Southampton elusives in visibles Plus

School of Physics and Astronomy

neutrinos, dark matter & dark energy physics

Theory of Neutrinos, Masses and Mixings Steve King

VII International Pontecorvo Neutrino Physics School

August 20 - September 1, 2017 Prague, Czech Republic Introduction

At the end of Inflation the Universe was empty, cold and bare...

After reheating a very slight excess of matter was somehow generated

000,000,000

+ few

Current universe

2008-11-20

M. Witek - Antymateria

n00,000,000

Giving the observed baryon asymmetry of the Universe

 $\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} \approx 6 \times 10^{-10}$

heic1506 — Science Release

Dark Matter?

Dark Energy?

The Standard Model

leaves many questions unanswered...

Unification?

Flavour

С

μ

S

V.,

d

u

е

Ve

b

T

V.

Why three families? Why these masses?

Origin of quark and lepton masses?

Neutrino mass and mixing

Neutrínos have tíny masses (much less than electron)
 Neutrínos míx a lot (unlíke the quarks)
 Up to 9 new params: 3 masses, 3 angles, 3 phases
 Orígín of mass and míxing ís unknown

Implications for PP and Cosmology

Origin of neutrino mass These lectures See-saw mechanisms, RPV SUSY, Extra dimensions,...

Unification of matter, forces and flavour

SUSY, GUTS, Family Symmetry,...

Baryon asymmetry of the universe?

Leptogenesis

] Dark Matter?

Warm dark matter

] Inflation?

Sneutrino inflation

Dark energy? $\Lambda \sim m_{
u}^4$

Cosmology

Particle

From review SFK 1701.04413

Neutrino Masses and Mixings

A Brief (and incomplete) History of Neutrino Mass and Mixing Atmospheric v_{μ} disappear, large θ_{23} (1998) SK Solar v_e disappear, large θ_{12} (2002) SK, SNO Solar v_e are converted to $v_{\mu} + v_{\tau}$ (2002) SNO **Mathematical Reactor anti-** v_e disappear/reappear (2004) Kamland Accelerator v_{μ} disappear (2006) MINOS Accelerator v_{μ} converted to v_{τ} (2010) **OPERA** Accelerator v_{μ} converted to v_{e} , θ_{13} hint (2011) T2K **Markov Reactor anti-** v_e disappear, θ_{13} meas. (2012) DB, Reno

The 6 observables in neutrino oscillations

 $\label{eq:starsest} \begin{array}{l} \mbox{ \ \ } \mbox{ \ } \mb$

2 Mass Squared Differences

From review SFK 1701.04413

The 3 Lepton Mixing Angles

The oscillation observable CPViolating Phase

PMNS Lepton mixing matrix

Oscillation phase δ^l Majorana phases $lpha_{21}, lpha_{31}$

з masses + з angles + з phases = 9 new parameters for SM

PMNS and CKM mixing

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

For Majorana neutrinos $\rightarrow \times \operatorname{diag}(1, e^{i\alpha_{21}/2}, e^{i\alpha_{31}/2})$

Same form for quarks and leptons (but very different angles)

Quark vs Lepton mixings

	$ heta_{12}$	θ_{23}	$ heta_{13}$	δ
Quarks	$\underset{\pm 0.1^{\circ}}{13^{\circ}}$	$2.4^{\circ}_{\scriptscriptstyle{\pm 0.1^{\circ}}}$	$\underset{\pm 0.05^\circ}{0.2^\circ}$	$70^\circ_{\pm5^\circ}$
Leptons	$\underset{\pm 1^{\circ}}{34^{\circ}}$	$\underset{\substack{41^\circ\pm1^\circ\\50^\circ\pm1^\circ}}{45^\circ}$	$8.5^{\circ}_{\scriptscriptstyle \pm 0.15^{\circ}}$	$-90^{\circ}_{\pm50^{\circ}}$

Latest NuFIT Fit 3.0

NuFIT 3.0 (2016)

	Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 0.83)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 heta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.306^{+0.012}_{-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$ heta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 heta_{23}$	$0.441\substack{+0.027\\-0.021}$	0.385 ightarrow 0.635	$0.587^{+0.020}_{-0.024}$	0.393 ightarrow 0.640	$0.385 \rightarrow 0.638$
$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 heta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.02179^{+0.00076}_{-0.00076}$	$0.01953 \to 0.02408$	$0.01934 \to 0.02397$
$ heta_{13}/^{\circ}$	$8.46_{-0.15}^{+0.15}$	$7.99 \rightarrow 8.90$	$8.49_{-0.15}^{+0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$
$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514^{+0.038}_{-0.041}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

Lisi et al 1703.04471

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \ \mathrm{eV}^2$	NO, IO, Any	7.37	7.21 - 7.54	7.07-7.73	6.93 - 7.96
$\sin^2 \theta_{12} / 10^{-1}$	NO, IO, Any	2.97	2.81 - 3.14	2.65-3.34	2.50-3.54
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
	IO	2.505	2.473 - 2.539	2.430 - 2.582	2.390 - 2.624
	Any	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
$\sin^2 \theta_{13} / 10^{-2}$	NO	2.15	2.08-2.22	1.99-2.31	1.90-2.40
	IO	2.16	2.07-2.24	1.98-2.33	1.90-2.42
	Any	2.15	2.08-2.22	1.99-2.31	1.90-2.40
$\sin^2 \theta_{23} / 10^{-1}$	NO	4.25	4.10 - 4.46	3.95-4.70	3.81 - 6.15
	IO	5.89	$4.17 - 4.48 \oplus 5.67 - 6.05$	$3.99-4.83 \oplus 5.33-6.21$	3.84 - 6.36
	Any	4.25	4.10 - 4.46	$3.95-4.70 \oplus 5.75-6.00$	3.81 - 6.26
δ/π	NO	1.38	1.18 - 1.61	1.00-1.90	$0 - 0.17 \oplus 0.76 - 2$
	IO	1.31	1.12-1.62	0.92-1.88	$0 - 0.15 \oplus 0.69 - 2$
	Any	1.38	1.18 - 1.61	1.00 - 1.90	$0-0.17 \oplus 0.76-2$

