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Introduction



At the end of Inflation the Universe 
was empty, cold and bare…           



After reheating a very slight excess 
of matter was somehow generated

+ few



Giving the observed baryon 
asymmetry of the Universe 
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leaves many questions unanswered...



Why is the Higgs mass light?
mH ⌧ mPlanck



Strong

Weak

Electromagnetic

Unification?



Flavour 
Why three families?
Why these masses?
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Origin of quark and lepton masses?



New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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Origin of quark and 
lepton mixing?



Neutrino mass 
and mixing

   Neutrinos have tiny masses (much less than electron) 

   Neutrinos mix a lot (unlike the quarks) 

   Up to 9 new params: 3 masses, 3 angles, 3 phases 

   Origin of mass and mixing is unknown                  



   Origin of neutrino mass 
     See-saw mechanisms, RPV SUSY, Extra dimensions,…  

   Unification of matter, forces and flavour 
     SUSY, GUTs, Family Symmetry,…  

   Baryon asymmetry of the universe? 

      Leptogenesis 
    Dark Matter?                                                                      
.    Warm dark matter                                                               

   Inflation?                                                                         .   
.    Sneutrino inflation         

   Dark energy?    
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Implications for PP and Cosmology
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Neutrino 
Masses and 
Mixings

From review SFK 1701.04413



Atmospheric νµ  disappear, large θ23 (1998)         SK

Solar νe disappear, large θ12 (2002)            SK, SNO

Solar νe are converted to νµ+ντ (2002)      SNO

Reactor anti-νe disappear/reappear (2004) Kamland

Accelerator νµ disappear (2006)                MINOS

Accelerator νµ converted to ντ  (2010)       OPERA

Accelerator νµ converted to νe , θ13 hint (2011) T2K

Reactor anti-νe disappear, θ13 meas. (2012) DB, Reno

A Brief (and incomplete) History 
of Neutrino Mass and Mixing

⌫L



The 6 observables in 
neutrino oscillations
✴The atmospheric mass squared difference 
✴The solar mass squared difference 
✴The atmospheric angle 
✴The solar angle 
✴The reactor angle 
✴The CP violating phase 
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Figure 1: The probability that a particular neutrino mass state ⌫i with mass mi contains a particular charged
lepton mass basis state (⌫e, ⌫µ, ⌫⌧ ) is represented by colours. The left and right panels of the figure are referred
to as normal or inverted mass squared ordering, respectively, referred to as NO or IO. The value of the lightest
neutrino mass is presently unknown but there is a cosmological limit: m

1

+ m
2

+ m
3

< 0.23 eV [33]. For
example, if m

1

= 0, then NO would give m
2

= 0.0086 eV and m
3

= 0.050 eV, hence m
1

+ m
2

+ m
3

⇡ 0.06 eV.
While for IO with m

3

= 0, we would find m
2

⇡ m
1

= 0.050 eV, hence m
1

+ m
2

+ m
3

⇡ 0.10 eV. Prospects for
future cosmological limits approaching this value are discussed in [34].

by a product of Euler rotations: (⌫e, ⌫µ, ⌫⌧ )T = R
23

R
13

R
12

(⌫
1

, ⌫
2

, ⌫
3

)T where Rij is a real orthogonal
rotation matrix in the ij plane, as shown in Eq.4 (with the phase set to zero) and depicted in Fig.2.

The measured mixing angles depend on whether the neutrino masses are in the NO or the IO pattern
as shown in Fig.3. Tri-bimaximal mixing would correspond to sin2 ✓

23

= 1/2 and sin2 ✓
13

= 1/3, and
indicated by the dashed lines in Fig.3, which translates into ✓

23

= 45�, ✓
12

= 35.26�. The current best
lepton mixing angle one sigma ranges are displayed in Table 1 for the NO case: ✓

23

⇡ 41.4� ± 1.6�,
✓
12

⇡ 33.2� ± 1.2�, ✓
13

⇡ 8.45� ± 0.15�. These values are extracted from the two recently updated global
fits of [38, 39]. The non-zero reactor angle excludes the original version of tri-bimaximal mixing with
a zero reactor angle. The alternative tri-bimaximal-reactor mixing is evidently excluded by about two
sigma. In addition, there is weak evidence for a non-zero CP violating phase. Present data (slightly)
prefers a normal ordered (NO) neutrino mass pattern, with a CP phase � = �100� ± 50�, and (more
significantly) non-maximal atmospheric mixing. The meaning of the CP phase � is discussed below.

The PDG [41] advocates CKM and the PMNS mixing matrices being parameterised by unitary

9
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The 3 Lepton Mixing Angles
From review SFK 1701.04413
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The oscillation observable 
CP Violating Phase



Standard Model states
Neutrino mass states

Oscillation phase 3 masses + 3 angles + 3 phases =              
9 new parameters for SM
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Absolute neutrino mass scale? 

PMNS matrix

UPMNS =

0

@
1 0 0
0 cl23 sl23
0 �sl23 cl23

1

A

0

@
cl13 0 sl13e

�i⇥l

0 1 0

�sl13e
i⇥l 0 cl13

1

A

0

@
cl12 sl12 0
�sl12 cl12 0
0 0 1

1

A

0

@
1 0 0
0 �21

2 0
0 0 �31

2

1

A
The PMNS matrix is then given by

UPMNS = UeLU
†
⇥L

. (31)

We use a standard parameterization UPMNS = Rl
23U

l
13R

l
12P

l in terms of slij = sin(⌃lij),
clij = cos(⌃lij), the Dirac CP violating phase ⇤l and further Majorana phases contained

in P l = diag(ei
⇥l1
2 , ei

⇥l2
2 , 1). The standard PDG parameterization [24] di�ers slightly due

to the definition of Majorana phases which are by given by P l
PDG = diag(1, ei

�21
2 , ei

�31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by �21 =
⇥l
2 � ⇥l

1 and �31 = �⇥l
1, after an overall unphysical phase is absorbed by UeL .

Using the see-saw formula in Eq.29, with the neutrino Yukawa matrix Y ⇥ in Eq.15
and the right-handed Majorana mass matrix MR in Eq.22, we find the neutrino mass
matrix m⇥ , up to an overall irrelevant phase which may be taken to be real, can be
written as

m⇥ = ma

�

⇤
0 0 0
0 1 1
0 1 1

⇥

⌅+mbe
2i�

�

⇤
1 4 2
4 16 8
2 8 1

⇥

⌅+mc

�

⇤
0 0 0
0 0 0
0 0 1

⇥

⌅ (32)

where ma = |a|2v2u/|M̃1|, mb = |b|2v2u/|M̃2|, mc = |c|2v2u/(9|M̃3|) are real parameter com-
binations which determine the three physical neutrino masses m3,m2,m1, respectively.
Note that m1 is suppressed by a factor of 9 compared to the other neutrino masses due
to the Clebsch-Gordan factor of 1/3 in the third family Dirac neutrino mass. We written
the relative phase di�erence between the first two two terms as 2⇧. As shown recently
[7], fixing ⇧ = �2�/5, using the phases of the singlet flavon VEVs ⇤⌥i⌅, then determines
all the lepton mixing angles and phases in terms of the ratio ⌅⇥ = mb/ma. Since this
phase is crucial to the predictions in the lepton sector, it is worthwhile discussing the
origin of this phase in more detail.

In order to understand the origin of phases which enter the neutrino mass matrixm⇥ ,
it is worth recalling that the operators responsible for the neutrino Yukawa and Majorana
masses are those given in Eqs.14 and 21. Implementing the see-saw mechanism, the
e�ective neutrino mass matrix m⇥ in Eq. 32 emerges from the flavon combinations,

m⇥ ⇥ ⇤ atm⌅⇤ atm⌅T

⇤⌥atm⌅
+

⇤ sol⌅⇤ sol⌅T

⇤⌥sol⌅
+

⇤ dec⌅⇤ dec⌅T

⇤⌥dec⌅
. (33)

Notice that the powers of ⌅ cancel in the see-saw mechanism, leading to a rather mild
hierarchy in the neutrino sector. Since we are assuming that the original theory respects
CP, the only source of phases can be the VEVs of flavons. The phase ⇧ = �2�/5 then
must arise from the di�erence between flavon VEVs. The phases of flavon VEVs arise
in the context of spontaneous CP violation from discrete symmetries as discussed in
[26], and we shall follow the strategy outlined there. The basic idea is to impose CP
conservation on the theory so that all couplings and masses are real. Note that the
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PMNS and CKM mixing

Same form for quarks and leptons  
(but very different angles)

11. CKM quark-mixing matrix 1

11. THE CKM QUARK-MIXING MATRIX

Revised March 2012 by A. Ceccucci (CERN), Z. Ligeti (LBNL), and Y. Sakai (KEK).

11.1. Introduction

The masses and mixings of quarks have a common origin in the Standard Model (SM).
They arise from the Yukawa interactions with the Higgs condensate,

LY = −Y d
ij QI

Li φ dI
Rj − Y u

ij QI
Li ϵ φ∗uI

Rj + h.c., (11.1)

where Y u,d are 3× 3 complex matrices, φ is the Higgs field, i, j are generation labels, and
ϵ is the 2 × 2 antisymmetric tensor. QI

L are left-handed quark doublets, and dI
R and uI

R
are right-handed down- and up-type quark singlets, respectively, in the weak-eigenstate
basis. When φ acquires a vacuum expectation value, ⟨φ⟩ = (0, v/

√
2), Eq. (11.1) yields

mass terms for the quarks. The physical states are obtained by diagonalizing Y u,d

by four unitary matrices, V u,d
L,R, as Mf

diag = V f
L Y f V f†

R (v/
√

2), f = u, d. As a result,

the charged-current W± interactions couple to the physical uLj and dLk quarks with
couplings given by

−g√
2
(uL, cL, tL)γµ W+

µ VCKM

⎛

⎝
dL
sL
bL

⎞

⎠ + h.c., VCKM ≡ V u
L V d

L
† =

⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠.

(11.2)

This Cabibbo-Kobayashi-Maskawa (CKM) matrix [1,2] is a 3 × 3 unitary matrix. It
can be parameterized by three mixing angles and the CP -violating KM phase [2]. Of
the many possible conventions, a standard choice has become [3]

VCKM =

⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

⎞

⎠ , (11.3)

where sij = sin θij , cij = cos θij , and δ is the phase responsible for all CP -violating
phenomena in flavor-changing processes in the SM. The angles θij can be chosen to lie in
the first quadrant, so sij , cij ≥ 0.

It is known experimentally that s13 ≪ s23 ≪ s12 ≪ 1, and it is convenient to exhibit
this hierarchy using the Wolfenstein parameterization. We define [4–6]

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ + iη) =
Aλ3(ρ̄ + iη̄)

√
1 − A2λ4

√
1 − λ2[1 − A2λ4(ρ̄ + iη̄)]

. (11.4)

These relations ensure that ρ̄+ iη̄ = −(VudV ∗
ub)/(VcdV

∗
cb) is phase-convention-independent,

and the CKM matrix written in terms of λ, A, ρ̄, and η̄ is unitary to all orders in λ.
The definitions of ρ̄, η̄ reproduce all approximate results in the literature. For example,
ρ̄ = ρ(1 − λ2/2 + . . .) and we can write VCKM to O(λ4) either in terms of ρ̄, η̄ or,
traditionally,

VCKM =

⎛

⎝
1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞

⎠ + O(λ4) . (11.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
June 18, 2012 16:19
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In the PDG parametrisation, UPMNS is described by three mixing angles ✓`ij and three

phases �`, ↵21 and ↵31. With cij = cos ✓`ij and sij = sin ✓`ij ,

UPMNS =

0

B@
1 0 0

0 c23 s23

0 �s23 c23

1

CA

0

B@
c13 0 s13e�i�`

0 1 0

�s13ei�
`

0 c13

1

CA

0

B@
c12 s12 0

�s12 c12 0

0 0 1

1

CA

⇥ diag(1, ei↵21

/2, ei↵31

/2).

(1.23)

If neutrinos are Dirac particles, the phases ↵21 and ↵31 become unphysical, and the

PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the

above as UPMNS = R`
23U

`
13R

`
12P .

