

Hunting for Sterile Neutrinos I

Jonathan Link Center for Neutrino Physics, Virginia Tech

August 25, 2017

Sterile Neutrinos

A sterile neutrino is a lepton with no ordinary electroweak interaction except those induced by mixing.

Sterile Neutrinos

A sterile neutrino is a lepton with no ordinary electroweak interaction except those induced by mixing.

Three neutrinos allow only 2 independent Δm^2 scales.

What's the Evidence for a $4^{\text{th}} \Delta m^2$ Scale?

1. \overline{v}_e appearance in a π decay-at-rest beam (LSND)

2. $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance in a decay-in-flight beam (MiniBooNE)

3. Gallium Anomaly: v_e disappearance (Gallex and SAGE)

4. Reactor Anomaly: \overline{v}_e disappearance

5. v_e disappearance (T2K)

What's the Evidence for a 4th Δm^2 Scale?

- 1. \overline{v}_e appearance in a π decay-at-rest beam (LSND)
- 1b. \overline{v}_e appearance in a π decay-at-rest beam (KARMEN)
- 2. $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ appearance in a decay-in-flight beam (MiniBooNE)
- 2b. $\nu_{\mu} \rightarrow \nu_{e}$ appearance in a DIF beam (MiniBooNE, ICARUS)
- 3. Gallium Anomaly: v_e disappearance (Gallex and SAGE)

4. Reactor Anomaly: \overline{v}_e disappearance

5. v_e disappearance (T2K)

6. v_{μ} disappearance (MiniBooNE/SciBooNE, Minos)

What's the Evidence for a $4^{\text{th}} \Delta m^2$ Scale?

There is no single experiment providing definitive evidence for the sterile neutrino, neither is their one providing evidence strong enough to rule it out. Even the best global fits fall short:

Giunti et al., JHEP 06, 135 (2017)

The LSND Experiment

Stopped Pion Beam

A stopped pion beam is a great source of neutrinos with a well defined energy spectrum and flavor profile.

The pions are produced when an intense proton beams hits a target.

The pions come to rest, π^- are absorbed on a nucleus, while π^+ decay:

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \qquad \text{Golden Mode}$$
$$\downarrow e^{+} \overline{\nu}_{\mu} \nu_{e} \qquad \text{Golden Mode}$$

The v_{μ} come promptly with the beam, while the \overline{v}_{μ} and v_e have a 2.2µs mean delay from muon decay.

The LSND Experiment

Inverse Beta Decay

Inverse beta decay (IBD) is a golden mode for \overline{v}_e detection:

P⁺

 $^{2}\mathrm{H}$

 $\overline{\nu}_e + p \rightarrow e^+ + n$

followed by neutron capture which tags the IBD event.

Capture Isotope	Products			
¹ H (<i>p</i>)	γ (2.2 MeV)			
Gd	γs (8 MeV)			
⁶ Li	$^{4}\text{He} + {}^{3}\text{H}$			
	(4.78 MeV)			

LSND used hydrogen capture to tag their IBD events.

LSND $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Appearance

Aguilar-Arevalo et al., Phys.Rev. D64, 112007 (2001)

Thenk ARNER x preperienent

KARMEN $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Appearance Search

Armbruster et al., Phys.Rev.D65 112001 (2002)

15 \overline{v}_e candidate events which are in agreement with the background expectation

∆m² (eV ²) 01 KARMEN2 (90% CL) Bugey (90% CL LSND (99% CL) LSND (90% CL) 10 10^{-2} 10⁻³ 10-2 10⁻¹ 10 Energy range: 20 to 55 MeV

 $L/E \sim 1/2 \text{ m/MeV}$

KARMEN $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ Appearance Search

 $L/E \sim 1/2 \text{ m/MeV}$

The MiniBooNE Experiment

MiniBooNE's primary objective was to look for v_e appearance in a v_{μ} beam as a test of LSND.

Most pions will decay in the 50 meter decay pipe, but most muons will not, resulting in a v_{μ} beam.

 π^+ (π^-) decay in flight beam Baseline (L) = 500 m (about 15× LSND) $\langle E_{\nu} \rangle \sim 500$ MeV (about 15× LSND) L/E ~ 1 m/MeV (about the same as LSND)

Unavoidable v_e backgrounds from muon and kaon decay (K_{e3} decays).

NC π^0 events may also look like v_e in Cerenkov detectos.

The MiniBooNE Detector

0000

0000

MiniBooNE was a Cerenkov detector with a little bit of scintillation light.