best fit $\pm 1\sigma$	2σ range	3σ range
$7.56 {\pm} 0.19$	7.20 - 7.95	7.05-8.14
$2.55 {\pm} 0.04$	2.47 - 2.63	2.43 - 2.67
$2.49 {\pm} 0.04$	2.41 - 2.57	2.37 - 2.61
$3.21_{-0.16}^{+0.18}$	2.89 - 3.59	2.73 - 3.79
$34.5^{+1.1}_{-1.0}$	32.5 - 36.8	31.5 - 38.0
$4.30^{+0.20}_{-0.18}$ a	3.98-4.78 & 5.60-6.17	3.84 - 6.35
41.0 ± 1.1	39.1 - 43.7 & 48.4 - 51.8	38.3 - 52.8
$5.96^{+0.17}_{-0.18}$ b	4.04-4.56 & 5.56-6.25	3.88 - 6.38
50.5 ± 1.0	39.5-42.5 & 48.2-52.2	38.5 - 53.0
$2.155_{-0.075}^{+0.090}$	1.98 - 2.31	1.89 - 2.39
$8.44_{-0.15}^{+0.18}$	8.1 - 8.7	7.9 - 8.9
$2.140^{+0.082}_{-0.085}$	1.97 - 2.30	1.89 - 2.39
$8.41_{-0.17}^{+0.16}$	8.0 - 8.7	7.9 - 8.9
$1.40^{+0.31}_{-0.20}$	0.85 - 1.95	0.00 - 2.00
252^{+56}_{-36}	153-351	0–360
$1.44_{-0.23}^{+0.26}$	1.01 - 1.93	0.00-0.17 & 0.79-2.00
$259 \ ^{+47}_{-41}$	182 - 347	0-31 & 142-360
	best fit $\pm 1\sigma$ 7.56 ± 0.19 2.55 ± 0.04 2.49 ± 0.04 3.21 ^{+0.18} 34.5 ^{+1.1} 34.5 ^{+1.1} 4.30 ^{+0.20} a 4.30 ^{+0.20} a 41.0 ± 1.1 5.96 ^{+0.17} b 5.96 ^{+0.17} b 5.96 ^{+0.17} b 5.95 ± 1.0 2.155 ^{+0.090} 2.155 ^{+0.090} 8.44 ^{+0.18} 2.140 ^{+0.082} 8.44 ^{-0.15} 8.44 ^{+0.16} 8.41 ^{+0.16} 8.41 ^{+0.16} 8.41 ^{+0.16} 1.40 ^{+0.31} 252 ⁺⁵⁶ 1.44 ^{+0.26} 1.44 ^{+0.26} 1.45 ⁺⁴⁷ 1.45 ⁺⁴⁷ 1.4	best fit $\pm 1\sigma$ 2σ range7.56 \pm 0.197.20–7.952.55 \pm 0.042.47–2.632.49 \pm 0.042.41–2.573.21 $^{+0.18}_{-0.16}$ 2.89–3.5934.5 $^{+1.1}_{-1.0}$ 32.5–36.84.30 $^{+0.20}_{-0.18}$ 3.98–4.78 & 5.60–6.1741.0 \pm 1.139.1–43.7 & 48.4–51.85.96 $^{+0.17}_{-0.18}$ 4.04–4.56 & 5.56–6.2550.5 \pm 1.039.5–42.5 & 48.2–52.22.155 $^{+0.090}_{-0.075}$ 1.98–2.318.44 $^{+0.18}_{-0.15}$ 8.1–8.72.140 $^{+0.082}_{-0.085}$ 1.97–2.308.41 $^{+0.16}_{-0.17}$ 8.0–8.71.40 $^{+0.31}_{-0.20}$ 0.85–1.95252 $^{+56}_{-36}$ 153–3511.44 $^{+0.26}_{-0.23}$ 1.01–1.93259 $^{+47}_{-41}$ 182–347

I

Open Questions

-

Is CP violated in the leptonic sector? (Probably) Is the atmospheric angle in first or second octant? Are neutrino masses NO or IO ? (NO preferred) What is the lightest neutrino mass? Are neutrino masses Dirac or Majorana?

Dirac or Majorana?

Experimental determination of neutrino mass Majorana only (no signal if Tritium beta decay

Neutrinoless double beta decay

Dirac)

3H 10^{-1} ³He () ອີງ ອີງ ອີງ ສີ 3 $m_{\nu_e}^2 = \sum |U_{ei}|^2 m_i^2$ i=110⁻³ m_{BE} Present Mainz < 2.2 eV KATRIN ~0.35eV

Majorana mass sum rules

King, Merle, Stuart 1307.2901

Is Majorana mass renormalisable?

Renormalisable $\lambda_V LL\Delta$ where Δ is light Higgs triplet with $\Delta L = 2$ operator $\lambda_V LL\Delta$ VEV < 8GeV from ρ parameter

Non-renormalisable $\frac{\lambda_{v}}{M}LLHH = \frac{\lambda_{v}}{M} \langle H^{0} \rangle^{2} \overline{v}_{eL} v_{eL}^{c}$ Weinberg

This is nice because it gives naturally small Majorana neutrino masses $m_{LL} \sim \langle H^0 \rangle^2 / M$ where M is some high energy scale

The high mass scale can be associated with some heavy particle of mass M being exchanged (can be singlet or triplet)

$$H \longrightarrow H \qquad H \qquad H \qquad H \qquad H$$

$$L \qquad L \qquad L$$

See-saw mechanisms

Roadmap of neutrino mass

Extra dimensions

Planck brane

Overlap wavefunction of fermions with Higgs gives exponentially suppressed Dirac masses, depending on the fermion profiles

Roadmap of neutrino mass

Loop Models of Neutrino Mass

Roadmap of neutrino mass

R-Parity Violating SUSY

Majorana masses can be generated via RPV SUSY

Scalar partners of lepton doublets (slepton doublets) have same quantum numbers as Higgs doublets

 \Box If R-parity is violated then sneutrinos may get (small) VEVs inducing a mixing between neutrinos and neutralinos χ

 $m_{LL}^{v} \approx \frac{\left\langle \tilde{v} \right\rangle^{2}}{M_{\chi}} \approx \frac{MeV^{2}}{TeV} \approx eV$

Roadmap of neutrino mass

Type I see-saw mechanism P. Minkowski (1977), Gell-Mann, Glashow, Mohapatra, Ramond, Senjanovic, Slanski, Yanagida (1979/1980), Schechter and Valle (1980)...

Type I

Type II see-saw mechanism (SUSY) Lazarides, Magg, Mohapatra, Senjanovic,

Shafi, Wetterich, Schechter and Valle...

 v_u v_u H_u^0 Heavy triplet Y_{Δ} \mathbf{v}_{1} v_{1} $m_{LL}^{\prime\prime} \approx \lambda_{\Delta} Y_{\Delta}$

Type II

Type III see-saw mechanism Foot, Lew, He, Joshi; Ma... Supersymmetric adjoint SU(5) Perez et al; Cooper, SFK, Luhn,...

See-saw w/extra singlets S

Inverse see-saw Wyler, Wolferstein; Mohapatra, Valle

 $\begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix} \quad \mathsf{M} \approx \mathsf{TeV} \rightarrow \mathsf{LHC}$ $M_{\nu} = M_D M^{T^{-1}} \mu M^{-1} M_D^T$

 $\begin{pmatrix} 0 & M_D & M_L \\ M_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}$ Malinsky, Romao, Valle

Linear see-saw

 $M_{\nu} = M_D (M_L M^{-1})^T + (M_L M^{-1}) M_D^T$ LFV predictions

From review SFK 1701.04413

Theory of Neutrino Masses and Mixings

Minimality

Robustness

Unification

Predictivity

Predictivity

Quark mixing matrix V_{CKM} $V^{U_{L}}Y_{LR}^{U_{V}}V^{U_{R}}^{\dagger}v = \begin{pmatrix} m_{u} & 0 & 0 \\ 0 & m_{c} & 0 \\ 0 & 0 & m_{t} \end{pmatrix} V^{D_{L}}Y_{LR}^{D_{V}}V^{D_{R}}^{\dagger}v = \begin{pmatrix} m_{d} & 0 & 0 \\ 0 & m_{s} & 0 \\ 0 & 0 & m_{b} \end{pmatrix}$ Defined as $V_{CKM} = V V V^{D_{+}} 5$ phases removed Lepton mixing matrix UPMNS Light neutrino Majorana mass matrix $V^{E_{L}}Y_{LR}^{E}V^{E_{R}} = \begin{pmatrix} m_{e} & 0 & 0 \\ 0 & m_{\mu} & 0 \\ 0 & 0 & m_{\tau} \end{pmatrix} \quad V^{\nu_{L}}m_{LL}^{\nu_{V}}V^{\nu_{L}T} = \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix}$ Defined as $U_{PMNS} = V E_V V_L^{\dagger} 3$ phases removed