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

only constrain the mass squared di↵erences �m2
ij = m2

i � m2
j . The absolute scale of

neutrino mass, characterised by the lightest neutrino mass m1, is not known. Moreover,

the ordering of neutrino masses is not yet fixed. While it is known that the first and

second neutrinos obey m1 < m2 (equivalent to �m2
21 > 0), at current experimental

precision it is not known whether the third neutrino with mass m3 is the heaviest, so-

called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other

words, the sign of �m2
31 is undetermined, although global fits to data show a mild

preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when m1 is small: for m1 . 5 meV, m2/m3 ⇠ 0.2 meV. Meanwhile an inverted ordering

requires the first and second neutrinos to be similar, i.e. m1 . m2, while the third

neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an

upper bound on the sum of neutrino masses
P

mi < 0.23 eV [37]. Bounds on the

neutrino masses are also given by searches for neutrinoless double beta (0⌫2�) decay.

Specifically, the 0⌫2� decay rate is proportional to the square of the e↵ective Majorana

mass |m�� | = |Pi U
2
eimi|. Future experiments may be able to place upper bounds on

|m�� | which is in tension with oscillation data for an inverted hierarchy (or conversely,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three

lepton mixing angles ✓`ij , Dirac charge-parity (CP ) phase �` and neutrino mass-squared

di↵erences�m2
ij , taken from the NuFit collaboration [36], as well as the measured masses

of the electron, muon and tau [23].

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask

For Majorana neutrinos



Quark vs Lepton mixings

Quarks

Leptons

✓12 ✓23 ✓13 �

13� 2.4� 0.2� 70�

45�34� 8.5�
±0.1� ±0.05�±0.1� ±5�

±1� 41� ± 1�
50� ± 1�

±0.15� ±50�
�90�



Latest NuFIT Fit 3.0 NuFIT 3.0 (2016)

Normal Ordering (best fit) Inverted Ordering (��2 = 0.83) Any Ordering

bfp ±1� 3� range bfp ±1� 3� range 3� range

sin2 ✓12 0.306+0.012
�0.012 0.271 ! 0.345 0.306+0.012

�0.012 0.271 ! 0.345 0.271 ! 0.345

✓12/
� 33.56+0.77

�0.75 31.38 ! 35.99 33.56+0.77
�0.75 31.38 ! 35.99 31.38 ! 35.99

sin2 ✓23 0.441+0.027
�0.021 0.385 ! 0.635 0.587+0.020

�0.024 0.393 ! 0.640 0.385 ! 0.638

✓23/
� 41.6+1.5

�1.2 38.4 ! 52.8 50.0+1.1
�1.4 38.8 ! 53.1 38.4 ! 53.0

sin2 ✓13 0.02166+0.00075
�0.00075 0.01934 ! 0.02392 0.02179+0.00076

�0.00076 0.01953 ! 0.02408 0.01934 ! 0.02397

✓13/
� 8.46+0.15

�0.15 7.99 ! 8.90 8.49+0.15
�0.15 8.03 ! 8.93 7.99 ! 8.91

�CP/
� 261+51

�59 0 ! 360 277+40
�46 145 ! 391 0 ! 360

�m2
21

10�5 eV2 7.50+0.19
�0.17 7.03 ! 8.09 7.50+0.19

�0.17 7.03 ! 8.09 7.03 ! 8.09

�m2
3`

10�3 eV2 +2.524+0.039
�0.040 +2.407 ! +2.643 �2.514+0.038

�0.041 �2.635 ! �2.399


+2.407 ! +2.643
�2.629 ! �2.405

�
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TABLE I: Results of the global 3⌫ oscillation analysis, in terms of best-fit values for the mass-mixing parameters and associated n�
ranges (n = 1, 2, 3), defined by �2 � �2

min = n2 with respect to the separate minima in each mass ordering (NO, IO) and to the absolute

minimum in any ordering. (Note that the fit to the �m2 and sin2 ✓12 parameters is basically insensitive to the mass ordering.) We recall
that �m2 is defined herein as m2

3 � (m2
1 +m2

2)/2, and that � is taken in the (cyclic) interval �/⇡ 2 [0, 2].

Parameter Ordering Best fit 1� range 2� range 3� range

�m2/10�5 eV2 NO, IO, Any 7.37 7.21 – 7.54 7.07 – 7.73 6.93 – 7.96

sin2 ✓12/10
�1 NO, IO, Any 2.97 2.81 – 3.14 2.65 – 3.34 2.50 – 3.54

|�m2|/10�3 eV2 NO 2.525 2.495 – 2.567 2.454 – 2.606 2.411 – 2.646

IO 2.505 2.473 – 2.539 2.430 – 2.582 2.390 – 2.624

Any 2.525 2.495 – 2.567 2.454 – 2.606 2.411 – 2.646

sin2 ✓13/10
�2 NO 2.15 2.08 – 2.22 1.99 – 2.31 1.90 – 2.40

IO 2.16 2.07 – 2.24 1.98 – 2.33 1.90 – 2.42

Any 2.15 2.08 – 2.22 1.99 – 2.31 1.90 – 2.40

sin2 ✓23/10
�1 NO 4.25 4.10 – 4.46 3.95 – 4.70 3.81 – 6.15

IO 5.89 4.17 – 4.48 � 5.67 – 6.05 3.99 – 4.83 � 5.33 – 6.21 3.84 – 6.36

Any 4.25 4.10 – 4.46 3.95 – 4.70 � 5.75 – 6.00 3.81 – 6.26

�/⇡ NO 1.38 1.18 – 1.61 1.00 – 1.90 0 – 0.17 � 0.76 – 2

IO 1.31 1.12 – 1.62 0.92 – 1.88 0 – 0.15 � 0.69 – 2

Any 1.38 1.18 – 1.61 1.00 – 1.90 0 – 0.17 � 0.76 – 2

Table I reports best-fit values and parameter ranges for separate �2 minimization in each separate ordering (NO
and IO) and in any ordering; the latter case takes into account the above ��2

IO�NO value. The known parameters

(�m2, |�m2|, sin2 ✓12, sin2 ✓13), which a↵ect the absolute mass observables in Eqs. (4)–(6), are determined with a
fractional 1� accuracy (defined as 1/6 of the ±3� range) of (2.3, 1.6, 5.8, 4.0) percent, respectively. For such param-
eters, it turns out that minimization in any ordering reproduces the same allowed ranges as for NO. Given the �m2

and �m2 estimates in Table I, Eq. (3) becomes

(m1, m2, m3) >⇠
⇢

(0, 0.86, 5.06)⇥ 10�2 eV (NO) ,
(4.97, 5.04, 0)⇥ 10�2 eV (IO) .

(10)

The parameter sin2 ✓23 is less well known, at the level of 9.6%. At 3�, its octant degeneracy is unresolved, and
maximal mixing is also allowed. At lower significance, maximal mixing is disfavored in both NO and IO, and the
first octant is preferred in NO. The n� ranges for ✓23 for any ordering are larger than for NO (Table I), as a result of
joining the NO and IO intervals determined by the curves in the right-lower panel of Fig. 1 at �2 = n2. Concerning
the possible CP-violating phase �, our analysis strengthen the trend in favor of � ⇠ 3⇡/2 [9, 11, 42], and disfavors
ranges close � ⇠ ⇡/2 at >⇠ 3�. In any case, the parameters ✓23 and � do not enter in the calculation of (m� , m�� , ⌃).

A few remarks are in order about the IO-NO o↵set in Eq. (9). This value is in the ballpark of the o�cial SK fit
results quoted in [46, 47], namely: ��2

IO�NO = 4.3 (for SK data at fixed ✓13) and ��2
IO�NO = 5.2 (for SK + T2K

data at fixed ✓13). By excluding SK atmospheric data in our fit, we find ��2
IO�NO = 1.1, in qualitative accord with

the o�cial T2K data analysis constrained by reactor data [42].
Concerning SK atmospheric data, it has been emphasized [9, 11, 12] that the complete set of bins and systematics

[46, 47] can only be handled within the collaboration, especially when ⌫/⌫ or multi-ring event features are involved.
Nevertheless, we think it useful to continue updating our analysis of reproducible SK samples, namely, sub/multi-GeV
single-ring (e-like and µ-like) and stopping/through-going (µ-like) distributions. These samples encode interesting
(although entangled and smeared) pieces of information about subleading e↵ects driven by known and unknown
oscillation parameters, see e.g. [2]; in particular, they contributed to early hints of nonzero ✓13 [48]. At present, we
trace the atmospheric hint of NO to e-like events, especially multi-GeV, in qualitative agreement with [49].1

Summarizing, the SK(+T2K) o�cial results in [42, 46, 47] and ours in Eq. (9) suggest, at face value, that global
3⌫ oscillation analyses may have reached an overall ⇠ 2� sensitivity to the mass ordering, with a preference for NO
driven by atmospheric data and corroborated by accelerator data, together with reactor constraints. This intriguing
indication, although still tentative, is generally supported by cosmological data (see Sec. II C) and thus warrants a
dedicated discussion in the context of absolute ⌫ mass observables (see Sec. III).

1 Note, however, that weaker results for the IO-NO di↵erence (<⇠ 1�), with or without atmospheric data, have been found in [11].
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parameter best fit ± 1� 2� range 3� range
�m2

21 [10
�5eV2] 7.56±0.19 7.20–7.95 7.05–8.14

|�m2
31| [10�3eV2] (NO) 2.55±0.04 2.47–2.63 2.43–2.67

|�m2
31| [10�3eV2] (IO) 2.49±0.04 2.41–2.57 2.37-2.61

sin2 ✓12/10
�1 3.21+0.18

�0.16 2.89–3.59 2.73–3.79
✓12/

� 34.5+1.1
�1.0 32.5–36.8 31.5–38.0

sin2 ✓23/10
�1 (NO) 4.30+0.20

�0.18
a 3.98–4.78 & 5.60–6.17 3.84–6.35

✓23/
� 41.0±1.1 39.1–43.7 & 48.4–51.8 38.3–52.8

sin2 ✓23/10
�1 (IO) 5.96+0.17

�0.18
b 4.04–4.56 & 5.56–6.25 3.88–6.38

✓23/
� 50.5±1.0 39.5–42.5 & 48.2–52.2 38.5–53.0

sin2 ✓13/10
�2 (NO) 2.155+0.090

�0.075 1.98–2.31 1.89–2.39
✓13/

� 8.44+0.18
�0.15 8.1–8.7 7.9–8.9

sin2 ✓13/10
�2 (IO) 2.140+0.082

�0.085 1.97–2.30 1.89–2.39
✓13/

� 8.41+0.16
�0.17 8.0–8.7 7.9–8.9

�/⇡ (NO) 1.40+0.31
�0.20 0.85–1.95 0.00–2.00

�/� 252+56
�36 153–351 0–360

�/⇡ (IO) 1.44+0.26
�0.23 1.01–1.93 0.00–0.17 & 0.79–2.00

�/� 259 +47
�41 182–347 0–31 & 142–360

aThere is a local minimum in the second octant, at sin2 ✓23=0.596 with ��2 = 2.08 with respect to the global minimum.
bThere is a local minimum in the first octant, at sin2 ✓23=0.426 with ��2 = 1.68 with respect to the global minimum for IO.

TABLE I: Neutrino oscillation parameters summary determined from this global analysis. The ranges for inverted
ordering refer to the local minimum of this neutrino mass ordering.

with ��2 = 2.1, while for the case of inverted ordering we obtain a local minimum in the second octant at
��2 = 2.7 with respect to the global minimum. Maximal atmospheric mixing is disfavoured at ��2 = 6.0 for
the case of normal ordering. Finally, our global fit shows a slight preference for normal neutrino mass ordering,
with ��2 = 2.7. As discussed in the previous section, this sensitivity to the mass ordering comes mainly from
the tension in the preferred values of ✓23 in T2K and NO⌫A, found to be stronger for the case of inverted mass ordering.

