spectra & fluxes of almost all types of neutrinos <sup>84</sup>

### **Diffused Supernova Neutrinos**

- Important for star-formation rate, average core-collapse neutrino spectrum, rate of failed SNe, etc.
- Very likely to see them above the 3σ level
- Significantly improve the current limit by SuperK



| Syst. uncertainty BG                | 5            | 5%           |              | 0%           |
|-------------------------------------|--------------|--------------|--------------|--------------|
| $\langle E_{\bar{\nu}_{e}} \rangle$ | rate only    | spectral fit | rate only    | spectral fit |
| $12{ m MeV}$                        | $1.7 \sigma$ | $1.9 \sigma$ | $1.5 \sigma$ | $1.7 \sigma$ |
| $15{ m MeV}$                        | $3.3 \sigma$ | $3.5\sigma$  | $3.0\sigma$  | $3.2\sigma$  |
| $18{ m MeV}$                        | $5.1 \sigma$ | $5.4\sigma$  | $4.6\sigma$  | $4.7\sigma$  |
| $21{ m MeV}$                        | $6.9\sigma$  | $7.3\sigma$  | $6.2\sigma$  | $6.4\sigma$  |

### **Geo-neutrinos**

- <sup>238</sup>U, <sup>232</sup>Th and <sup>40</sup>K decays account for 40% of earth's power, which is related to earthquakes, volcanoes, geomagnetism, plate tectonics, ...
- They are mainly from mantle and crust, but not the core
- Geo-neutrinos can tell <sup>238</sup>U: <sup>232</sup>Th, good for geo-models
- Only way looking inside the earth ?





### **Geo-neutrinos at JUNO**

#### **Geo-neutrinos**

#### → Current results

KamLAND: 30±7 TNU (*PRD 88 (2013) 033001*) Borexino: 38.8±12.2 TNU (*PLB 722 (2013)* 295)

#### **Statistics dominant**

- ⇒ Desire to reach an error of 3 TNU
- $\Rightarrow$  JUNO:  $\times 20$  statistics
  - Huge reactor neutrino backgrounds
  - Need accurate reactor spectra



| Source                            | Events/year     |
|-----------------------------------|-----------------|
| Geoneutrinos                      | $408 \pm 60$    |
| U chain                           | $311\pm55$      |
| Th chain                          | $92\pm37$       |
| Reactors                          | $16100\pm900$   |
| Fast neutrons                     | $3.65 \pm 3.65$ |
| <sup>9</sup> Li - <sup>8</sup> He | $657 \pm 130$   |
| ${}^{13}C(\alpha, n){}^{16}O$     | $18.2\pm9.1$    |
| Accidental coincidences           | $401\pm4$       |

#### Combined shape fit of geo- $\! \nu$ and reactor-

| V                 | Best fit | 1 y | 3 y | 5 y | 10 y |
|-------------------|----------|-----|-----|-----|------|
| U+Th<br>fix ratio | 0.96     | 17% | 10% | 8%  | 6%   |
| U (free)          | 1.03     | 32% | 19% | 15% | 11%  |
| Гh (free)         | 0.80     | 66% | 37% | 30% | 21%  |

### **Other Physics with JUNO**

- Solar neutrinos
  - Possible to see 8B and 7Be neutrinos with a huge statistics (> × 20 Borexino) with special care for backgrounds:
    - LS purification
    - Dust control
    - Special LAB with low 14C
    - Rn & Kr control
- Atmosphere neutrinos
- Sterile neutrinos

#### Nucleon Decay and exotic searches





JUNO Physics Book: arXiv: 1507.05613

10

12 14 Energy [MeV]

### **JUNO Detector and Challenges**

- − Largest LS detector → × 20 KamLAND, × 40 Borexino
- Highest light yield  $\rightarrow \times 2$  Borexino,  $\times 5$  KamLAND



- > Hugh cavern:
  - **≻ ~ 48m× 70m**
- Largest Acrylic tank:
- ≻ 20 kt LS
  - Best attenuation length:
     25m (15m @ Daya Bay)
- > 20000 20" PMT
  - Highest photon detection efficiency : 30%\*100% = 30% (25%\*60%=15% @ SuperK)