Simple Lepton Mixing Ansatze $\theta_{13} = 0^{o} \quad \theta_{23} = 45^{o}$ **D** Bimaximal $U_{BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix} P \quad \theta_{12} = 45^{o}$ $\Box \text{ Tri-bimaximal } U_{TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P_{\theta_{12}} = 35.26^{\circ}$ **Golden ratio** $U_{GR} = \begin{pmatrix} c_{12} & s_{12} & 0\\ -\frac{s_{12}}{\sqrt{2}} & \frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{s_{12}}{\sqrt{2}} & -\frac{c_{12}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} P$ $\tan \theta_{12} = \frac{1}{\phi} \qquad \qquad \theta_{12} = 31.7^o$ $\phi = \frac{1 + \sqrt{5}}{2}$

Tri-Bimaximal Deviations

0710.0530

Tri-Bimaximal-Cabibbo Mixing

1205.0506, 1304.6264

TBC corresponds to $s = a = 0, \ p = \theta_C$

$$\theta_{12} = 35^{\circ}$$
 $\theta_{23} = 45^{\circ}$ $\theta_{13} = \frac{\theta_C}{\sqrt{2}} = 9.2^{\circ}$

Tri-maximal Mixing

 $U \approx \begin{pmatrix} \sqrt{\frac{2}{3}}(1 - \frac{1}{2}s) & \frac{1}{\sqrt{3}}(1 + s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1 + s + a + r\cos\delta) & \frac{1}{\sqrt{3}}(1 - \frac{1}{2}s + a + \frac{1}{2}r\cos\delta) & \frac{1}{\sqrt{2}}(1 + a) \\ \frac{1}{\sqrt{6}}(1 + s + a + r\cos\delta) & -\frac{1}{\sqrt{3}}(1 - \frac{1}{2}s + a + \frac{1}{2}r\cos\delta) & \frac{1}{\sqrt{2}}(1 - a) \end{pmatrix}$

$$U_{\rm TM1} \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & - & - \\ -\frac{1}{\sqrt{6}} & - & - \\ \frac{1}{\sqrt{6}} & - & - \end{pmatrix} \qquad \qquad U_{\rm TM2} \approx \begin{pmatrix} - & \frac{1}{\sqrt{3}} & - \\ - & \frac{1}{\sqrt{3}} & - \\ - & -\frac{1}{\sqrt{3}} & - \end{pmatrix}$$

 $\Box \text{ Tri-maximal 1 } s \approx 0, a \approx \cos \delta$ $\Box \text{ Tri-maximal 2 } s \approx 0, a \approx -\frac{1}{2} \cos \delta$

- NA Lepton Mixing Sum Rules □ Solar sum rules (from ch lepton corr) Exact relations $|U_{\tau 1}| / |U_{\tau 2}| = 1$ Bimaximal $\theta_{12} \approx 45^o + \theta_{13} \cos \delta$ $|U_{\tau 1}|/|U_{\tau 2}| = 1/\sqrt{2}$ Tri-bimaximal $\theta_{12} \approx 35^o + \theta_{13} \cos \delta$ $|U_{\tau 1}|/|U_{\tau 2}| = 1/\varphi$ Golden Ratio $\theta_{12} \approx 32^o + \theta_{13} \cos \delta$ Golden Ratio $\varphi = \frac{1+\sqrt{5}}{2}$ □ Atm. sum rules (TM1 or TM2) $|U_{e1}| = \sqrt{2/3}$ $|U_{\mu 1}| = |U_{\tau 1}| = \frac{1}{\sqrt{6}}$ $|U_{e2}| = |U_{\mu 2}| = |U_{\tau 2}| = \frac{1}{\sqrt{3}}.$ Trimaximal1 $\theta_{23} \approx 45^o + \sqrt{2\theta_{13}} \cos \delta$ Trimaximal2 $\theta_{23} \approx 45^o - \frac{\theta_{13}}{\sqrt{2}} \cos \delta$

5 sigma allowed regions after JUNO

$$\sin\theta_{23} = \frac{1+a}{\sqrt{2}}$$

Questions?

Tutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}, \qquad (1)$$

(2)

(3)

where $s_{13} = \sin \theta_{13}$, etc. (a) Show that tri-bimaximal mixing defined by

$$s_{13} = 0, \ s_{12} = \frac{1}{\sqrt{3}}, \ s_{23} = \frac{1}{\sqrt{2}},$$

implies the tri-bimaximal (TB) mixing matrix,

$$U_{\rm TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

(b) Consider the reactor, solar and atmospheric parameters r,s,a which parameterise the deviations from tri-bimaximal mixing [2],

$$s_{13} = \frac{r}{\sqrt{2}}, \ s_{12} = \frac{(1+s)}{\sqrt{3}}, \ s_{23} = \frac{(1+a)}{\sqrt{2}}.$$
 (4)

By expanding the PMNS mixing matrix to first order in the small parameters r, s, a, it is possible to show (although you do not need to do this) that,

$$U \approx \begin{pmatrix} \sqrt{\frac{2}{3}}(1-\frac{1}{2}s) & \frac{1}{\sqrt{3}}(1+s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1+s-a+r\cos\delta) & \frac{1}{\sqrt{3}}(1-\frac{1}{2}s-a-\frac{1}{2}r\cos\delta) & \frac{1}{\sqrt{2}}(1+a) \\ \frac{1}{\sqrt{6}}(1+s+a-r\cos\delta) & -\frac{1}{\sqrt{3}}(1-\frac{1}{2}s+a+\frac{1}{2}r\cos\delta) & \frac{1}{\sqrt{2}}(1-a) \end{pmatrix}.$$
 (5)

Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U_{TB} . Show that, for $s \approx 0$, $a \approx r \cos \delta$, the first column of the mixing matrix approximately corresponds to that of TB mixing (TM1 mixing).

Similarly show that for $s \approx 0$, $a \approx -(r/2) \cos \delta$, the second column of the mixing matrix approximately corresponds to that of TB mixing (TM2 mixing).

(c) Show that the relations $a \approx r \cos \delta$ and $a \approx -(r/2) \cos \delta$ imply the approximate "atmospheric sum rules" of the form,

$$\theta_{23} - 45^{\circ} \approx C \times \theta_{13} \cos \delta \tag{6}$$

and find the constant C in each case. [Hint: take the sine of both sides of the Eq.6, assuming $\sin \theta_{13} \approx \theta_{13}$, then expand $\sin(\theta_{23} - 45^\circ)$ and use definitions of r, a.] Then discuss how well these so called "atmospheric sum rules" are satisfied by current data on the atmospheric and reactor mixing angles and how future precision measurements of these angles will fix the CP violating phase δ [3].

(d) If the charged lepton mixing matrix has a Cabibbo-like mixing angle [1],

$$U_e = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix}$$

calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix $U = U_e U_{\text{TB}}$ (you don't need to calculate the whole matrix). Comparing the absolute value of the (1,3) element to that of the standard parameterisation of the PMS matrix, find s_{13} in terms of s_{12}^e and show that choosing $\theta_{12}^e = \theta_C \approx 13^\circ$ (the Cabibbo angle) gives a reasonable value for the reactor angle [7]. Comparing the absolute value of the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS matrix, find relations between PMNS parameters. By combining and expanding these relations show that they lead to the approximate "solar sum rule",

$$\theta_{12} - 35^{\circ} \approx \theta_{13} \cos \delta, \tag{12}$$

(11)

[**Hint**: take the sine of both sides of the Eq.12, assuming $\sin \theta_{13} \approx \theta_{13}$ as well as $\sin 35^{\circ} \approx 1/\sqrt{3}$.] Discuss the resulting prediction for the CP phase δ [7].