Before closing we comment on the atmospheric data from the Super-K experiment. In contrast to Ref. [59], we
include the old Super-K atmospheric neutrino data samples I, II and III, following the analysis provided by the Super-
K Collaboration in Ref. [79], the same “safe” procedure adopted previously in Refs. [1, 61, 62]. However, concerning
the most recent atmospheric neutrino Super-K data samples, as stressed in [59], they are not presented in a form that
allows a reliable use outside the collaboration, so we chose not to include them in our analysis. Fortunately, as we
saw, the constraining power of the new long–baseline neutrino data is higher, at least insofar as the determination of
the atmospheric oscillation parameters is concerned.
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of the lightest neutrino mass eigenstates in the normal and inverted mass hierar-
chies. Also shown is the range of m

0

disfavoured by cosmology.

The compatibility of the combined limits with respect to the claimed observation of neu-
trinoless double-beta decay in the Heidelberg-Moscow experiment also varies significantly
depending on the NME calculations chosen.
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Figure 1: The power of sum rules. Two example sum rules (rule 1: m̃�1
1 + m̃�1

2 = m̃�1
3

indicated by the forked red region, rule 2: m̃1 + m̃2 = m̃3 indicated by the violet region)
are displayed, along with the result of GERDA phase I [23] and the maximum sensitivities
of GERDA [24,25] for phase II and phase III, including the nuclear physics uncertainties
which generate the gaps between the horizontal green lines. Even with these uncertainties,
the inverted ordering region of rule 1 is clearly falsifiable, thereby illustrating the power
of the sum rules. Technical details will be given later in the text.

neutrinoless double beta decay was observed. Thus it is worth to carefully discuss this

point and to correct some of the results obtained previously. Secondly, it is known that

a relatively large value of �13, such as the one measured, can considerably influence the

allowed regions for |mee| [29], which is particularly true when additional constraints such

as mass sum rules are imposed, and which makes an updated study worthwhile. Thirdly,

the studies performed up to now have focused on the phenomenology of |mee|, without
a complete discussion of the experimental prospects, in particular in what regards the

nuclear physics uncertainties. We close all these gaps by not only providing a detailed

study of all neutrino mass sum rules we were able to find in the literature, but we also

discuss the prospects of many current and future experiments on neutrinoless double

beta decay, thereby taking into account nine di�erent methods to calculate the so-called

nuclear matrix elements. We also provide a complete classification of all flavour models

known to us which lead to neutrino mass sum rules, so that a fairly complete picture of
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Loop Models of Neutrino Mass

Figure 1: Tree-level and radiative seesaw mechanisms.

exists no such study in the literature with the focus put on the neutrino sector in radiative
models, and we aim to start this enterprise by a study devoted to the RGEs of the Ma-

model. Naturally, this could be extended to other radiative models for neutrino masses,
such as the Zee-Babu model [25, 26] or the Aoki-Kanemura-Seto model [27, 28]. In par-

ticular the interplay between the scalar and the lepton sectors has the potential to reveal
interesting new effects, as we will already see in this study.

However, we want to stress that several studies are already available which investigate

e.g. limiting cases of our framework or subsets (or generalizations of subsets) of certain
sectors of the Ma-model. A particular example for such a case would be the investigations

of the RGEs of a general Two Higgs Doublet Model (THDM). Whenever applicable in
this paper, we will refer to the corresponding works treating these related frameworks.

This paper is organized as follows: In Sec. 2, we review Ma’s scotogenic model and
discuss the different effective theories arising when subsequently integrating out the heavy
neutrino fields. Next, in Sec. 3, we discuss in detail the matching conditions at the

boundaries between the respective theories, which in our case have to be consistently
imposed at 1-loop level. Our main results, the explicit RGEs at 1-loop level are presented

in Sec. 4. After that, we present a numerical exemplifying study (in a slightly simplified
framework) in Sec. 5, in order to illustrate how to use our results. We finally conclude in

Sec. 6.

2 Ma’s scotogenic model

The so-called scotogenic model has been discussed by Ma [24], and in the following we will
therefore call it Ma-model for simplicity. In this section, we will first review this model,

and then discuss some of its low-energy limits, which we will also use in our calculations
later on.

2

2

ρ++

W− W−

H0/A0

H+
1,2 H+

1,2

νa νb

ℓ+
a ℓ+

b

FIG. 1: The Cocktail Diagram

tests (EWPT) and collider searches, and we comment on
possible consequences for neutrinoless double beta de-
cay (0νββ). We then briefly discuss future detection
prospects, before concluding.

II. A MODEL FOR NEUTRINO MASSES.

In addition to the SM fields, the model includes two
SU(2)L singlet scalars (singly and doubly charged) S+

and ρ++, and a scalar doublet Φ2. We introduce a Z2

symmetry under which the Φ2 and S+ fields are odd,
whereas ρ++ and the SM fields are even. The Z2 sym-
metry should be unbroken after EW symmetry breaking,
so that the lightest Z2-odd state remains stable and can
provide a dark matter particle candidate. Given the sym-
metry and particle content of the model, the lagrangian
will include the following relevant terms leading to lepton
number violation

− ∆L =
λ5
2

(

Φ†
1Φ2

)2

+ κ1 ΦT
2 iσ2Φ1 S

− + κ2 ρ
++S−S−

+ξs ΦT
2 iσ2Φ1 S

+ ρ−− + Cab lcRa
lRb

ρ++ + h.c.. (1)

The SM scalar doublet Φ1 and the inert scalar doublet
Φ2 can in the unitary gauge be written as

Φ1 =
1√
2

(

0
h

)

+

(

0
v

)

, Φ2 =
1√
2

(

Λ+

H0 + i A0

)

, (2)

where v ≃ 174 GeV is the vacuum expectation value of
Φ1. After EW symmetry breaking, and for κ1 ̸= 0, the
charged states Λ+ and S+ will mix (the mixing angle
being β), giving rise to two charged mass eigenstates

H+
1 = sβ S

+ + cβ Λ+, H+
2 = cβ S

+ − sβ Λ+, (3)

with sβ , cβ = sinβ, cosβ respectively.
The lagrangian in Eq. (1) breaks lepton number explic-

itly by two units [9], which generates a Majorana mass

for the left-handed neutrinos. The Z2 symmetry pre-
cisely forbids all terms that would have generated neu-
trino masses at either 1 or 2-loop order, and therefore
the leading contributions to neutrino masses appear at 3-
loops through the ‘Cocktail Diagram’ shown in Figure 1.
In the basis where the charged current interactions are

flavour-diagonal, the charged leptons e, µ, τ being then
mass eigenstates, and after summing up the contributions
from the six different finite 3-loop diagrams in Figure 1
(coming from H+

1,2, A0 and H0 running in the loop), the
Majorana neutrino mass matrix reads:

mν
ab ≃ Cab xa xb s22β

Iν

(16 π2)3
A , (4)

where s2β = sin(2β), xa = ma/v for a = e, µ, τ , and

A =
(∆m2

+)
2 ∆m2

0

µ0 µ+

(κ2 + ξsv)

m2
ρ v2

. (5)

The factor Iν is a dimensionless O(1) number emerging
from the 3-loop integral after all generic factors have been
factorized out. Its exact value depends on the specific
mass spectrum, and we have estimated its value using
the numerical code SecDec [10]. The reduced masses are
µ−1
0 = m−1

H0
+m−1

A0
and µ−1

+ = m−1
H1

+m−1
H2

.
The dependence of mν

ab on the mass differences ∆m2
0 =

m2
A0

−m2
H0

and ∆m2
+ = m2

H2
−m2

H1
signals a GIM-like

mechanism at play in Eq. (4), which can be easily under-
stood noticing that ∆m2

0 ∝ λ5 and ∆m2
+ ∝ κ1. In the

limit λ5 → 0 the lagrangian in Eq. (1) conserves lepton
number and no Majorana neutrino mass can be gener-
ated, while in the limit κ1 → 0, the leading contribution
to mν

ab will appear at a higher loop order.

We now analyze the ability of the model to reproduce
the observed pattern of neutrino masses and mixings.
The standard parametrization for the neutrino mass ma-
trix in terms of three masses m1,2,3, three mixing angles
θ12, θ23, θ13 and three phases δ, α1, α2 reads

mν = UT mν
D U with mν

D = Diag (m1,m2,m3) (6)

U = Diag
(

eiα1/2, eiα2/2, 1
)

×
⎛

⎝

c13c12 −c23s12−s23c12s13eiδ s23s12−c23c12s13eiδ

c13s12 c23c12−s23s12s13eiδ −s23c12−c23s12s13eiδ

s13e−iδ s23c13 c23c13

⎞

⎠

with sij ≡ sin(θij) and cij ≡ cos(θij). A global fit to
neutrino oscillation data after the recent measurement
of θ13 (see for example [11]) gives ∆m2

21 ≡ m2
2 − m2

1 =
7.62+0.19

−0.19× 10−5eV2,
∣

∣∆m2
31

∣

∣ ≡
∣

∣m2
3 −m2

1

∣

∣ = 2.55+0.06
−0.09×

10−3eV2, s212 = 0.320+0.016
−0.017, s213 = 0.025+0.003

−0.003, and
s223 = 0.43+0.03

−0.03 (0.61+0.02
−0.04) if in the first (second) oc-

tant for θ23. Neutrino oscillations are not sensitive to
the Majorana phases α1 and α2 nor to the absolute neu-
trino mass scale, while the value of the CP phase δ is
beyond current experimental sensitivity. In the inverted

Scotogenic model Cocktail model 

x
W-W-
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la HlbLcnLa HnLbLc

x

p p+k p+k+q p

k k+q
q

Figure 2: Two-loop diagram for the neutrino mass (left) and momentum-assignments for
its computation (right).

3 Neutrino mass

The vertex S–W–W leads to a neutrino mass at 2-loop level, as displayed in Fig. 2. This

diagram has been computed e.g. in Ref. [1], and it is intimately related to the Zee-Babu

integral [9, 10, 11, 12].

4 An incomplete to-do list

A fairly incomplete to-do list for the proposed study is the following:

• We should verify that the operator described in Sec. 2 is indeed the one with the

lowest mass dimension, and we should explicitly compute all resulting vertices and

the Feynman rule.

• We should explicitly compute the diagram displayed in Fig. 2 in R⇠ gauge and derive

the resulting constraints on the neutrino mass.

• We should investigate extensively the low energy neutrino phenomenology of the

setting, as well as the constraints resulting from non-observations of LFV processes.

(Could be very similar to the Zee-Babu model!)

• We should investigate the collider phenomenology resulting from the vertex dis-

played in Fig. 1, with a particular focus on the combined constraints resulting from

low-energy leptonic physics and high energy collider physics.

• ...
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Tri-Bimaximal Deviations
0710.0530

r = reactors = solar a = atmospheric

where ΦTB
i are just the columns of the TB mixing matrix. As shown in Appendix B, due

to the unitarity of UR and the special form of the mass matrix MR in Eq. (4.1), the only
non-zero parameter is α13 = −α∗

31 whose dependence on the input parameters α, β, γ,∆
is given in Eqs. (B.15,B.16). The fact that only α13 = −α∗

31 is non-zero implies that UR

is of TM form as expected. Furthermore, since,

UT
RMRUR = Mdiag

R , (4.8)

it is then straightforward to derive the lepton mixing matrix UPMNS, as in Eq. (2.9),

UPMNS =
mD

yvu
UR . (4.9)

Due to the trivial structure of mD as well as a diagonal charged lepton sector, the PMNS
mixing matrix can thus be directly obtained from UR by permuting the second and the
third row as well as multiplying the Majorana phase matrix P on the right and another
phase matrix P ′ on the left, leading to UPMNS = UTM where,

UTM ≈ P ′
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⎠
P . (4.10)

The matrix P ′ has to be chosen such that the PMNS matrix without Majorana phases
is brought to the standard PDG form where the 2-3 and 3-3 elements are real and the
mixing angles are all between 0◦ and 90◦. In linear approximation, the required form of
P ′ becomes

P ′ ≈ diag(1, a+,−a−) , a± = 1± i ·
Im(α13)√

3
. (4.11)

Multiplying this explicit form of the phase matrix P ′ we obtain a mixing matrix that is
consistent with the standard PDG phase conventions.

It is useful to compare the TM mixing matrix in Eq. (4.10) to a general parametrisation
of the PMNS mixing matrix in terms of deviations from TB mixing [25],
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where the deviation parameters s, a, r are defined as [25],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =

r√
2
. (4.13)

This comparison yields

s ≈ 0 , a ≈
Re (α13)√

3
, r cos δ ≈ −

2√
3
Re (α13) , δ ≈ arg (α13) + π , (4.14)
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Tutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],
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where s
13

= sin ✓
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, etc.