For Particle ID: Muons form rings with smooth edges and electron rings are have blurred edges 12 meter diameter sphere

Filled with 950,000 liters of pure mineral oil

Light tight inner region with 1280 photomultiplier tubes

Outer veto region with 240 PMTs.

UirginiaTech

MiniBooNE $v_{\mu} \rightarrow v_e$ Appearance Search

MiniBooNE's neutrino search found no significant excess consistent with LSND

MiniBooNE $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ Appearance Search

Aguilar-Arevalo et al., Phys.Rev.Lett. 110, 161801 (2013)

MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ Appearance Search

MiniBooNE revisited their neutrino data in 2013

Aguilar-Arevalo et al., Phys.Rev.Lett. 110, 161801 (2013)

ICARUS $\overleftarrow{v}_{\mu} \rightarrow \overleftarrow{v}_{e}$ Appearance Search

In the LNGS beam from CERN to Gran Sasso (Italy)

v_{μ} and \overline{v}_{μ} Disappearance

(Neutrino and antineutrino disappearance rates should be equal, assuming CPT is conserved)

Jonathan Link

WirginiaTech

vent the Future

The SciBooNE MiniBooNE Co-Deployment

v_{μ} and \overline{v}_{μ} Disappearance

(Neutrino and antineutrino disappearance rates should be equal, assuming CPT is conserved)

Triann et at., 1 nys.itev.ib.b. 2000 (2000) (2000) (2000) (2000)

 $U_{\mu4}$ is small throughout the region of interest

IceCube v_{μ} Disappearance

With a sterile neutrino matter effects from NC interactions distort the muon neutrino disappearance probability for high energy neutrinos passing through the Earth.

IceCube v_{μ} Disappearance

The data match the expectation for no sterile neutrino in energy and angle.

IceCube, Phys.Rev.Lett. 117, 071801 (2016)

The Bugey Experiment and \overline{v}_{ρ} Disappearance

Reactor antineutrinos observed at three baselines:15, 40 and 95 m

Jonathan Link

vent the Futur

Relating Appearance and Disappearance Probabilities

With a single sterile neutrino we get a 4×4 PMNS mixing matrix and 3 independent Δm^2 s.

 $U_{e4}^{2} + U_{\mu4}^{2} + U_{\tau4}^{2} + U_{s4}^{2} = 1$ (PMNS Unitarty)

The appearance probability:

$$P_{\mu e} = 4U_{e4}^2 U_{\mu 4}^2 n^2 (1.27 \Delta m_{41}^2 L/E)$$

The v_e disappearance probability:

 $P_{e\xi} \approx P_{es} = 4U_{e4}^2 U_{s4}^2 \sin^2(1.27\Delta m_{41}^2 L/E)$ V_3

The v_{μ} disappearance probability:

$$P_{\mu \lambda} \approx 4U_{\mu 4}^{2} U_{s 4}^{2} \sin^{2}(1.27\Delta m_{41}^{2} L/E)$$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \\ v_{s} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \\ U_{s1} & U_{s2} & U_{s3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{\mu 4} \\ U_{\tau 4} \\ U_{s4} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \\ v_{4} \end{pmatrix}$$
NS Unitarty)
$$\sqrt{E}$$

$$\chi_{m_{41}}^{2} L/E) \quad v_{3}$$

 $\frac{\text{Solar}}{\Lambda}$

Bugey \overline{v}_e Disappearance

Assuming $U_{e4}=U_{\mu4}$ and $U_{s4}\approx 1$, we can convert LSND's $\sin^2 2\theta_{\mu e}$ into $\sin^2 2\theta_{ee}$ to find Bugey provides a sever constraint on LSND

This constraint weakens for larger $U_{\mu4}$.

The Gallium Anomaly (v_e Disappearance)

The solar radiochemical detectors GALLEX and SAGE used intense EC sources (⁵¹Cr and ³⁷Ar) to calibrate the v_e detection efficiency.

Neutrinos interact in the CC process, $v_e^{+71}Ga \rightarrow^{71}Ge$, and are detected by the decay of ^{71}Ge .

Electron Capture Neutrino Source: ⁵¹Cr

Can be easily produced with thermal neutron capture; ⁵⁰Cr has a 17 barn capture cross section.

90% of the time the capture goes directly to the ground state of 51 V and you get a 750 keV neutrino.

Decay scheme of ⁵¹Cr to ⁵¹V through electron capture.