From review SFK 1701.04413

Theory of Neutrino Masses and Mixings

Minimality

Robustness

Unification

Predictivity

Minimality

Minimal Type I seesaw

$\begin{array}{c} \textbf{Seesaw mechanism} \\ \textbf{Seesaw mechanism} \\ \begin{array}{c} \text{Minkowski; Yanagida;} \\ \text{Gell-Mann, Ramond,} \\ \text{Slansky; Glashow;} \\ \text{Mohapatra, Senjanivic;} \\ \text{Schechter, Valle;...} \end{array} \\ \begin{array}{c} m_L = 0 \\ \left(\bar{\nu}_L \quad \bar{\nu}_R^c \right) \begin{pmatrix} 0 & m_D \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} \\ \begin{array}{c} \text{One family} \\ \nu_R \end{pmatrix} \end{array}$

Eigenvalue equation for $\ m_{
u}$ (up to phases) $m_D^2 = m_{
u} M_R + m_{
u}^2$ $m_{
u} \ll M_R \qquad m_{
u} \approx \frac{m_D^2}{M_R} \sim 0.1 \text{eV}$ Classic seesaw

$$\begin{aligned} \text{Seesaw mechanism} & \stackrel{\text{Minkowski; Yanagida;}}{\underset{\text{Slansky; Glashow;}}{\text{Slansky; Glashow;}}} \\ m_{L} = 0 \\ & \left(\bar{\nu}_{L} \quad \bar{\nu}_{R}^{c} \right) \begin{pmatrix} 0 & m_{D} \\ m_{D} & M_{R} \end{pmatrix} \begin{pmatrix} \nu_{L}^{c} \\ \nu_{R} \end{pmatrix} & \stackrel{\text{Three families}}{\text{families}} \end{aligned}$$
$$\\ & M_{R} = \begin{pmatrix} M_{\text{atm}} & 0 & 0 \\ 0 & M_{\text{sol}} & 0 \\ 0 & 0 & [M_{\text{dec}}] \end{pmatrix} & m^{P} = \begin{pmatrix} m_{c,\text{atm}}^{D} & m_{e,\text{sol}}^{P} & [m_{e,\text{dec}}^{P}] \\ m_{r,\text{atm}}^{D} & m_{r,\text{sol}}^{D} & [m_{\tau,\text{dec}}^{P}] \\ m^{P} = m^{D} M_{R}^{-1} m^{D} & \underbrace{\frac{m_{\text{atm}}^{D} m_{\text{atm}}^{D}}{M_{\text{atm}}} \gg \frac{m_{\text{sol}}^{D} m_{\text{sol}}^{P}}{M_{\text{sol}}} \begin{bmatrix} \gg \frac{m_{\text{dec}}^{P} m_{\text{dec}}^{P}}{M_{\text{dec}}} \end{bmatrix} \\ \Rightarrow m_{3} \gg m_{2} \gg m_{1} \gg m_{1} \end{aligned}$$

Sequential dominance

Simple way to understand MH

SFK'98

Littlest Seesaw

SFK,Luhn

1607.05276

- Two right-handed neutrinos (RHN) ν_{R}^{atm} ν_{R}^{sol}
- Diagonal $M_R = \begin{pmatrix} M_{\rm atm} & 0 \\ 0 & M_{\rm sol} \end{pmatrix}$ completely decoupled $\nu_R^{\rm dec}$
- Diagonal (m_e, m_μ, m_τ)
- Constrained Sequential Dominance (CSD3): $m_D = \begin{pmatrix} 0 & b \\ a & 3b \\ a & b \end{pmatrix}$ or $m_D = \begin{pmatrix} 0 & b \\ a & b \\ a & 3b \end{pmatrix}$

Enforced by symmetry (see later)

The Littlest Seesaw

Low energy neutrino mass matrices after seesaw:

$$m_{\text{LSA}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix}$$
$$m_{\text{LSB}}^{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b e^{i\eta} \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 3 \\ 3 & 3 & 9 \end{pmatrix}$$

SD m_a>>m_b predicts NO with m₁=0 Depends on 3 parameters: ma, mb, eta

Best Fit LS Predictions NO with m₁=0

	LSA		LSB		NuFIT 3.0
	η free	η fixed	η free	η fixed	global fit
$m_a \; [\mathrm{meV}]$	27.19	26.74	26.95	26.75	
$m_b \; [{ m meV}]$	2.654	2.682	2.668	2.684	
$\eta \; [\mathrm{rad}]$	0.680π	$2\pi/3$	-0.673π	$-2\pi/3$	
θ_{12} [°]	34.36	34.33	34.35	34.33	$33.72\substack{+0.79 \\ -0.76}$
θ_{13} [°]	8.46	8.60	8.54	8.60	$8.46^{+0.14}_{-0.15}$
θ_{23} [°]	45.03	45.71	44.64	44.28	$41.5^{+1.3}_{-1.1}$
δ [°]	-89.9	-86.9	-91.6	-93.1	-71^{+38}_{-51}
$\Delta m_{21}^2 \ [10^{-5} {\rm eV}^2]$	7.499	7.379	7.447	7.390	$7.49\substack{+0.19 \\ -0.17}$
$\Delta m_{31}^2 \ [10^{-3} \mathrm{eV}^2]$	2.500	2.510	2.500	2.512	$2.526_{-0.037}^{+0.039}$
$\Delta \chi^2$ / d.o.f	4.1/3	5.6/4	3.9 / 3	4.5 / 4	

Renormalisation Group Corrections

SM with $M_{atm} = 10^{15}$ GeV and $M_{sol} = 10^{12}$ GeV

	Λ_{GUT}	M _{atm}	M _{sol}	$\Lambda_{\rm EW}$
$\theta_{13}(\text{deg})$	7.62574	7.81215	8.47979	8.4798
$\theta_{12}(\text{deg})$	34.5348	34.4977	34.3575	34.3572
$\theta_{23}(\text{deg})$	45.1425	42.9816	42.3751	42.3744
m_2 (meV)	13.537	12.2035	12.1317	8.73113
m_3 (meV)	87.6802	75.4657	69.8112	50.2431
$\delta_{\rm CP}({\rm deg})$	-89.2885	-88.0086	-90.3508	-90.3507
$\sigma_{\rm CP}(\rm deg)$	-38.9558	-40.649	-38.9917	-38.9917

Geib, SFK (to appear)

From review SFK 1701.04413

Theory of Neutrino Masses and Mixings

Minimality

Robustness

Unification

Predictivity
Robustness

Towards a Theory of Flavour

۲

Anarchy

Family Symmetry

44444

 rotation by 120° anti-clockwise (seen from a vertex)

 $\begin{array}{cccc} T \\ \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \\ t_4 \end{pmatrix} =$

 $4 \rightarrow 3 \oplus 1$

Since S,T are block diagonal, the 4 dimensional matrix of vertex transformations is equivalent to a triplet plus singlet

Family Symmetry

□ S₄ rotation symmetry of a cube

3 fold axis

□ S₄ rotation symmetry of a cube

 2 fold symmetry of the tetrahedron S

 3 fold symmetry of the tetrahedron T Not a symmetry of the tetrahedron U

Group theory S 1 U $S_4 \mid A_4$ T1, 1' | 11 ± 1 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $2 \quad \begin{pmatrix} 1'' \\ 1' \end{pmatrix}$ $\begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ **3**, **3**′ **3**

Family symmetry is spontaneously broken by Higgs fields called "flavons" but some symmetry may be preserved by particular vacuum alignments

Direct Models Historically predicted TB mixing from S4

Now $\Delta(6n^2)$

Is the only viable symmetry class predicts zero Dirac CPV

Holthausen,Lim, Lindner; SFK,Neder,Stuart; Lavoura,Ludl; Fonseca,Grimus

Semi-Direct Models

. . .