(a) Show that tri-bimaximal mixing defined by

s
13

= 0, s
12

=
1p
3
, s

23

=
1p
2
, (2)

implies the tri-bimaximal (TB) mixing matrix,
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(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],

s
13

=
rp
2
, s

12

=
(1 + s)p

3
, s

23

=
(1 + a)p

2
. (4)

By expanding the PMNS mixing matrix to first order in the small parameters
r, s, a, it is possible to show (although you do not need to do this) that,

U ⇡
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Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).

3
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Tri-maximal 1        
Tri-maximal 2     

Tri-maximal Mixing

Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c

13

= (1� s2
13

)1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

U
TB
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Assuming s ⇡ 0, a ⇡ r cos �, we find the TM1 matrix,

U
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⇡

0
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With s ⇡ 0, a ⇡ �(r/2) cos �, we find the TM2 matrix,

U
TM2

⇡

0

B@
� 1p

3

�
� 1p

3

�
� � 1p

3

�

1

CA . (15)

(c ) Following the hint, one finds,

a ⇡ r cos �  ! ✓
23

� 45� ⇡
p
2✓

13

cos � (16)

a ⇡ �(r/2) cos �  ! ✓
23

� 45� ⇡ � ✓
13p
2
cos � (17)

i.e. C =
p
2 and C = �1/

p
2.

Current data may involve for example ✓
23

= 40� � 50� and ✓
13

= 8� � 9�, leading
to |✓

23

�45�| <⇠ 5� and hence constraints on the two sum rules, which can be solved
for cos � in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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Charged lepton corrections
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by U
PMNS

= U eU ⌫
TB

. Now suppose that U ⌫
TB

is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓
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⇡ 35.26o + ✓
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cos �, (24)

where 35.26o = sin�1

1p
3

. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],
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Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],
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c
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The first equation implies a reactor angle ✓
13

⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓

23

, yield a new relation between the PMNS
parameters, ✓

12

, ✓
13

and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e
13

= 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:
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This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23

= 0. However, since ✓e
23

cancels in the ratio, it also applies for ✓e
23

6= 0. It is not fully
general however since we are always assuming ✓e

13

= 0.
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After some algebra, Eq.31 leads to [59],

cos � =
t
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s2

12

+ s2

13
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12

/t
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� 1

3

(t
23

+ s2

13

/t
23

)

sin 2✓
12

s
13

. (32)

To leading order in ✓
13

, Eq.32 returns the sum rule in Eq.24, from which we find cos � ⇡ 0 if ✓
12

⇡ 35o,
consistent with � ⇠ �⇡/2. This can also be understood directly from Eq.32 where we see that for
s2

12

= 1/3 the leading terms t
23

s2

12

and 1

3

t
23

cancel in the numerator, giving cos � = s
13

/(2
p

2t
23

) ⇡ 0.05
to be compared to cos � ⇡ 0 in the linear approximation. In general the error induced by using the
linear sum rule instead of the exact one has been shown to be �(cos �) . 0.1 [59] for the TB sum rule.

Recently there has been much activity in exploring the phenomenology of various such solar mixing
sum rules, arising from charged lepton corrections to simple neutrino mixing, not just TB neutrino
mixing, but other simple neutrino mixing, including BM and GR mixing, allowing more general charged
lepton corrections, renormalisation group running and so on [60].

It is important to distinguish solar mixing sum rules discussed here from atmospheric mixing sum
rules discussed previously. The physics is di↵erent: here we consider charged lepton corrections to TB
neutrino mixing, while previously we considered two forms of the physical trimaximal lepton mixing
matrix.

4 Minimality: The Type I Seesaw Mechanism

4.1 The type I seesaw mechanism with one RH neutrino

The LH Majorana masses are given by,

LLL
⌫ = �1

2
m⌫⌫L⌫c

L + H.c. (33)

where ⌫c
L is a RH antineutrino field, which is the CP conjugate of the LH neutrino field ⌫L. Majorana

masses are possible below the electroweak symmetry (EW) breaking scale since the neutrino has zero
electric charge. Majorana neutrino masses violate lepton number conservation, and are forbidden above
the EW breaking scale. The type I seesaw mechanism assumes that Majorana neutrino mass terms are
zero to begin with, but are generated e↵ectively by RH neutrinos [5].

If we introduce one RH neutrino field ⌫R, 7 then there are two possible additional neutrino mass
terms. First there are Majorana masses,

LR
⌫ = �1

2
MR⌫c

R⌫R + H.c. (34)

Secondly, there are Dirac masses,
LD

⌫ = �mD⌫L⌫R + H.c.. (35)

Dirac mass terms arise from Yukawa couplings to a Higgs doublet, Hu,

LYuk = �HuY
⌫L⌫R + H.c. (36)

7A single RH neutrino is su�cient to account for atmospheric neutrino oscillations if it couples approximately equally
to ⌫µ and ⌫⌧ as discussed in [23].
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3.4 Charged lepton mixing corrections and sum rules

Recall that the physical PMNS matrix in Eq.10 is given by U
PMNS

= U eU ⌫
TB

. Now suppose that U ⌫
TB

is
the TB matrix in Eq.14 while U e corresponds to small but unknown charged lepton corrections. This
was first discussed in [55–58] where the following sum rule involving the lepton mixing parameters,
including crucially the CP phase �, was first derived:

✓
12

⇡ 35.26o + ✓
13

cos �, (24)

where 35.26o = sin�1

1p
3

. Eq.24 may be recast in terms of TB deviation parameters as [48],

s = r cos �. (25)

To derive this sum rule, let us consider the case of the charged lepton mixing corrections involving
only (1,2) mixing, so that the PMNS matrix is given by [58],

U
PMNS

=

0

@
ce
12

se
12

e�i�e
12 0

�se
12

ei�e
12 ce

12

0
0 0 1

1

A

0

B@

q
2

3

1p
3

0

� 1p
6

1p
3

1p
2

1p
6

� 1p
3

1p
2

1

CA =

0

B@
· · · · · · se

12p
2

e�i�e
12

· · · · · · ce
12p
2

1p
6

� 1p
3

1p
2

1

CA (26)

Comparing to the PMNS parametrisation in Eq.4 we identify the exact sum rule relations [58],

|Ue3| = s
13

=
se
12p
2

, (27)

|U⌧1

| = |s
23

s
12

� s
13

c
23

c
12

ei�| =
1p
6

, (28)

|U⌧2

| = | � c
12

s
23

� s
12

s
13

c
23

ei�| =
1p
3

, (29)

|U⌧3

| = c
13

c
23

=
1p
2
. (30)

The first equation implies a reactor angle ✓
13

⇡ 8.45� if ✓e ⇡ 12�, just a little smaller than the Cabibbo
angle. The second and third equations, after eliminating ✓

23

, yield a new relation between the PMNS
parameters, ✓

12

, ✓
13

and �. Expanding to first order gives the approximate solar sum rule relations in
Eq.24 [55].

The above derivation assumes only (1,2) charged lepton corrections. However it is possible to derive
an accurate sum rule which is valid for both (1,2) and (2,3) charged lepton corrections (while keeping
✓e
13

= 0). Indeed, using a similar matrix multiplication method to that employed above leads to the
exact result [59]:

|U⌧1

|
|U⌧2

| =
|s

12

s
23

� c
12

s
13

c
23

ei�|
| � c

12

s
23

� s
12

s
13

c
23

ei�| =
1p
2

. (31)

This may also be obtained by taking the ratio of Eqs. 28 and 29. Therefore it applies to the previous
case with ✓e

23

= 0. However, since ✓e
23

cancels in the ratio, it also applies for ✓e
23

6= 0. It is not fully
general however since we are always assuming ✓e

13

= 0.
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1 Introduction

Following the measurement of the third lepton mixing angle, the so called reactor angle
✓13 ⇡ 9� [1] neutrino physics has now entered the precision era. Indeed all three lepton
mixing angles are expected to be measured with increasing precision over the coming years,
with forthcoming accurate measurements expected for both the atmospheric angle ✓23 and
the solar angle ✓12. Given the sizeable value of the reactor angle, rapid progress can also
be expected concerning the so far unmeasured CP violating oscillation phase �.
The measurement of the reactor angle has had a major impact on models of neutrino
mass and mixing, ruling out at a stroke models based on tri-bimaximal (TB) mixing
[2]. Such models include “direct” models [3], in which the full Klein symmetry (S, U
generators) of the neutrino mass matrix, as well as the T symmetry of the charged lepton
mass matrix, is a subgroup of a family symmetry. Alternatively, TB mixing can arise
from “indirect” models based on constrained sequential dominance (CSD) [4] with special
family-symmetry-breaking vacuum alignments (0, 1, 1) and (1, 1,�1).
Many di↵erent model building directions capable of accounting for the reactor have angle
emerged, as recently reviewed [5, 6]. A promising approach to test large classes of models
is to consider lepton mixing angle sum rules, which relate all three lepton angles to the
CP violating oscillation phase �, or more precisely cos �. Indeed, they can be regarded as
predicting cos �, since this is the least well determined parameter. Lepton mixing sum rules
arise from two distinct types of theory and lead to two di↵erent types of lepton mixing
sum rule, referred to as atmospheric and solar sum rules [5, 6], as we now discuss.
Atmospheric sum rules [7] arise from a variety of “semi-direct” models in which only half
of the Klein symmetry emerges from the discrete family symmetry, classified in terms of
finite von Dyck groups, with charged lepton mixing controlled by the T generator [8–10].
For example, such models can lead to TM1 or TM2 mixing, in which the first or second
column of the TB mixing matrix is preserved, and the atmospheric sum rules can be derived
from the respective conditions,

|Ue1| =
r

2

3
|Uµ1| = |U⌧1| = 1p

6
. (1)

|Ue2| = |Uµ2| = |U⌧2| = 1p
3
. (2)

For example, it was first shown in [22,23] that A4 generally leads to a “semi-direct model”
which predicts TM2 mixing with the second atmospheric sum rule, while the indirect CSD2
model with special family-symmetry-breaking vacuum alignments (0, 1, 1) and (1, 2, 0) in
[11] predicts TM1 mixing and the first atmospheric sum rule. In fact the TM1 atmospheric
sum rule arises from all generalised versions of CSD(n), based on the vacuum alignments
(0, 1, 1) and (1, n, n� 2) for integer n � 1 [12], since such alignments are orthogonal to the
first column of the TB matrix, and hence predict TM1 mixing.
Solar sum rules [4,13,14] arise from models in which the neutrino mixing is of a relatively
simple nature, such as TB mixing, but the charged lepton mixing is Cabibbo-like in nature
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|U⌧1|/|U⌧2| = 1

|U⌧1|/|U⌧2| = 1/
p
2

|U⌧1|/|U⌧2| = 1/'(BM) mixing [16] where s⌫12 = 1/
p
2 and for various versions of golden ratio (GR) mixing

including GR1 with t⌫12 = 1/' [17], GR2 with c⌫12 = '/
p
3 [18], where ' = 1+

p
5

2 is the
golden ratio. We also present a further possibility called GR3 with ✓⌫12 = ⇡/5, and discuss
hexagonal (HEX) mixing with ✓⌫12 = ⇡/6 [19]. We describe a Klein symmetry argument
which exclusively leads to patterns with ✓⌫13 = 0 (TB, BM, GR1 and GR3). We also dis-
cuss dihedral-associated predictions ✓⌫12 = ⇡d/N and how these are related to symmetry.
Although not fully specified by symmetry, additional patterns mentioned in the literature
can be found by, in addition, fixing ✓⌫13 = 0 and ✓⌫23 = ⇡/4 by hand. We include the simplest
two cases, GR3 and HEX, for completeness. Finally we discuss the case of bi-trimaximal
(BT) mixing [20] in which ✓⌫13 6= 0. In general, the ✓⌫13 = 0 assumption made previously
is actually unnecessary and can be replaced by the constraints from the global data. For
each case we perform a study of the scope to test the sum rule in Eq.6 within the current
experimental program, highlighting the complementarity between long-baseline superbeam
and middle-distance reactor proposals. We describe our simulations, including assumed pa-
rameters for next generation reactor and superbeam experiments, and their independent
and combined sensitivity to ✓12 and �, computing exclusion contours for each of the sum
rules.
We remark that a sum rule equivalent to that in Eq.6 has also been derived using a rather
lengthy procedure, in a study which also focuses on Majorana phases and neutrinoless
double beta decay [21]. The simple and new derivation o↵ered here, which is su�cient for
the oscillation phase, is more transparent and makes the connection with the earlier solar
sum rules clearer. For example the simple condition in Eq.5 was not apparent from the
formalism of [21]. In addition the phenomenological analyses of the sum rules in this paper
goes well beyond that in [21].
The layout of the remainder of the paper is as follows...