The Gallium Anomaly (v_e Disappearance)

Giunti and Laveder, Mod.Phys.Lett. A22, 2499 (2007) Acero, Giunti and Laveder, Phys.Rev. D78, 073009 (2008) Giunti and Laveder, Phys.Rev.C83, 065504 (2011)]

Jonathan Link

🛄 Virginia Tech

Reactor Anomaly (\overline{v}_e Disappearance)

Nuclear reactors are a very intense sources of $\bar{\nu}_{e}$ coming from the β -decay of the neutron-rich fission fragments.

A typical commercial reactor, with 3 GW thermal power, produces 6×10^{20} v/s

The observable v_e spectrum is the product of the flux and the cross section.

Reactor neutrinos are detected by inverse beta decay.

There have been many short baseline experiments to measure the reactor rate and spectrum.

Bemporad, Gratta & Vogel, Rev.Mod.Phys. 74, 297 (2002)

Reactor Anomaly

New analyses (blue and red) of the reactor \overline{v}_{e} spectrum predict a 6% higher flux than the earlier calculation (black).

Reactor Anomaly (\overline{v}_e Disappearance)

Giunti et al., JHEP 06, 135 (2017)

Recent calculations of the reactor \overline{v}_e flux and spectrum predict a higher rate than the earlier calculation. This resulted is an apparent deficit of reactor neutrinos across all experiments.

Further Theory Work on the Reactor Anomaly

A flux calculation out of Los Alamos has called the Reactor Anomaly into question

It shows that the anomaly depends on how nuclear matric elements for forbidden decays are treated

The net result is that the theoretical uncertainty in the reactor flux should be more like 5%, not 2%.

This undercuts the reactor anomaly, but it also undercuts most reactor sterile constraints.

Any future SBL reactor experiment must search for oscillations in L/E

Bugey Revisited in Light of Reactor Anomaly

If we can't trust the absolute reactor flux, the constraint from rate goes away:

∆m² (eV²) ಠ 1 10 10 10 -2 10 -1 $sin^2 2\theta_{ee}$

T2K Near Detector (v_e Disappearance)

Although the T2K beam is predominantly a v_{μ} beam, the small v_e component can be used in the near detector for a v_e disappearance search.

Comparing/Combining Different Measurements

1. Since any 4th mass state is predominantly sterile $(U_{s4} \approx 1)$,

 $P_{\mu e} \approx \frac{1}{4} P_{e \&} P_{\mu \&}$ (at oscillation maximum)

Relating Appearance and Disappearance Probabilities

At Oscillation Maximum

With $U_{s4} \approx 1$

Jonathan Link

The appearance probability:

$$P_{\mu e} = 4U_{e4}^{2} U_{\mu 4}^{2} \approx \frac{1}{4} P_{ea} P_{\mu a}$$

The v_e disappearance probability:

 $P_{ex} \approx 4U_{e4}^{2}$

The v_{μ} disappearance probability:

Wirginia'lech

Comparing/Combining Different Measurements

1. Since any 4th mass state is predominantly sterile $(U_{s4} \approx 1)$,

 $P_{\mu e} \approx \frac{1}{4} P_{e \&} P_{\mu \&}$ (at oscillation maxium)

2. So you can have v_e disappearance without v_e appearance, but you can't have v_e appearance without v_{μ} disappearance.

The absence of v_{μ} disappearance is a huge problem for the LSND and MiniBooNE appearance signals, while the v_e disappearance anomalies are consistent with all existing data.

Lessons Learned from the Different Methods

The different experiments have different strengths and weaknesses.

		Sources of Uncertainty					
Method	Examples	Flux	Cross Section	Event ID	Statistics	Background	
Decay-at-Rest Appearance	LSND, KARMEN						
Decay-in-Flight Appearance	MiniBooNE						
Decay-in-Flight v_{μ} Disappearance	MiniBooNE, Minos, ICARUS						
Decay-in-Flight v _e Disappearance	T2K						
Reactor	Bugey						
Source	Gallex, SAGE						
Atmospheric Matter Enhanced v_{μ} Disappearance	IceCube						

Good Marginal Limiting

Requirement for Disappearance Experiments

"It don't mean a thing if it ain't got that swing" -American jazz great Duke Ellington

Definition:

WirginiaTech

oscillometry, *n*., The observation and measurement of oscillations.

In disappearance experiments the existence of sterile neutrinos can *only* be convincingly established through oscillometry.

In Tomorrow's Lecture...

Today I've shown you the data up to about a year ago, before the start of a new round of experiments purpose built to address the sterile neutrino issue.

Tomorrow we will look at these new experiments in depth. They include:

- New *many* new reactor experiments
- One approved source experiment and other interesting source proposals
- A three baseline liquid argon detector program in Fermilab's Booster Neutrinos Beam, and
- A few powerful new concepts that have been proposed.