Here S,U and T are partly preserved as subgroups of some family symmetry

CP violation Feruglio, Hagedorn; Holthausen, Lindner, Schmidt:

 $G^{\nu T} m_{\nu} G^{\nu} = m_{\nu}$

 $H_{CP}^{\nu T} m_{\nu} H_{CP}^{\nu} = m_{\nu}^{*}$

Family and CP symmetry $G \rtimes H_{CP}$ $G^l \rtimes H^l_{CP}$ $G^{\nu} \rtimes H^{\nu}_{CP}$ Charged Neutrino Lepton Sector Sector

Feruglio,Hagedorn; Holthausen,Lindner Schmidt; Ding,SFK,Luhn,Stuart; Nishi,Xing; Hagedorn,Meroni, Molinaro; Ding,SFK,Neder; Branco, SFK, Varzielas, Chen,...

E.g. in semi-direct models where

$$G^{\nu} \sim Z_2^S$$

Typically predicts maximal Dirac Phase

 $\delta = \pm \pi/2$

CP involvescomplexconjugation

From review SFK 1701.04413

Theory of Neutrino Masses and Mixings

Robustness

Unification

Minimality

Predictivity

Unification

 $\overline{\mathbf{5}} = d^c(\overline{\mathbf{3}}, \mathbf{1}, 1/3) \oplus L(\mathbf{1}, \overline{\mathbf{2}}, -1/2),$

 $\mathbf{10} = u^{c}(\overline{\mathbf{3}}, \mathbf{1}, -2/3) \oplus Q(\mathbf{3}, \mathbf{2}, 1/6) \oplus e^{c}(\mathbf{1}, \mathbf{1}, 1)$

Georgi, Glashow

Right-handed neutrino is singlet

Altarelli, Feruglio

Fermion Masses in SU(5) 1, ..., 5 $\lambda_u H_i 10_{jk} 10_{lm} \epsilon^{ijklm} + \lambda_d \overline{H}^i 10_{ij} \overline{5}^j$ $> \lambda_u H_u Q u^c + \lambda_d (H_d Q d^c + H_d e^c L)$ $\lambda_d = \lambda_e$ at the GUT scale Assuming this relation holds for all 3 families

$$\lambda_d = \lambda_e^I$$

For references see review SFK 1701.04413 GUTs with Family Symmetry

$G_{\rm GUT}$	$SU(2)_L \times U(1)_Y$	SU(5)	PS	SO(10)
G_{FAM}				
S_3	[29]			[150]
A_4	[36, 49, 51, 62, 151 - 154]	[155-158]	[66, 159, 160]	
T'		[161]		
S_4	[31, 49, 51, 154, 163]	[164, 165]	[162]	[166]
A_5	[51, 169]	[170]		
T_7	[171, 172]			
$\Delta(27)$	[173]			[174]
$\Delta(96)$	[175, 176]	[177]		[178]
D_N	[179]			
Q_N	[180]			
other	[181]	[182]	[183]	

A4 X SU(5)

Callen Volkas; Cooper, SFK, Luhn; Meroni, Petcov, Spinrath; Hagedorn, SFK, Luhn; Ishmimori, Shimizu, Tanimoto; Antusch, SFK, Spinrath; Björkeroth, de Anda, de Medeiros Varzielas, SFK,...

h

S

						Björkeroth, de Anda,	D , 11	Representation					
Field		Repre	sentat	tion	_	de Medeiros Varzielas, 1503.03306. 1505.05504	SFK	Field	A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R
	A_4	SU(5)	\mathbb{Z}_9	\mathbb{Z}_6	\mathbb{Z}_4^R	1903.03300, 1903.03304	S	X_1	1	$\overline{5}$	7	0	1
F	3	5	0	0	1			X_2	1	5	2	0	1
T_1	1	10			1	Quarks and	60	X_3	1	5	$\begin{vmatrix} 6 \\ 2 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	1
$\begin{bmatrix} 1 \\ T_2 \end{bmatrix}$	1	10			1			X_4	1	5 7		$\begin{vmatrix} 0\\ 0 \end{vmatrix}$	
T_3	1	10	$\begin{vmatrix} \cdot \\ 0 \end{vmatrix}$		1		Š	$\begin{array}{c c} \Lambda_5 \\ X_2 \end{array}$	1'	5 5	3 6		
N_1^c	1	1	$\begin{array}{ c c } \hline 7 \end{array}$		1	Leptons	es	X_6 X_7	1	$\frac{5}{5}$	$\begin{vmatrix} 0\\2 \end{vmatrix}$		1
N_2^c		1	8	3	1		Σ	X_8	1"	$\frac{3}{5}$	$\begin{vmatrix} -7 \\ 7 \end{vmatrix}$		1
Γ	1	1	0	3	1			X_9	1'	$\overline{5}$	0	0	1
	1	F			0		ō	X_{10}	1'	5	0	0	1
H_{-}	1 1	0 ह					5	X_{11}	1	$\overline{5}$	1	3	1
H_{2}	1 1/	5 94	$\begin{vmatrix} \Delta \\ 2 \end{vmatrix}$			Higgs	E	X_{12}	1	5	7	5	1
$\begin{bmatrix} 1124\\ \Lambda_{24} \end{bmatrix}$	1 1/	24 24				1.1885	ē	X_{13}	1	5	2	3	1
	I	$\frac{24}{45}$	$\begin{bmatrix} 0\\ 4 \end{bmatrix}$		$\begin{array}{c} 0\\ 2\end{array}$		-	X_{14}	1	5	6		1
$H_{\overline{45}}$	1	$\frac{15}{45}$						Σ_1	1	$\overline{5}$	7	0	2
		10					2	$\sum_{n=1}^{\infty}$	1	5		$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$
ξ		1		$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$		O	Σ_3		5 5	$\begin{vmatrix} 5 \\ 4 \end{vmatrix}$		$\begin{vmatrix} 2\\ 0 \end{vmatrix}$
θ_1		1					00	Σ_4	1 1	5 5	$\begin{vmatrix} 4\\ 3 \end{vmatrix}$		$\begin{vmatrix} 0\\ 2 \end{vmatrix}$
θ_2		T		4	0			Σ_{6}	1	5	$\begin{bmatrix} 0 \\ 6 \end{bmatrix}$		$\begin{vmatrix} 2\\0 \end{vmatrix}$
ϕ_e	3	1	0	0	0	Flavons	Š	\sum_{7}^{-0}	1	$\overline{\overline{5}}$	1	0	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$
ϕ_{μ}	3	1	3	0	0	Tiavons	S	Σ_8	1	5	8	0	0
$\phi_{ au}$	3	1	7	0	0		\leftarrow	Σ_9	1	$\overline{5}$	8	0	2
ϕ_1	3	1	3	2	0		2	\sum_{10}	1	5	1	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 2 \end{vmatrix}$
ϕ_2	3	1	1	3	0		S	\sum_{11}	<u> </u> 1	5 5	6		$\begin{vmatrix} 2 \\ 0 \end{vmatrix}$
ϕ_3	3	1	3	1	0		00	$\begin{array}{ c c } & \Delta_{12} \\ & \Sigma_{12} \end{array}$	1 1	$\frac{1}{5}$			
ϕ_4	3	1	2	1	0			$\begin{array}{c c} & \Sigma_{13} \\ & \Sigma_{14} \end{array}$	<u>1</u>	5	$\begin{vmatrix} 4\\5 \end{vmatrix}$		$\begin{vmatrix} 2\\ 0 \end{vmatrix}$
ϕ_5	3	1	6	$\mid 2$	0			\sum_{15}^{14}	1	$\overline{\overline{5}}$	$\begin{vmatrix} 0\\2 \end{vmatrix}$		$\begin{vmatrix} 0\\2 \end{vmatrix}$
ϕ_6	3	1	5	2	0			Σ_{16}	1	5	7	0	0