Peter’s comment

I have been assuming that the general argument of the paper follows:
1. We derive a sum rule (and its linear version) fixing ✓⌫13 = ✓e13 = 0 by assumption.

2. We consider the viable leading order neutrino mixing patterns defined by symmetry.
Klein argument exclusively leads us to patterns with ✓⌫13 = 0 (TBM, BM, GR1 and
GR3); we mention that, within a certain framework, the ✓⌫13 = 0 assumption made
previously is actually unnecessary and can be replaced by the constraints from the
global data.

3. We also discuss dihedral-associated predictions ✓⌫12 = ⇡d/N and how these are re-
lated to symmetry. Although not fully specified by symmetry, additional patterns
mentioned in the literature can be found by, in addition, fixing ✓⌫13 = 0 and ✓⌫23 = ⇡/4
by hand. We include the simplest two cases, GR2 and HEX, for completeness.

3
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p

2/3

Golden Ratio
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Figure 2: The predictions for cos � generated by the solar sum rules for BM and TBM (top
row), GR1 and GR3 (middle row), GR2 and HEX (bottom row). In each plot, the true value
of ✓13 is given by the abscissa, the value of ✓12 is denoted by the colour of the band, and the
width of the band is generated by varying ✓23 over its 3� allowed interval.
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With these definitions, it is simple enough to compute the explicit form of the PMNS matrix.
However, our derivation focuses only on the first two elements of the bottom row of the physical
PMNS matrix, which are found to be

U⌧1 = s⌫12(s
⌫
23c

e
23 � c⌫23s

e
23e

i�e23),

U⌧2 = �c⌫12(s
⌫
23c

e
23 � c⌫23s

e
23e

i�e23).
(6)

By comparing Eq. (6) to the PDG parameterization of U [29], we find the relations between
the physical parameters and our internal parameters,

|U⌧1| = |s23s12 � s13c23c12e
i�| = |s⌫12(s⌫23ce23 � c⌫23s

e
23e

i�e23)| ,
|U⌧2| = |s23c12 + s13c23s12e

i�| = |c⌫12(s⌫23ce23 � c⌫23s
e
23e

i�e23)| .

The ratio of these two equations is independent of the values of the parameters which char-
acterise the charged-lepton corrections, and we are left with a correlation between observable
parameters and the value of the neutrino mixing parameter ✓⌫12,

|U⌧1|
|U⌧2| =

|s23s12 � s13c23c12ei�|
|s23c12 + s13c23s12ei�| = t⌫12. (7)

This correlation will be referred to as the solar mixing sum rule. It can be viewed as a predictive
statement about the physical CP phase: squaring both sides of Eq. (7) and solving for cos �
leads us to the expression in Eq. (4), which we repeat below,

cos � =
t23s212 + s213c

2
12/t23 � s⌫212(t23 + s213/t23)

sin 2✓12s13
. (8)

An equivalent correlation has been derived previously using a lengthier argument in Ref. [26].
Understanding its application to specific models, its compatibility with global data and its
potential use as a signature of new physics will be the focus of the rest of this article.
The correlation in Eq. (4) is in fact the full non-linear version of a more familiar first-order
relation. We collect a number of phenomenologically interesting approximations in Appendix A.
If we expand Eq. (4) in a small parameter ", assumed to control the deviation from a leading-
order neutrino mixing pattern with maximal atmospheric mixing,

✓13 ⇠ |✓12 � ✓⌫12| ⇠
���✓23 � ⇡

4

��� ⇠ ", (9)

5

cos � ⇠ (✓12 � ✓⌫12)/✓13

✓⌫12 = 45o ✓⌫12 = 35.26o

✓⌫12 = 31.7o

cos � ⇠ (✓12 � 35.26o)/✓13

cos � ⇠ (✓12 � 31.7o)/✓13

Useful approximation
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FIG. 2. The current experimental status of the sum rules in Eq. (3) given by λ = 1 and λ = −0.5, with a0 = 0. The diagonal
lines show the regions predicted for a and cos δ given the 3σ bounds on r, assuming both normal ordering (Fig. 2(a)) and
inverted ordering (Fig. 2(b)). The vertical line shows the current best-fit for a where the projected sensitivity is indicated by
the red bands; the dark (light) grey regions show the current 1σ (2σ) allowed intervals [6].

given model, our general sum rule can be used to predict
the value cos δ. Fixing a, we define cos δ by the mapping
from r which is found by inverting Eq. (3); r is then
allowed to vary across its 1σ interval [6] and the image of
this mapping is taken to be the range of potential values
for cos δ.
In Fig. 2 we show the predictions of our two specific

sum rules and their compatibility with the current global
data on a (the grey regions). We have also shown (the
red bands) the projected sensitivity to the a parameter as
reported in Ref. [18]. These projections are for the global
parameter sensitivity in 2025 assuming only the current
experimental programme: 5 years of data from T2K, 6
from NOνA, and 3 years each for Double Chooz, RENO
and Daya Bay. As we cannot predict the future best-fit
value, the horizontal location of the predicted regions is
largely irrelevant, and in Fig. 2 they have been arbitrarily
centred around the current best-fit value.
We see that the predictions of δ for these two models

are currently consistent with the global data. However,
the overlap for some of these 1σ intervals can be seen to
require some quite specific correlations: for example, λ =
−0.5 and NO requires cos δ ! 0.5. With the projected
sensitivity to a, these correlations could create tension
with the future data, and the consistency of these models
will start to become rather constrained. For example, in
a strictly CP-conserving theory, sin δ must vanish. The
corresponding value of cos δ would then be difficult to
reconcile with the sum rule given by λ = 1, leading to
a possible exclusion of such a sum rule. The limiting
factor for the general exclusion of these models with the
current experimental programme will be the attainable
precision on cos δ. It has been shown that, in the most
optimistic case, the current experimental programme will

only be able to provide a 3σ region for δ with a width
of around 300◦[19]. It is clear, therefore, that testing
mixing sum rules will be a task to be addressed by a
next-generation neutrino oscillation facility, one which
focuses on precision.

V. TESTING SUM RULES AT
NEXT-GENERATION FACILITIES

With the knowledge of the value of θ13 the campaign
for a next-generation facility, designed to make preci-
sion measurements of the neutrino mixing parameters,
is greatly strengthened. It is likely that within the ex-
tant experimental neutrino physics programme, we will
see hints towards the measurement of two of the most im-
portant unknowns in the conventional neutrino flavour-
mixing paradigm: the sign of the atmospheric mass-
squared difference and the value of the CP-violating
phase, δ. It is, however, unlikely that these questions
will be resolved at an acceptable statistical confidence
level: the projected 3σ CP-violation discovery fraction
with the current experimental programme only reaches
around 20% of the parameter space [18] and it is only
modestly higher for the determination of the mass order-
ing at around 40%. The desire for a definitive 5σ answer
to these questions provides the first motivation for the
construction of a next-generation neutrino oscillation fa-
cility, capable of precision measurements of the oscilla-
tion parameters. In this work, we will focus on two such
designs: the low-energy neutrino factory (LENF) and a
wide-band superbeam (WBB).
The WBB is an extrapolation of existing technology,

using a more powerful version of the conventional neu-
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Figure 1. The 5� allowed regions for the solar predictions shown in Table 1 after 6 years of
data taking by JUNO.

our simulation, we assume a 20 kton liquid scintillator detector with a linear energy uncertainty
of 0.03/

p
E. The JUNO facility will detect neutrinos from 10 nearby reactors; however, we

model this by a single source at a baseline distance given by the power weighted average of
52.5 km and a reactor power of 36 GW [4]. We have normalised our spectrum to produce
105 events, including a 5% normalisation uncertainty. In Fig. 1, we show the allowed regions
at 5� significance for the models shown in Table 1. We see that only two of the 5� intervals
overlap, which allows for a strong model discrimination. The ability for JUNO to exclude these
models independently of their atmospheric sum rules provides a great complementarity between
the reactor and long-baseline programmes. Furthermore, the two indistinguishable models for
JUNO predict very di↵erent atmospheric sum rules,

a = ±1

6
� 1p

6
r cos � (S4 T↵–S2) and a =

'p
2
r cos � (A5 Te–S1),

where ' = 1+
p
5

2 is the golden ratio, and we expect these to be distinguishable with a superbeam
for most of the parameter space [1].

4. Summary

The next generation of neutrino oscillation experiments, with their focus on precision
measurements of the underlying parameters, will allow certain classes of models with discrete
flavour symmetries to be thoroughly tested. In Ref. [1], the role of a long-baseline superbeam
experiment (modelled after LBNO or LBNE) has been shown to be able to exclude these
correlations for a large fraction of parameter space. In this contribution, we have highlighted
the potential for experimental exclusion of these models at a circa 50 km reactor experiment
based on the JUNO facility. By testing the solar predictions to high accuracy, such a facility
will be able to independently distinguish between almost all models under consideration. The
complementarity between reactor and long-baseline experiments will provide a stringent test of
the idea that residual symmetries are responsible for the structure of the PMNS matrix.
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Gf m Tα,Si s a0 λ

A4

3 Te,S2 0.012 0 −0.5

3 Tµ,S2 0.012 0 −0.5

3 Tτ ,S2 0.012 0 −0.5

S4

3 Te,S1 −0.024 0 1

4 Tµ,S2 −0.124 −0.167 −0.408

4 Tτ ,S2 −0.124 0.167 −0.408

A5

5 Te,S1 −0.118 0 1.144

5 Te,S2 −0.079 0 −0.437

5 Tµ,S2 0.054 0.067 −0.532

5 Tτ ,S2 0.054 −0.067 −0.532

TABLE I. The phenomenologically viable sum rules of the
form a = a0 + λr cos δ (where a, r are the atmospheric and
reactor angle deviations from tri-bimaximal mixing and δ is
the CP violating oscillation phase) arising in the Hernandez-
Smirnov framework for finite von Dyck groups. In this table,
m gives the order of the generator which controls the charged
lepton mass matrix, Tm

α = 1, while Si is the generator of the
von Dyck group that is identified with one of the generators
of the Klein symmetry of the neutrino mass matrix (with the
other Klein symmetry generator being unrelated to the von
Dyck group, as in so-called semi-direct models). Analytical
expressions for the solar angle deviation from tri-bimaximal
mixing s and the constants a0 and λ are given in Table II. The
numerical values are obtained for the current best-fit value of
sin2 2θ13 = 0.089 [1].

details of their derivation. We see that by choosing dif-
ferent residual generators, we find 8 distinct sum rules of
the type of Eq. (3) which are compatible with the current
phenomenological data.
A number of the scenarios that we have identified in

Table I can be explained in terms of the TB and GR
matrices given in Eqs. (1) and (2). The three scenarios
based on an A4 symmetry all lead to a value of the second
column of the PMNS matrix fixed at its tri-bimaximal
value; similarly, the S4 scenario with the generator choice
Te–S1 fixes the prediction of the first column to be tri-
bimaximal. The scenario based on A5 with unbroken
generators Te–S1 (Te–S2) fixes the first (second) column
of the PMNS matrix to the equivalent values of the GR
mixing matrix.