## JUNO Collaboration

| Country | Institute                      | Country    | Institute                     | Country   | Institute              |
|---------|--------------------------------|------------|-------------------------------|-----------|------------------------|
| Armenia | Yerevan Physics Institute      | China      | IMP-CAS                       | Germany   | U. Mainz               |
| Belgium | Universite libre de Bruxelles  | China      | SYSU                          | Germany   | U. Tuebingen           |
| Brazil  | PUC                            | China      | Tsinghua U.                   | Italy     | INFN Catania           |
| Brazil  | UEL                            | China      | UCAS                          | Italy     | INFN di Frascati       |
| Chile   | PCUC                           | China      | USTC                          | Italy     | INFN-Ferrara           |
| Chile   | UTFSM                          | China      | U. of South China             | Italy     | INFN-Milano            |
| China   | BISEE                          | China      | Wu Yi U.                      | Italy     | INFN-Milano Bicocca    |
| China   | Beijing Normal U.              | China 🔛    | Wuhan U.                      | Italy     | INFN-Padova            |
| China   | CAGS                           | China      | Xi'an JT U.                   | Italy 🛛 🔍 | INFN-Perugia           |
| China   | ChongQing University           | China      | Xiamen University             | Italy     | INFN-Roma 3            |
| China   | CIAE                           | China      | NUDT                          | Latvia    | IECS                   |
| China   | DGUT                           | Czech Rep. | Charles U.                    | Pakistan  | PINSTECH (PAEC)        |
| China   | ECUST                          | Finland    | University of Oulu            | Russia    | INR Moscow             |
| China   | Guangxi U.                     | France     | APC Paris                     | Russia    | JINR                   |
| China   | Harbin Institute of Technology | France     | CENBG                         | Russia    | MSU                    |
| China   | IHEP                           | France     | CPPM Marseille                | Slovakia  | FMPICU                 |
| China   | Jilin U.                       | France     | IPHC Strasbourg               | Taiwan    | National Chiao-Tung U. |
| China   | Jinan U.                       | France     | Subatech Nantes               | Taiwan    | National Taiwan U.     |
| China 🧕 | Nanjing U.                     | Germany    | Forschungszentrum Julich ZEA2 | Taiwan    | National United U.     |
| China   | Nankai U.                      | Germany    | RWTH Aachen U.                | Thailand  | NARIT                  |
| China 🤘 | NCEPU                          | Germany    | тим                           | Thailand  | PPRLCU                 |
| China   | Pekin U.                       | Germany    | U. Hamburg                    | Thailand  | SUT                    |
| China   | Shandong U.                    | Germany    | IKP FZJ                       | USA       | UMD1                   |
| China   | Shanghai JT U.                 | VA V       |                               | USA       | UMD2                   |

550 collaborators from 71 institutions in 17 countries and regions

### **<u>Central Detector</u>**

#### • A huge detector in the water pool:

- → Mechanics, optics, chemistry, ...
- ⇒ How to keep it clean ?
- ⇒ Possibility of assembly within 1 years
- Two main options: acrylic vs balloon
- Final choice: A SS structure to hold the acrylic sphere and to mount PMTs
  - Detailed FEA calculation in agreement with experimental data, particularly at the supporting point
  - ⇒ Acrylic sheets: 9m × 3m ×12 cm
  - ⇒ Stress less than 5 MPa everywhere





## **R&D and Prototyping**

- Study of acrylic:
  - Property test: aging, creep, crazing,
    - 80% after 20 years
    - No creep & crazing under 5.5 Mpa
  - Bonding test: fast bonding, T-shape bonding
    - 70 -80 % strength
  - Strength of the supporting point:
    - ∼ 50 t (safety factor ~ 4)
- Prototyping:
  - ⇒ Thermal shaping of acrylic sheets
  - ⇒ Bonding of large sheets: ~ 1/100 in area
- Manufacturing method understood:
  - SS Truss from bottom to top (2~3 months)
  - ⇒ Acrylic sphere from top to bottom(8 months)
- Contract signed







### **Liquid Scintillator**

#### Current Choice: LAB+PPO+BisMSB

#### **Requirements:**

- → Long attenuation length: 15m → 30m
- $\Rightarrow$  Radio-purity: < 10<sup>-15</sup> g/g
- Engineering issues: Equipment & handling for 20kt

#### • R&D Progress

- ➡ Transparancy
  - ✓ Improve raw materials
  - Improve the production process
  - ✓ Purification
    - Distillation, Filtration, Water extraction, ...
- High light yield: Optimization of PPO
   & BisMSB concentration
- ➡ Radiopurity
  - ✓ Purification
    - Distillation, Water extraction, Nitrogen stripping...