Up-type quarks

 $\overline{T_1}$

Froggatt-Nielsen

Summary of A₄ x SU(5)

- Explains quark mass hierarchies, mixing angles and the CP phase.
- Reproduces Littlest Seesaw model predictions
- $\circ~Z_9$ flavour symmetry fixes the phase η to be 2pi/3
- Leptogenesis fixes $M_{atm} \sim 10^{10} \text{ GeV}$
- Renormalisable at GUT scale, SU(5) breaking potential, spontaneously broken CP.
- $\,\circ\,$ The MSSM is reproduced with R-parity from discrete $Z_4{}^R$.
- Doublet-triplet splitting via the Missing Partner mechanism.
- mu term is generated at the correct scale.
- Proton decay is sufficiently suppressed.
- Solves strong CP problem through the Nelson-Barr mechanism .

Questions?

Tutorial Questions

2. Consider a *Dirac neutrino* mass model involving *one* right-handed neutrino ν_R^{atm} with Yukawa couplings [4],

$$\overline{\nu_R^{\text{atm}}} (dL_e + eL_\mu + fL_\tau) H, \tag{7}$$

where $L_e = (\nu_e, e)_L$, etc., H is the Higgs doublet and d, e, f are real Yukawa couplings.

(a) When the Higgs gets a VEV in its first component, explain why this model leads to one massive Dirac neutrino, together with two massless neutrinos.

(b) If we interpret the massive neutrino as the *atmospheric neutrino*, show that left-handed component can be parametrized in terms of two angles θ_{13} and θ_{23} as

$$\nu_L^{\text{atm}} = s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}.$$
(8)

where ν_L^{atm} is correctly normalised ($s_{13} = \sin \theta_{13}$, etc.). Then, by comparing the above parametrisation of ν_L^{atm} to the third column of the PMNS matrix (with zero CP phase), explain why θ_{13} is the reactor angle and θ_{23} is the atmospheric angle.

(7)

(8)

$$\overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,$$

 $\nu_L^{\text{atm}} = s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}.$

(c) Using Eqs.7 and 8, find expressions for the sine of the reactor angle $\sin \theta_{13}$ and the tangent of the atmospheric angle $\tan \theta_{23}$ in terms of the Yukawa couplings d, e, f.

(d) If the solar neutrino is identified as one of the massless neutrinos, explain why the solar angle θ_{12} is not well defined in this model.

3. Consider a *see-saw* neutrino model involving *two* right-handed neutrinos ν_R^{sol} and ν_R^{atm} with Yukawa couplings [5],

$$\overline{\nu_R^{\text{sol}}}(aL_e + bL_\mu + cL_\tau)H + \overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,$$
(9)

and heavy right-handed Majorana masses,

$$M_{\rm sol}\overline{\nu_R^{\rm sol}}(\nu_R^{\rm sol})^c + M_{\rm atm}\overline{\nu_R^{\rm atm}}(\nu_R^{\rm atm})^c.$$
(10)

(a) After the Higgs gets a VEV in its first component, write down the Dirac mass matrix m_{RL}^D .

(b) Write down the (diagonal) right-handed neutrino heavy Majorana mass matrix M_{RR} .

(c) Using the see-saw formula, $m^{\nu} = (m_{RL}^D)^T M_{RR}^{-1} m_{RL}^D$, calculate the light effective left-handed Majorana neutrino mass matrix m^{ν} (i.e. the physical neutrino mass matrix).

(d) Assuming that the determinant of m^{ν} vanishes (which you may if you wish check by explicit calculation) what is the physical implication of this?

(e) Imposing the constraints d = 0 and e = f, with a = b = -c known as "constrained sequential dominance" [6], show that the resulting physical neutrino mass matrix m^{ν} is diagonalised by the tri-bimaximal mixing matrix, $U_{\text{TB}}^T m^{\nu} U_{\text{TB}}$. What is the physical interpretation of this result if the charged lepton mass matrix is diagonal?

Tutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix},$$
(1)

where $s_{13} = \sin \theta_{13}$, etc.

(a) Show that tri-bimaximal mixing defined by

$$s_{13} = 0, \ s_{12} = \frac{1}{\sqrt{3}}, \ s_{23} = \frac{1}{\sqrt{2}},$$
 (2)

implies the tri-bimaximal (TB) mixing matrix,

$$U_{\rm TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$
 (3)

(b) Consider the reactor, solar and atmospheric parameters r,s,a which parameterise the deviations from tri-bimaximal mixing [2],

$$s_{13} = \frac{r}{\sqrt{2}}, \ s_{12} = \frac{(1+s)}{\sqrt{3}}, \ s_{23} = \frac{(1+a)}{\sqrt{2}}.$$
 (4)

By expanding the PMNS mixing matrix to first order in the small parameters r, s, a, it is possible to show (although you do not need to do this) that,

$$U \approx \begin{pmatrix} \sqrt{\frac{2}{3}}(1 - \frac{1}{2}s) & \frac{1}{\sqrt{3}}(1 + s) & \frac{1}{\sqrt{2}}re^{-i\delta} \\ -\frac{1}{\sqrt{6}}(1 + s - a + r\cos\delta) & \frac{1}{\sqrt{3}}(1 - \frac{1}{2}s - a - \frac{1}{2}r\cos\delta) & \frac{1}{\sqrt{2}}(1 + a) \\ \frac{1}{\sqrt{6}}(1 + s + a - r\cos\delta) & -\frac{1}{\sqrt{3}}(1 - \frac{1}{2}s + a + \frac{1}{2}r\cos\delta) & \frac{1}{\sqrt{2}}(1 - a) \end{pmatrix}.$$
 (5)

Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U_{TB} . Show that, for $s \approx 0$, $a \approx r \cos \delta$, the first column of the mixing matrix approximately corresponds to that of TB mixing (TM1 mixing). Similarly show that for $s \approx 0$, $a \approx -(r/2) \cos \delta$, the second column of the mixing matrix approximately corresponds to that of TB mixing (TM2 mixing).

(c) Show that the relations $a \approx r \cos \delta$ and $a \approx -(r/2) \cos \delta$ imply the approximate "atmospheric sum rules" of the form,

$$\theta_{23} - 45^{\circ} \approx C \times \theta_{13} \cos \delta \tag{6}$$

and find the constant C in each case. [Hint: take the sine of both sides of the Eq.6, assuming $\sin \theta_{13} \approx \theta_{13}$, then expand $\sin(\theta_{23} - 45^\circ)$ and use definitions of r, a.] Then discuss how well these so called "atmospheric sum rules" are satisfied by current data on the atmospheric and reactor mixing angles and how future precision measurements of these angles will fix the CP violating phase δ [3].