III. VALIDITY OF LINEARIZATION

In general, the correlations predicted by flavour sym-
metric models are non-linear relations between the os-
cillation parameters. We have discussed how the form
of these correlations simplifies when only the first-order
terms in the parameters s, r and a are retained, and we
will now address the impact of higher-order terms. We
consider the model presented in Ref. [16], which fixes
the elements of the first column of the PMNS matrix to
their tri-bimaximal values. As a function of r and a, this
model predicts that cos δ is given by the composition of
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FIG. 1. A comparison between the exact correlation and the
sum rule for the model presented in Ref. [16], which fixes the
elements of the first column of the PMNS matrix to their tri-
bimaximal values. The solid (empty) region denotes the exact
(linearized) prediction for cos δ which is produced by varying
r over its current 3σ allowed interval.

the following functions:

cos δ =
(−2 sin2 θ12 + cos2 θ12r2) cos(2θ23)√

2r sin(2θ12) sin(2θ23)
,

cos θ12 =
2

√

3(2− r2)
, and sin θ23 =

1 + a√
2

.

When linearized, these relations lead to the simpler
expression cos δ = a/r. In Fig. 1 we have computed the
predictions of cos δ as a function of a for both the exact
relation and the sum rule, with r varied within its exper-
imentally allowed 3σ region. We see that for this model
the difference between the two treatments is small. The
impact of higher order corrections can only be assessed
on a case by case basis once the exact correlations are
known; however, due to the smallness of the r and a
parameters, we expect the linear approximation to be a
good one. This is confirmed by our simulations for the
known exact correlations, and therefore we will focus
our later analysis on the linearized relations. This also
allows us to treat the universality that we have observed
in Section II, all viable sum rules that we have identified
are either close to λ = 1 or λ = −1/2. For the classes of
phenomenologically viable models that we have found,
the differences between similar sum rules are small and
will be very challenging to measure.

IV. COMPATIBILITY OF SUM RULES WITH
EXISTING AND PROJECTED DATA

The global neutrino oscillation data already constrains
models which exhibit discrete flavour symmetries. For a
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1. The PMNS matrix for Dirac neutrinos is [1],
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where s
13

= sin ✓
13

, etc.

(a) Show that tri-bimaximal mixing defined by

s
13

= 0, s
12

=
1p
3
, s

23

=
1p
2
, (2)

implies the tri-bimaximal (TB) mixing matrix,
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0
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3
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� 1p
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1p
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� 1p
3

1p
2

1
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(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],

s
13

=
rp
2
, s

12

=
(1 + s)p

3
, s

23

=
(1 + a)p

2
. (4)

By expanding the PMNS mixing matrix to first order in the small parameters
r, s, a, it is possible to show (although you do not need to do this) that,

U ⇡

0

B@

q
2

3

(1� 1

2

s) 1p
3

(1 + s) 1p
2

re�i�

� 1p
6

(1 + s� a+ r cos �) 1p
3

(1� 1

2

s� a� 1

2

r cos �) 1p
2

(1 + a)
1p
6

(1 + s+ a� r cos �) � 1p
3

(1� 1

2

s+ a+ 1

2

r cos �) 1p
2

(1� a)

1

CA . (5)

Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).

3
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(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
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Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to U
TB

.

Show that, for s ⇡ 0, a ⇡ r cos �, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).

3

Similarly show that for s ⇡ 0, a ⇡ �(r/2) cos �, the second column of the mixing
matrix approximately corresponds to that of TB mixing (TM2 mixing).

(c ) Show that the relations a ⇡ r cos � and a ⇡ �(r/2) cos � imply the approximate
“atmospheric sum rules” of the form,

✓
23

� 45� ⇡ C ⇥ ✓
13

cos � (6)

and find the constant C in each case. [Hint: take the sine of both sides of the
Eq.6, assuming sin ✓

13

⇡ ✓
13

, then expand sin(✓
23

�45�) and use definitions of r, a.]

Then discuss how well these so called “atmospheric sum rules” are satisfied by cur-
rent data on the atmospheric and reactor mixing angles and how future precision
measurements of these angles will fix the CP violating phase � [3].

4



Similarly show that for s ⇡ 0, a ⇡ �(r/2) cos �, the second column of the mixing
matrix approximately corresponds to that of TB mixing (TM2 mixing).
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3. Consider a see-saw neutrino model involving two right-handed neutrinos ⌫sol

R and
⌫atm

R with Yukawa couplings [5],

⌫sol

R (aLe + bLµ + cL⌧ )H + ⌫atm

R (dLe + eLµ + fL⌧ )H, (9)

and heavy right-handed Majorana masses,

M
sol

⌫sol

R (⌫sol

R )c +M
atm

⌫atm

R (⌫atm

R )c. (10)

(a) After the Higgs gets a VEV in its first component, write down the Dirac mass
matrix mD

RL.

(b) Write down the (diagonal) right-handed neutrino heavy Majorana mass matrix
MRR.

(c ) Using the see-saw formula, m⌫ = (mD
RL)

TM�1

RRm
D
RL, calculate the light e↵ective

left-handed Majorana neutrino mass matrix m⌫ (i.e. the physical neutrino mass
matrix).

(d) Assuming that the determinant of m⌫ vanishes (which you may if you wish
check by explicit calculation) what is the physical implication of this?

(e) Imposing the constraints d = 0 and e = f , with a = b = �c known as
“constrained sequential dominance” [6], show that the resulting physical neutrino
mass matrix m⌫ is diagonalised by the tri-bimaximal mixing matrix, UT

TB

m⌫U
TB

.
What is the physical interpretation of this result if the charged lepton mass matrix
is diagonal?

(f) If the charged lepton mixing matrix has a Cabibbo-like mixing angle [1],

Ue =

0

@
ce
12

se
12

e�i�e
12 0

�se
12

ei�
e
12 ce

12

0
0 0 1

1

A (11)

calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix U = UeUTB

(you
don’t need to calculate the whole matrix). Comparing the absolute value of the
(1,3) element to that of the standard parameterisation of the PMS matrix, find
s
13

in terms of se
12

and show that choosing ✓e
12

= ✓C ⇡ 13� (the Cabibbo angle)
gives a reasonable value for the reactor angle [7]. Comparing the absolute value of
the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS
matrix, find relations between PMNS parameters. By combining and expanding
these relations show that they lead to the approximate “solar sum rule”,

✓
12

� 35� ⇡ ✓
13

cos �, (12)

[Hint: take the sine of both sides of the Eq.12, assuming sin ✓
13

⇡ ✓
13

as well as
sin 35� ⇡ 1/

p
3.] Discuss the resulting prediction for the CP phase � [7].
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Minimal Type I seesaw

⌫L ⌫L

Y ⌫ Y ⌫

MR

hHui hHui

⌫R ⌫R

Figure 4: The seesaw mass insertion diagram responsible for the light e↵ective LH Majorana neutrino mass m⌫ =
�mDM�1

R (mD)T where the Dirac neutrino mass is mD = Y ⌫hHui = Y ⌫vu.

where we write Hu rather than H in anticipation of a two Higgs doublet extension of the SM, with
mD = vuY ⌫ where vu = hHui.

Collecting together Eqs.34,35 (assuming Eq.33 terms to be absent) we have the seesaw mass matrix,

�
⌫L ⌫c

R

� ✓
0 mD

(mD)T MR

◆ ✓
⌫c

L

⌫R

◆
. (37)

Since the RH neutrinos are electroweak singlets the Majorana masses of the RH neutrinos MR may be
orders of magnitude larger than the electroweak scale. In the approximation that MR � mD the matrix
in Eq.37 may be diagonalised to yield e↵ective Majorana masses of the type in Eq.33,

m⌫ = �mDM�1

R (mD)T . (38)

The seesaw mechanism formula is represented by the mass insertion diagram in Fig.4. This formula
is valid below the EW scale. Above the EW scale, but below the scale MR, the seesaw mechanism is
represented by the Weinberg operator in Eq.2, whose coe�cient has the same structure as the seesaw
formula in Eq.38.

The light e↵ective LH neutrino Majorana mass m⌫ is naturally suppressed by the heavy scale MR,
but its precise value depends on the Dirac neutrino mass mD. Suppose we fix the desired physical
neutrino mass to be m⌫ = 0.1 eV, then the seesaw formula in Eq.38 relates the possible values of mD

to MR as shown in Fig.5. This illustrates the huge range of allowed values of mD and MR consistent
with an observed neutrino mass of 0.1 eV, with MR ranging from 1 eV up to the GUT scale, leading to
many di↵erent types of seesaw models and phenomenology, including eV mass LSND sterile neutrinos,
keV mass sterile neutrinos suitable for warm dark matter (WDM), GeV mass sterile neutrinos suitable
for resonant leptogenesis and TeV mass sterile neutrinos possibly observable at the LHC (for a review
see e.g. [61] and references therein). In this review we shall focus on the case of Dirac neutrino masses
identified with charged quark and lepton masses, leading to a wide range of RH neutrino (or sterile
neutrino) masses from the TeV scale to the GUT scale, which we refer to as the classic seesaw model.
For example, if we take mD to be 1 GeV (roughly equal to the charm quark mass) then a neutrino mass
of 0.1 eV requires a RH (sterile) neutrino mass of 1010 GeV.
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we scrutinise the results obtained in the previous section, looking for simple possibilities
which could form the basis of new indirect models. We discuss three such examples in
some detail, checking their viability using exact numerical results for PMNS parameters
and leading order approximate analytic results in section 7. We also discuss the link
between leptogenesis and PMNS phases in section 8. In section 9 we then focus on CSD3
based on the alignment (0, 1, 1) for the atmospheric column and (1, 1, 3) or (1, 3, 1) for
the solar column with a relative phase di�erence ⇥ = ⇤⇧/3 and show how these follow
from A4 family symmetry model of leptons based on F-term vacuum alignment and
spontaneous CP violation. The model predicts all the PMNS mixing parameters in
terms of the neutrino mass ratio, corresponding to approximate Tri-bimaximal-Cabibbo
mixing to an accuracy of one degree with � ⇧ ±⇧/2. Section 10 concludes the paper.

2 Two Right-Handed Neutrino Model as a Limiting
Case of Sequential Dominance

The starting point for our analysis is the see-saw mechanism in the flavour basis where
the charged lepton mass matrixME is diagonal with real positive eigenvaluesme,mµ,m⇥

and the three right-handed neutrino Majorana mass matrix MR is also diagonal, with
real positive eigenvalues, Matm,Msol,Mdec,

ME =

⇤

⇧
me 0 0
0 mµ 0
0 0 m⇥

⌅

⌃ , MR =

⇤

⇧
Matm 0 0
0 Msol 0
0 0 [Mdec]

⌅

⌃ . (8)

We write the neutrino Dirac mass matrix as

mD =

⇤

⇧
mD

e,atm mD
e,sol [mD

e,dec]
mD

µ,atm mD
µ,sol [mD

µ,dec]
mD

⇥,atm mD
⇥,sol [mD

⇥,dec]

⌅

⌃ ⌅
�
mD

atm mD
sol [mD

dec]
⇥
, (9)

in the convention where the e�ective Lagrangian after electroweak symmetry breaking,
with the Higgs vacuum expectation value (vev) inserted, is given by

L = �ELMEER � ⌅Lm
DNR � 1

2
N c

RMRNR +H.c. , (10)

where ⌅L = (⌅e, ⌅µ, ⌅⇥ ) are the three left-handed neutrino fields which appear together
with EL = (eL, µL, ⌃L) in the lepton doublets L = (Le, Lµ, L⇥ ) andNR = (Natm, Nsol, Ndec)
are the three right-handed neutrinos and we have defined the three Dirac column vectors
as mD

atm, m
D
sol, m

D
dec.

The term for the light neutrino masses in the e�ective Lagrangian (after electroweak
symmetry breaking), resulting from integrating out the massive right handed neutrinos
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(i.e. the see-saw mechanism with the light e�ective neutrino Majorana mass matrix

m� = mDM�1
R mDT

) is

L�
eff =

(�LmD
atm)(m

D
atm

T
�c
L)

Matm
+

(�LmD
sol)(m

D
sol

T
�c
L)

Msol

⇤
+
(�LmD

dec)(m
D
dec

T
�c
L)

Mdec

⌅
. (11)

Sequential dominance (SD) then corresponds to the third term being negligible, the
second term subdominant and the first term dominant:

mD
atmm

D
atm

T

Matm
� mD

solm
D
sol

T

Msol

⇤
� mD

decm
D
dec

T

Mdec

⌅
, (12)

which immediately predicts a normal neutrino mass hierarchy,

m3 � m2 [ � m1 ] , (13)

which is the main prediction of SD.
We have labelled the dominant right-handed neutrino and Yukawa couplings mainly

responsible for the atmospheric neutrino mass m3 as “atm”, the subdominant ones
mainly responsible for the solar neutrino mass m2 as “sol”, and the almost decoupled
(sub-sub-dominant) ones mainly responsible for m1 as “dec”. Note that the mass or-
dering of right-handed neutrinos is not yet specified. We shall order the right-handed
neutrino masses as M1 < M2 < M3, and subsequently identify Matm,Msol,Mdec with
M1,M2,M3 in all possible ways.