| Linear Alky Benzene                   | Atte. L(m)<br>@ 430 nm |
|---------------------------------------|------------------------|
| RAW                                   | 14.2                   |
| Vacuum distillation                   | 19.5                   |
| SiO <sub>2</sub> coloum               | 18.6                   |
| Al <sub>2</sub> O <sub>3</sub> coloum | 22.3                   |
| LAB from Nanjing, Raw                 | 20                     |
| Al <sub>2</sub> O <sub>3</sub> coloum | 25                     |



Successful prototype at 20 t level Radiopurity ~ a few 10<sup>-15</sup> g/g

## **MCP-based PMTs for High QE ?**

#### > Advantages:

- Higher QE: transmmissive photocathode at top + reflective photocathode at bottom
- > High CE: less shadowing effect
- Easy for production: less manual operation and steps
- Good MCP production capabilities in China
- Disadvantages:
  - > Higher cost ?
  - > No one knows how to make it





Nuclear Instruments and Methods, 162, 1979



An R&D collaboration between IHEP & NNVC established

### High QE PMT

- A new design(to avoid gain mis-match) after many failures:
  - ⇒ Intrinsically high collection efficiency
    - ✓ No wire mesh in front of dynode
    - transparent + reflective photocathode
  - ⇒ Easy for mass production













## **Successful Prototyping**

|                 | R12860    | MCP-PMT            |
|-----------------|-----------|--------------------|
| QE@410nm        | ~ 30% (T) | ~ 26%(T), 30%(T+R) |
| Collection eff. | 90%       | 100%               |
| Total eff.      | 27%       | 26-30 %            |
| P/V of SPE      | > 3       | > 3                |
| Rise time       | 7 ns      | 2ns                |
| TTS             | 3 ns      | ~10 ns             |
| Dark noise      | 30K       | 30K                |
| After pulse     | < 10%     | < 3 %              |





Average:26.5%





## **Mass Production Started**







## We started from a wrong design, but ended up with a good product



### **Small PMT system**

- ◆ Calibrate non-uniformity and non-linearity of Large-PMTs
   ⇒ Reduce energy scale uncertainty
   ⇒ Improve energy resolution (non-stochastic term)
- Increase optical coverage (~5%)
  - Improve energy resolution (stochastic term)
- Extend energy measurement
   Improve muon physics
- Supernova







20" PMTs: 17746
3" PMT: 35794

## **Electronics**



## **PMT Instrumentation**

#### PMT testing

- ⇒ 18,000 20" PMTs & 36,000 3" PMTs
- 4 instrumented Containers for mass testing

#### PMT potting

- With base/HV/electronics
- ⇒ Failure rate < 0.5%/6 years</p>

#### PMT protection

- Mechanism & requirements understood
- ⇒ Acrylic + steel cover with holes(plus film ?)

#### PMT installation













## **VETO**

#### **Tasks:**

- Shield rock-related backgrounds
- ➡ Tag & reconstruct cosmic-rays tracks

#### **Detector:**

- Top tracker: refurbished OPERA scintillators
- Water Č detector unde optimization
- Pool lining: HDPE
- Coil for magnetic field shielding: under design











## **Calibration**

#### Main method

- ➡ Routinely Source into LS by
  - ✓ ACU
  - ✓ rope loop
  - ✓ "sub-marine"
- Source into Guided tube
- ⇔ Mini-balloon
- → Pulsed light source

#### Under discussion

- ⇒ Diffused short-lived isotopes
- ➡ Pelletron-based beam

#### Key technical issues

- Source deployment
- Source locating system



By Prof. J.L. Liu from SJTU

## **A Prototype to Test Everything**

- Test all parts to the CD
  - → Type of PMTs
  - → PMT supporting structure
  - ⇒ HV, PMT base and potting
  - ➡ Readout electronics & DAQ
  - → LS & water system
  - ⇒ Calibration system







## **Civil Construction**



## Layout



### **Status of Civil Construction**

### • Completed:

- ✓ Sloped tunnel
- ✓ Vertical shaft
- Issues:
  - ✓ A lot more water than anticipated, ~ 600 m<sup>3</sup>/h



#### Plan: start data taking at ~2020

#### Grounding breaking on Jan. 10, 2015





## Summary

- Reactor is a powerful man-made source: a free neutrino factory
  - If not too far, more powerful than solar, atmospheric, and accelerator neutrinos
- Great achievements:  $\theta_{12}$ ,  $\theta_{13}$
- Great future:
  - mass hierarchy
  - "All" mixing parameters







2017-8-25