(d) If the charged lepton mixing matrix has a Cabibbo-like mixing angle [1],

$$U_e = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(7)

calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix $U = U_e U_{\text{TB}}$ (you don't need to calculate the whole matrix). Comparing the absolute value of the (1,3) element to that of the standard parameterisation of the PMS matrix, find s_{13} in terms of s_{12}^e and show that choosing $\theta_{12}^e = \theta_C \approx 13^\circ$ (the Cabibbo angle) gives a reasonable value for the reactor angle [7]. Comparing the absolute value of the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS matrix, find relations between PMNS parameters. By combining and expanding these relations show that they lead to the approximate "solar sum rule",

$$\theta_{12} - 35^{\circ} \approx \theta_{13} \cos \delta, \tag{8}$$

[**Hint**: take the sine of both sides of the Eq.8, assuming $\sin \theta_{13} \approx \theta_{13}$ as well as $\sin 35^{\circ} \approx 1/\sqrt{3}$.] Discuss the resulting prediction for the CP phase δ [7].
2. Consider a *Dirac neutrino* mass model involving *one* right-handed neutrino ν_R^{atm} with Yukawa couplings [4],

$$\overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,\tag{9}$$

where $L_e = (\nu_e, e)_L$, etc., *H* is the Higgs doublet and *d*, *e*, *f* are real Yukawa couplings.

(a) When the Higgs gets a VEV in its first component, explain why this model leads to *one massive Dirac neutrino*, together with *two massless neutrinos*.

(b) If we interpret the massive neutrino as the *atmospheric neutrino*, show that left-handed component can be parametrized in terms of two angles θ_{13} and θ_{23} as

$$\nu_L^{\text{atm}} = s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}.$$
(10)

where ν_L^{atm} is correctly normalised ($s_{13} = \sin \theta_{13}$, etc.). Then, by comparing the above parametrisation of ν_L^{atm} to the third column of the PMNS matrix (with zero CP phase), explain why θ_{13} is the reactor angle and θ_{23} is the atmospheric angle.

(c) Using Eqs.9 and 10, find expressions for the sine of the reactor angle $\sin \theta_{13}$ and the tangent of the atmospheric angle $\tan \theta_{23}$ in terms of the Yukawa couplings d, e, f.

(d) If the solar neutrino is identified as one of the massless neutrinos, explain why the solar angle θ_{12} is not well defined in this model.

3. Consider a *see-saw* neutrino model involving *two* right-handed neutrinos ν_R^{sol} and ν_R^{atm} with Yukawa couplings [5],

$$\overline{\nu_R^{\text{sol}}}(aL_e + bL_\mu + cL_\tau)H + \overline{\nu_R^{\text{atm}}}(dL_e + eL_\mu + fL_\tau)H,$$
(11)

and heavy right-handed Majorana masses,

$$M_{\rm sol}\overline{\nu_R^{\rm sol}}(\nu_R^{\rm sol})^c + M_{\rm atm}\overline{\nu_R^{\rm atm}}(\nu_R^{\rm atm})^c.$$
(12)

(a) After the Higgs gets a VEV in its first component, write down the Dirac mass matrix m_{RL}^D .

(b) Write down the (diagonal) right-handed neutrino heavy Majorana mass matrix M_{RR} .

(c) Using the see-saw formula, $m^{\nu} = (m_{RL}^D)^T M_{RR}^{-1} m_{RL}^D$, calculate the light effective left-handed Majorana neutrino mass matrix m^{ν} (i.e. the physical neutrino mass matrix).

(d) Assuming that the determinant of m^{ν} vanishes (which you may if you wish check by explicit calculation) what is the physical implication of this?

(e) Imposing the constraints d = 0 and e = f, with a = b = -c known as "constrained sequential dominance" [6], show that the resulting physical neutrino mass matrix m^{ν} is diagonalised by the tri-bimaximal mixing matrix, $U_{\text{TB}}^T m^{\nu} U_{\text{TB}}$. What is the physical interpretation of this result if the charged lepton mass matrix is diagonal?

References

- [1] http://arxiv.org/abs/arXiv:1301.1340
- [2] http://arxiv.org/pdf/0710.0530.pdf
- [3] http://arxiv.org/abs/arXiv:1308.4314
- [4] http://arxiv.org/pdf/hep-ph/9806440.pdf
- [5] http://arxiv.org/pdf/hep-ph/9912492.pdf
- [6] http://arxiv.org/abs/hep-ph/0506297
- [7] http://arxiv.org/pdf/1205.0506.pdf

Solutions

- 1. (a) This is simply a matter of substituting the expressions into the PMNS matrix, using $c_{13} = (1 s_{13}^2)^{1/2}$, etc.
 - (b) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

$$U_{\rm TB} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$
 (1)

Assuming $s \approx 0$, $a \approx r \cos \delta$, we find the TM1 matrix,

$$U_{\rm TM1} \approx \begin{pmatrix} \sqrt{\frac{2}{3}} & - & -\\ -\frac{1}{\sqrt{6}} & - & -\\ \frac{1}{\sqrt{6}} & - & - \end{pmatrix}.$$
 (2)

With $s \approx 0$, $a \approx -(r/2) \cos \delta$, we find the TM2 matrix,

$$U_{\rm TM2} \approx \begin{pmatrix} - & \frac{1}{\sqrt{3}} & - \\ - & \frac{1}{\sqrt{3}} & - \\ - & -\frac{1}{\sqrt{3}} & - \end{pmatrix}.$$
 (3)

(c) Following the hint, one finds,

$$a \approx r \cos \delta \longleftrightarrow \theta_{23} - 45^{\circ} \approx \sqrt{2} \theta_{13} \cos \delta \tag{4}$$

$$a \approx -(r/2)\cos\delta \longleftrightarrow \theta_{23} - 45^{\circ} \approx -\frac{\theta_{13}}{\sqrt{2}}\cos\delta$$
 (5)

i.e. $C = \sqrt{2}$ and $C = -1/\sqrt{2}$.

Current data may involve for example $\theta_{23} = 40^{\circ} - 50^{\circ}$ and $\theta_{13} = 8^{\circ} - 9^{\circ}$, leading to $|\theta_{23} - 45^{\circ}| \leq 5^{\circ}$ and hence constraints on the two sum rules, which can be solved for $\cos \delta$ in terms of the measured angles. (This is a rather open ended question which the students can discuss in various ways in detail).

(d) If the charged lepton mixing matrix involves a Cabibbo-like mixing, then the PMNS matrix is given by,

$$U_{\rm PMNS} = \begin{pmatrix} c_{12}^e & s_{12}^e e^{-i\delta_{12}^e} & 0\\ -s_{12}^e e^{i\delta_{12}^e} & c_{12}^e & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \cdots & \cdots & \frac{s_{12}^e}{\sqrt{2}}e^{-i\delta_{12}^e}\\ \cdots & \cdots & \frac{c_{12}^e}{\sqrt{2}}\\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Comparing to the PMNS parametrisation we identify,

$$s_{13} = \frac{s_{12}^e}{\sqrt{2}} , \qquad (6)$$

$$|s_{23}s_{12} - s_{13}c_{23}c_{12}e^{i\delta}| = \frac{1}{\sqrt{6}}, \qquad (7)$$

$$c_{13}c_{23} = \frac{1}{\sqrt{2}}.$$
 (8)

The first equation a reactor angle $\theta_{13} \approx 9.2^{\circ}$ if $\theta_e \approx \theta_C \approx 13^{\circ}$ [7]. The second and third equations allow to eliminate θ_{23} to give a new relation between the PMNS parameters, called a solar sum rule, which may be expanded to first order to give the approximate relation,

$$\theta_{12} - 35^{\circ} \approx \theta_{13} \cos \delta, \tag{9}$$

or,

$$\cos \delta \approx \frac{\theta_{12} - 35^{\circ}}{\theta_{13}}.$$
(10)

This highlights the importance of an accurate measurement of the solar angle in order to predict the CP phase. Current data on the solar and reactor angles seems to predict $\cos \delta \approx 0$ or $\delta \approx \pm 90^{\circ}$, consistent with the experimental hint for the CP phase $\delta \approx -90^{\circ}$.