It is clear that in the limit that m1 ⇥ 0 then the sub-sub-dominant right-handed
neutrino and its associated couplings labelled by “dec” decouple completely and the
above model reduces to a two right-handed neutrino model. In that limit we simply
drop the third terms [in square brackets] in Eqs.8-13 in anticipation of this.

3 The Two Right-Handed Neutrino Model with Nor-
mal Hierarchy and Dominant Texture Zero

3.1 Derivation of the Master Formula

Without assuming SD, we write the see-saw matrices in a simple notation as,

mD =

⇧

⌥
0 a
e b
f c

⌃

� , MR =

�
Y 0
0 X

⇥
. (14)

where we have written the complex Dirac masses as a, b, c, d, e, f with d = 0 and the
real positive right-handed neutrino masses as Y,X. We are in a basis where the charged
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Theoretical perspective

RVFLOODWLRQV�WR�EH�VWXGLHG��7KH�ODWWHU�EHKDYH�GLIIHUHQWO\�LI�'LUDF�&3�
violation is present, with oscillations that are being enhanced or 
VXSSUHVVHG��GHSHQGLQJ�RQ�WKH�YDOXHV�RI�WKH�'LUDF�SKDVH�

The other mixing parameters, namely the three mixing angles, 
are already quite well-determined. Angle e13 went from being 
XQNQRZQ�MXVW�RYHU�IRXU�\HDUV�DJR�WR�EHLQJ�WKH�EHVW�PHDVXUHG��
WKDQNV�WR�UHVXOWV�IURP�WKH�'D\D�%D\�DV�ZHOO�DV�5(12�DQG�'RX�
ble Chooz experiments, while the JUNO experiment in China 
plans to reach a sub-per-cent accuracy for the e12 angle after a few 
years of operation. e23 is particularly interesting because it could 
be exactly maximal, therefore pointing towards a symmetry in 
WKH�OHSWRQ�Á�DYRXU�VHFWRU��RU�FRXOG�GHYLDWH�IURP�WKLV�E\�VHYHUDO�
degrees. Current and future long-baseline oscillation experi-
ments will have the best chance of determining e23, which will 
be critical for disentangling the different models proposed to 
explain the observed mixing pattern.

Massive considerations
As for the values of the neutrino masses themselves, we already 
have a very precise measurement of the absolute values of the 
two mass-squared differences – which differ by a factor of about 
����À�JXUH���DERYH���%XW�ZH�VWLOO�ODFN�NH\�SLHFHV�RI�LQIRUPDWLRQ��
namely which neutrino is the lightest, defining the neutrino 

mass ordering, and what its mass scale is. The sign of the solar 
mass-squared difference is determined by solar-neutrino oscilla-
tions, but that of the atmospheric one is unknown. If it turns out to 
be positive, corresponding to m3 > m1, neutrino masses exhibit the 
so-called “normal” ordering. The alternative scenario, m3 < m1, 
LPSOLHV�DQ�́ LQYHUWHGµ�RUGHULQJ��À�JXUH���DERYH���

Knowing the mass ordering and scale is important for theorists 
because different theoretical models predict different patterns, 
DQG�DOVR�IRU�H[SHULPHQWDOLVWV�VHDUFKLQJ�IRU�VSHFLÀ�F�VLJQDWXUHV��,W�
strongly affects the rate of neutrinoless double-beta decay, sub-
VWDQWLDOO\�LPSDFWLQJ�RQ�WKH�SURVSHFWV�RI�GLVFRYHULQJ�WKH�0DMRUDQD�
nature of neutrinos, while in the early universe heavier neutrinos 
suppress the growth of large-scale structures at small scales. The 
ordering of the masses also changes the way in which neutrinos 
propagate over long distances in media such as the Earth, due to 
weak interactions with the background of electrons, protons and 
QHXWURQV��7KLV�JLYHV�QHXWULQRV�DQ�HIIHFWLYH�PDVV�WKDW�PRGLÀ�HV�
their energies and the mixing: neutrino oscillations are enhanced 
for normal mass ordering and suppressed for inverted ordering, 
with the opposite happening in the case of antineutrinos. 

Experiments such as the long-baseline experiment NOvA, 
which measures a neutrino 
beam produced 810 km away 
at Fermilab, exploit these 
effects to hunt for the neutrino 
mass ordering (see p32). With 
'81(��ZKLFK�ZLOO�RSHUDWH�DW�D�
distance of 1300 km, and new 
atmospheric-neutrino observa-
WRULHV�VXFK�DV�3,1*8��25&$�
and INO, as well as JUNO, we 
expect to resolve this issue in 
the next 5–10 years. 
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Fig. 2. Current measured values of the oscillation parameters for 
a global 3i oscillation analysis. The different contours 
correspond to the 2D allowed regions at 1m, 90%, 2m, 99% and 
3m CL (2 d.o.f.). The coloured region and black lines correspond 
to two different analyses using the LEM and LID NOvA data. 
For the atmospheric mass-squared difference, the normal- (NO) 
and inverted-ordering (IO) allowed regions are shown 
separately. The allowed region for b��VKRZLQJ�WKH�À�UVW�SRVVLEOH�
hints of CP-violation, is shown together with e13.

JH
EP

 1
41

1 
05

2/
nu

-f
it.

or
g

1

2

3

1

2

3

ne
ut

rin
o 

m
as

s 
sq

ua
re

d

fractional flavour content of massive neutrinos

normal
ordering

inverted
ordering

)LJ�����7KH�Á�DYRXU�FRQWHQW�RI�WKH�WKUHH�QHXWULQR�PDVV�HLJHQVWDWHV��
with the mass eigenstates arranged in increasing mass-squared 
order for the two mass orderings (the overall mass scale is 
unknown). A mass eigenstate, ii��LV�D�VXSHUSRVLWLRQ�RI�Á�DYRXU�
states ie (green), i+ (blue) and io (red), with a fraction 
corresponding to µU_iµ

2. Varying the Dirac phases, b� changes 
WKLV�IUDFWLRQ�IRU�HDFK�PDVV�HLJHQVWDWH��7KH�À�JXUH�LV�VLPLODU�WR�
that in 3K\V��5HY��'�69 117301 and adapted in arXiv:1602.04816.

Knowing the 
neutrino mass 
ordering still leaves 
open the question 
of the overall mass 
scale. 
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Theoretical perspective

The most important question about neutrinos concerns the type 
RI�PDVVHV�WKH\�KDYH��6R�IDU��DOO�WKH�NQRZQ�IHUPLRQV�DUH�RI�WKH�'LUDF�
type: their particles and antiparticles have opposite charges and 
WKH\�SRVVHVV�D�'LUDF�PDVV�WKDW�DULVHV�IURP�WKH�FRXSOLQJ�WR�WKH�+LJJV�
À�HOG��1HXWULQRV�FRXOG�EHKDYH�LQ�WKH�VDPH�ZD\��EXW�EHFDXVH�WKH\�DUH�
electrically neutral it is possible that neutrinos acquire mass via a 
different mechanism. Indeed, neutrinos and antineutrinos might be 
LQGLVWLQJXLVKDEOH��FRQVWLWXWLQJ�ZKDW�LV�FDOOHG�D�0DMRUDQD�SDUWLFOH�
DIWHU�(WWRUH�0DMRUDQD�ZKR�SURSRVHG�WKH�FRQFHSW�LQ�������8QOLNH�
'LUDF�À�HOGV��ZKLFK�KDYH�IRXU�FRPSRQHQWV��0DMRUDQD�À�HOGV�KDYH�
RQO\�WZR�G�R�I��6XFK�D�SDUWLFOH�FDQQRW�SRVVHVV�DQ\�FKDUJH��QRW�HYHQ�
a lepton number.

A matter of conservation 
The question of the nature of neutrinos is therefore intrinsically 
UHODWHG�WR�WKH�FRQVHUYDWLRQ�RI�WKH�OHSWRQ�QXPEHU��,Q�WKH�60��WKH�
lepton number is a global accidental symmetry that happens to be 
preserved thanks to the gauge symmetries and particle content, 
but it does not have a dynamic role because there are no associ-
ated gauge bosons. The question arises whether the ultimate 
theory of particles and their interactions is lepton-number violat-
ing or not. The most promising way to answer this question is to 
search for neutrinoless double-beta decay, whereby certain nuclei 

spontaneously undergo two beta decays at once, without producing 
any neutrinos. This process directly violates lepton-number con-
VHUYDWLRQ�DQG�ZRXOG�LPSO\�WKDW�QHXWULQRV�DUH�0DMRUDQD�SDUWLFOHV��
motivating a broad international experimental programme (see 
panel on previous page).
$�VHFRQG�PDMRU�TXHVWLRQ�LV�ZKHWKHU�WKH�&3�V\PPHWU\�LV�YLRODWHG�

in the lepton sector, as it is in the quark one. CP violation is one of 
the three key ingredients in baryogenesis and leptogenesis, which 
are needed to dynamically explain the observed matter–antimatter 
asymmetry of the universe (see panel overleaf). There are three 
SRVVLEOH�VRXUFHV�RI�&3�YLRODWLRQ�LQ�WKH�OHSWRQ�VHFWRU��WKH�'LUDF�
phase, which is the analogue of the one in the quark sector, and 
WZR�0DMRUDQD�SKDVHV�WKDW�DSSHDU�RQO\�LI�QHXWULQRV�DUH�0DMRUDQD�
SDUWLFOHV��,I�QHXWULQRV�DUH�'LUDF�SDUWLFOHV��WKH�ODWWHU�FDQ�EH�URWDWHG�
away as is done in the quark sector. 
7KH�À�UVW�KLQWV�RI�OHSWRQLF�&3�YLRODWLRQ�FDPH�UHFHQWO\�IURP�FRP�

ELQLQJ�GDWD�IURP�&KLQD·V�'D\D�%D\�H[SHULPHQW�ZLWK�PHDVXUH�
ments at long-baseline accelerator facilities, in particular T2K and 
NOvA. These seem to indicate a preference for a nonzero value of 
WKH�&3�YLRODWLQJ�'LUDF�SKDVH��VHH�À�JXUH�����,W�LV�WRR�HDUO\�WR�WHOO��EXW�
YHU\�DPELWLRXV�SODQV�²�LQFOXGLQJ�WKH�SURSRVHG�'HHS�8QGHUJURXQG�
1HXWULQR�([SHULPHQW��'81(��LQ�WKH�86�DQG�7�+.�LQ�-DSDQ�²�
aim to settle the issue by allowing both neutrino and antineutrino 
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Fig.1. (Left) Zenith-angle distributions of e-like (top) and +-like 
events (bottom) recorded by the Super-Kamiokande experiment in 
1998. In the latter, the hatched region shows the Monte Carlo 
H[SHFWDWLRQ�IRU�QR�RVFLOODWLRQV��ZKLOH�WKH�EROG�OLQH�LV�WKH�EHVW�À�W�
expectation for i+ A io oscillations. For downward-going muon 
neutrinos (cose > 0), corresponding to neutrinos produced in the 
atmosphere on average about 20 km above the detector, data and 
theory are in good agreement. For up-going muon neutrinos 
(cose < 0) that have travelled through the Earth, however, there is a 
clear disagreement between data and prediction, signalling i+ A io 
oscillations. (Above) Starting from basic quantum mechanics and 
assuming that a neutrino is produced in a superposition of different 
mass eigenstates (assumed here to be just two for simplicity) with 
different masses, this equation describes the oscillation probability 
of a muon neutrino into a tau neutrino, as a function of neutrino 
energy, E, and distance travelled, L. The current data for the 
oscillation parameters are used.
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Sequential dominance (SD) then corresponds to the third term being negligible, the
second term subdominant and the first term dominant:
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which immediately predicts a normal neutrino mass hierarchy,

m3 � m2 [ � m1 ] , (13)

which is the main prediction of SD.
We have labelled the dominant right-handed neutrino and Yukawa couplings mainly

responsible for the atmospheric neutrino mass m3 as “atm”, the subdominant ones
mainly responsible for the solar neutrino mass m2 as “sol”, and the almost decoupled
(sub-sub-dominant) ones mainly responsible for m1 as “dec”. Note that the mass or-
dering of right-handed neutrinos is not yet specified. We shall order the right-handed
neutrino masses as M1 < M2 < M3, and subsequently identify Matm,Msol,Mdec with
M1,M2,M3 in all possible ways.