2. (a) Inserting the Higgs VEV, ν_R^{atm} only couples to one linear combination of left-handed neutrinos,

$$\nu_L^{\text{atm}} \propto d\nu_{eL} + e\nu_{\mu L} + f\nu_{\tau L},\tag{11}$$

and the two orthogonal combinations must therefore be massless because they have no couplings to the single right-handed neutrino.

(b) To check the normalisation we consider the product,

$$\nu_L^{\text{atm}} \cdot \nu_L^{\text{atm}} = (s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}) \cdot (s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L})$$

$$= s_{13}^2 + (s_{23}c_{13})^2 + (c_{23}c_{13})^2 = 1, \qquad (12)$$

where we have used results like ν_{eL} . $\nu_{eL} = 1$ and ν_{eL} . $\nu_{\mu L} = 0$, etc. Comparing to the PMNS matrix, one can see that the third column with zero phase $\delta = 0$ is identical to the parameterisation in Eq.??, hence we can identify θ_{13} as the reactor angle and θ_{23} as the atmospheric angle.

(c) Including a normalisation factor we have from Eq.??,

$$\nu_L^{\text{atm}} = \frac{1}{\sqrt{d^2 + e^2 + f^2}} (d\nu_{eL} + e\nu_{\mu L} + f\nu_{\tau L}).$$
(13)

Comparing the coefficients of ν_{eL} , $\nu_{\mu L}$, $\nu_{\tau L}$ to those in the parametrisation in Eq.??,

$$\nu_L^{\text{atm}} = s_{13}\nu_{eL} + s_{23}c_{13}\nu_{\mu L} + c_{23}c_{13}\nu_{\tau L}, \tag{14}$$

we read-off the results,

$$s_{13} = \frac{d}{\sqrt{d^2 + e^2 + f^2}}, \ s_{23}c_{13} = \frac{e}{\sqrt{d^2 + e^2 + f^2}}, \ c_{23}c_{13} = \frac{f}{\sqrt{d^2 + e^2 + f^2}}.$$
(15)

Taking the ratio of the last two terms,

$$t_{23} = \frac{e}{f}.\tag{16}$$

(d) The solar neutrino state ν_L^{sol} is not uniquely specified, since it is degenerate with another massless state, hence the solar mixing angle θ_{12} is not well defined.

3. (a) In the basis, with rows $(\overline{\nu_R^{\text{sol}}}, \overline{\nu_R^{\text{atm}}})^T$ and columns $(\nu_{eL}, \nu_{\mu L}, \nu_{\tau L})$, the Dirac mass matrix is,

$$m_{RL}^{D} = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}.$$
 (17)

(b) The Majorana mass matrix with rows $(\overline{\nu_R^{\text{sol}}}, \overline{\nu_R^{\text{atm}}})^T$ and columns $(\nu_R^{\text{sol}}, \nu_R^{\text{atm}})$,

$$M_{RR} = \begin{pmatrix} M_{\rm sol} & 0\\ 0 & M_{\rm atm} \end{pmatrix}.$$
 (18)

(c) Then by multiplying the matrices we find,

$$m^{\nu} = (m_{RL}^{D})^{T} M_{RR}^{-1} m_{RL}^{D} = \begin{pmatrix} \frac{a^{2}}{M_{\text{sol}}} + \frac{d^{2}}{M_{\text{atm}}} & \frac{ab}{M_{\text{sol}}} + \frac{de}{M_{\text{atm}}} & \frac{ac}{M_{\text{sol}}} + \frac{df}{M_{\text{atm}}} \\ \frac{ab}{M_{\text{sol}}} + \frac{de}{M_{\text{atm}}} & \frac{b^{2}}{M_{\text{sol}}} + \frac{e^{2}}{M_{\text{atm}}} & \frac{bc}{M_{\text{sol}}} + \frac{ef}{M_{\text{atm}}} \\ \frac{ac}{M_{\text{sol}}} + \frac{df}{M_{\text{atm}}} & \frac{bc}{M_{\text{sol}}} + \frac{ef}{M_{\text{atm}}} & \frac{c^{2}}{M_{\text{sol}}} + \frac{f^{2}}{M_{\text{atm}}} \end{pmatrix}.$$
(19)

(d) By explicit calculation, one can check that det $m^{\nu} = 0$. Since the determinant of a real symmetric matrix is the product of mass eigenvalues

$$\det m^{\nu} = m_1 m_2 m_3, \tag{20}$$

one may conclude that one of the masses is zero, which we take to be the lightest one $m_1 = 0$.

(e) Setting d = 0 and e = f, with a = b = -c, one finds,

$$m^{\nu} = \begin{pmatrix} \frac{a^2}{M_{\rm sol}} & \frac{a^2}{M_{\rm sol}} & \frac{-a^2}{M_{\rm sol}} \\ \frac{a^2}{M_{\rm sol}} & \frac{a^2}{M_{\rm sol}} + \frac{e^2}{M_{\rm atm}} & \frac{-a^2}{M_{\rm sol}} + \frac{e^2}{M_{\rm atm}} \\ \frac{-a^2}{M_{\rm sol}} & \frac{-a^2}{M_{\rm sol}} + \frac{e^2}{M_{\rm atm}} & \frac{a^2}{M_{\rm sol}} + \frac{e^2}{M_{\rm atm}} \end{pmatrix}.$$
 (21)

By explicit calculation one finds,

$$U_{\rm TB}^T m^{\nu} U_{\rm TB} = \begin{pmatrix} 0 & 0 & 0\\ 0 & \frac{3a^2}{M_{\rm sol}} & 0\\ 0 & 0 & \frac{2e^2}{M_{\rm atm}} \end{pmatrix}.$$
 (22)

If the charged lepton mass matrix is diagonal, the interpretation is that these constrained couplings lead to TB mixing, with the lightest neutrino mass $m_1 = 0$, the second lightest neutrino identified as the solar neutrino with mass $m_2 = \frac{3a^2}{M_{\rm sol}}$ and the heaviest neutrino identified as the atmospheric neutrino with mass $m_3 = \frac{2a^2}{M_{\rm atm}}$. Note that each of the right-handed neutrinos contributes uniquely to a particular physical neutrino mass. This general feature is known as sequential dominance and the particular example with constrained couplings is known as constrained sequential dominance [5].

References

- [1] http://arxiv.org/abs/arXiv:1301.1340
- [2] http://arxiv.org/pdf/0710.0530.pdf
- [3] http://arxiv.org/abs/arXiv:1308.4314
- [4] http://arxiv.org/pdf/hep-ph/9806440.pdf
- [5] http://arxiv.org/pdf/hep-ph/9912492.pdf
- [6] http://arxiv.org/abs/hep-ph/0506297
- [7] http://arxiv.org/pdf/1205.0506.pdf