It is clear that in the limit that m1 ⇥ 0 then the sub-sub-dominant right-handed
neutrino and its associated couplings labelled by “dec” decouple completely and the
above model reduces to a two right-handed neutrino model. In that limit we simply
drop the third terms [in square brackets] in Eqs.8-13 in anticipation of this.

3 The Two Right-Handed Neutrino Model with Nor-
mal Hierarchy and Dominant Texture Zero

3.1 Derivation of the Master Formula

Without assuming SD, we write the see-saw matrices in a simple notation as,

mD =

⇧

⌥
0 a
e b
f c

⌃

� , MR =

�
Y 0
0 X

⇥
. (14)

where we have written the complex Dirac masses as a, b, c, d, e, f with d = 0 and the
real positive right-handed neutrino masses as Y,X. We are in a basis where the charged
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• Two right-handed neutrinos (RHN)

• Diagonal
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The Littlest Seesaw
Low energy neutrino mass matrices after seesaw:

charged-lepton flavour basis is given by

m⌫ = ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+mbe
i⌘

0

B@
1 n (n� 2)

n n2 n(n� 2)

(n� 2) n(n� 2) (n� 2)2

1

CA , (2.1)

where in addition to n there are three free real parameters: two parameters with the

dimension of mass ma and mb which are proportional to the reciprocal of the masses of

the dominant and subdominant right-handed neutrinos, and a relative phase ⌘. A second

version of this model has also been proposed, based on an S4 ⇥U(1) symmetry, where the

second and third rows and columns of the mass matrix are swapped [19]. In this paper, we

discuss both these versions for the case where n = 3, with the two versions of the model

denoted as LSA and LSB;

m⌫
LSA = ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+mbe
i⌘

0

B@
1 3 1

3 9 3

1 3 1

1

CA , (2.2)

m⌫
LSB = ma

0

B@
0 0 0

0 1 1

0 1 1

1

CA+mbe
i⌘

0

B@
1 1 3

1 1 3

3 3 9

1

CA . (2.3)

Although, in the most minimal set-up, the relative phase ⌘ is a free parameter, it has

been shown that in some models the presence of additional Z3 symmetries can fix the

phase ei⌘ to a cube root of unity [25], with ⌘ = 2⇡/3 the preferred value for LSA and

⌘ = �2⇡/3 for LSB as determined by current data [17]. This restriction gives the model

greater predictivity by reducing the number of free parameters to two, and we will give

these cases special attention while also showing some results for the case with ⌘ left free.

Diagonalizing the mass matrices above leads to predictions for the neutrino masses as

well as the angles and phases of the unitary PMNS matrix, UPMNS, which describes the

mixing between the three left-handed neutrinos

UT
PMNSm

⌫UPMNS =

0

B@
m1 0 0

0 m2 0

0 0 m3

1

CA , (2.4)

where UPMNS is defined by

UPMNS =

0

B@
c12c13 s12c13 s13e�i�

�s12c23 � c12s13s23ei� c12c23 � s12s13s23ei� c13s23
s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

1

CA

0

B@
ei

�1
2 0 0

0 ei
�2
2 0

0 0 1

1

CA (2.5)

with sij = sin ✓ij and cij = cos ✓ij . All of the parameters in this decomposition are therefore

predicted in terms of the 2 (or 3) real parameters in Eqs. (2.2) and (2.3). Due to the minimal

assumption of only two right-handed neutrinos, the lightest neutrino is massless m1 = 0

and the mass-squared di↵erences, which are the only combinations of masses accessible to

– 4 –

Depends on 3 parameters: ma, mb, eta
SD ma>>mb predicts NO with m1=0



around ⌘ = ±2⇡/3 for LSA and LSB, respectively. That two input parameters should

give a good description of five observables, within their one sigma errors, is ostensibly

a remarkable achievement, indeed perhaps better than might be expected on statistical

grounds. However, due to the very tight constraints on ⌘ from ✓13 and m2/m3, we still find

some tension with the value of ✓23 even when allowing ⌘ to vary. As with the case with ⌘

fixed, this tension exists only at the 1� level, where close to maximal ✓23 is excluded.
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Figure 5: Regions in the mb/ma-⌘ plane corresponding to the experimentally determined

1� ranges for all mixing angles, � and the ratio of neutrino masses m2/m3 for LSA (left

panel) and LSB (right panel).

3.3 Fitting LS models to global fit data

In order to provide a more concrete measure of the agreement between the predictions of

the model and existing data, as well as to make further predictions of the less well measured

parameters, we have performed a �2 fit to the four cases discussed above: LSA and LSB

with ⌘ fixed and free. As a proxy for the full data sets of previous experiments, our fits use

the results of the NuFIT 3.0 global analysis [28]. This analysis combines the latest results

(as of fall 2016) of solar, atmospheric, long baseline accelerator, and long, medium and

short baseline reactor neutrino experiments, to obtain a combined fit to the six standard

neutrino oscillation parameters. We use the �2 data provided by NuFIT, for the case

where normal mass ordering is assumed, combining both the 1D �2 data for each mixing

parameter with the 2D �2 data to include correlations between parameter measurements

�2
Fit(⇥) =

X

✓i2⇥
�2
1D(✓i) +

X

✓i 6=✓j2⇥

�
�2
2D(✓i, ✓j)� �2

1D(✓i)� �2
1D(✓j)

�
, (3.1)
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Best Fit LS Predictions
LSA LSB NuFIT 3.0

⌘ free ⌘ fixed ⌘ free ⌘ fixed global fit

ma [meV] 27.19 26.74 26.95 26.75

mb [meV] 2.654 2.682 2.668 2.684 —

⌘ [rad] 0.680⇡ 2⇡/3 �0.673⇡ �2⇡/3

✓12 [�] 34.36 34.33 34.35 34.33 33.72+0.79
�0.76

✓13 [�] 8.46 8.60 8.54 8.60 8.46+0.14
�0.15

✓23 [�] 45.03 45.71 44.64 44.28 41.5+1.3
�1.1

� [�] -89.9 -86.9 -91.6 -93.1 �71+38
�51

�m2
21 [10�5eV2] 7.499 7.379 7.447 7.390 7.49+0.19

�0.17

�m2
31 [10�3eV2] 2.500 2.510 2.500 2.512 2.526+0.039

�0.037

��2 / d.o.f 4.1 / 3 5.6 / 4 3.9 / 3 4.5 / 4 —

Table 1: Results of our fit of existing data to LSA and LSB with ⌘ left free and for ⌘ = 2⇡
3

for LSA and ⌘ = �2⇡
3 for LSB. The results of the NuFIT 3.0 (2016) global fit to standard

neutrino mixing are shown for the normal ordering case for comparison.

only on the single parameter r, the predictions of LS form lines of allowed solutions in

each plane, corresponding to sum-rules between the oscillation parameters. For example,

Fig. 7a corresponds to the TM1 sum rule in Eq. (2.6), while Figs. 7b to 7f correspond to

those in Eq. (A.6) or to combinations of these sum rules. It can be seen that very strong

restrictions are placed on the allowed values of the less well measured parameters, ✓12, ✓23
and �. For the remaining angle, ✓13, around two thirds of the NuFIT 3.0 range remains

viable in LS.

Figure 8 shows the allowed regions of parameter space for pairs of variables including

the mass-squared di↵erences. In these plots, as the mass-squared di↵erences can depend on

both ma and mb independently, we see regions of allowed values instead of lines. For each

of these planes, any point will fully determine both input parameters ma and mb, and so

these contours correspond exactly to the equivalent regions shown in Fig. 6. In addition to

the tight constraints on ✓12, ✓23 and � already mentioned, in Figs. 8b and 8e it can be seen

that the allowed range of ✓13 is correlated with that of both �m2
21 and �m2

31, suggesting

that combining future measurements of these parameters could provide a better probe of

LS than the individual parameter measurements alone. The ability of future experiment to

exclude the model then depends on both the predictions of the model seen here, combined

with the sensitivity of experiments to measurements of the parameters in the region of

interest predicted by LS, which is the focus of the next section.

4 Sensitivity of future experiments

In order to understand the potential for future experiments to exclude the LS models,

we have performed simulations of a combination of accelerator and reactor experiments,

– 11 –
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Renormalisation Group Corrections
GUT Matm Msol EW

13(deg) 7.62574 7.81215 8.47979 8.4798

12(deg) 34.5348 34.4977 34.3575 34.3572

23(deg) 45.1425 42.9816 42.3751 42.3744

m2(meV) 13.537 12.2035 12.1317 8.73113

m3(meV) 87.6802 75.4657 69.8112 50.2431

CP(deg) -89.2885 -88.0086 -90.3508 -90.3507

CP(deg) -38.9558 -40.649 -38.9917 -38.9917
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A5T7 S4
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Vertices 
labelled by ti
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0

BB@
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1

CCA
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1

CCA =
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t1

1
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• rotation by 120° 
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A4

S =

0

BB@

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

1

CCA
T =

0

BB@

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

1

CCA

• 4 × rotation by 120° clockwise (seen from a vertex) T-type rotations
• 4 × rotation by 120° anti-clockwise (ditto)                 T-type rotations
• 3 × rotation by 180°                                                  S-type rotations

Block diagonal           
(rotate about first vertex)

12 rotations (“group elements”) 
generated by products of S,T 

(“generators”)

Since S,T are block diagonal, the 4 dimensional matrix of 
vertex transformations is equivalent to a triplet plus singlet

Diagonal

S2 = T 3 = IS =

0

BB@

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1

CCA
(ST )3 = I

4 ! 3� 1
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that there exists only one more irreducible representation, namely the doublet 2. Its

matrix representation is presented, together with the other irreducible representations in

the following table.

S4 A4 S T U

1,1′ 1 1 1 ±1

2

(

1′′

1′

) (

1 0

0 1

) (

ω 0

0 ω2

) (

0 1

1 0

)

3,3′ 3 1
3

⎛

⎜

⎝

−1 2 2

2 −1 2

2 2 −1

⎞

⎟

⎠

⎛

⎜

⎝

1 0 0

0 ω2 0

0 0 ω

⎞

⎟

⎠
∓

⎛

⎜

⎝

1 0 0

0 0 1

0 1 0

⎞

⎟

⎠

The same table also shows the representations of the S4 subgroup A4, generated by S and

T only. Dropping the U generator, it is clear that both triplets of S4 coincide with the

single A4 triplet. Likewise, the two S4 singlets correspond to the trivial singlet of A4. The

S4 doublet, on the other hand, becomes reducible once the U generator is removed. Hence,

it decomposes into two separate non-trivial irreducible representations of A4, 1′′ and 1′.

The non-trivial S4 product rules in the T -diagonal basis are listed below, where we use

the number of primes within the expression

α(′) ⊗ β(′) → γ(′) , (C.2)

to classify the results. We denote this number by n, e.g. in 3⊗ 3′ → 3′ we get n = 2.

1(′) ⊗ 1(′) → 1(′)

⎧

⎪

⎨

⎪

⎩

n = even

1 ⊗ 1 → 1

1′ ⊗ 1′ → 1

1 ⊗ 1′ → 1′

⎫

⎪

⎬

⎪

⎭

αβ ,

1(′) ⊗ 2 → 2

{

n = even

n = odd

1 ⊗ 2 → 2

1′ ⊗ 2 → 2

}

α

(

β1
(−1)nβ2

)

,

1(′) ⊗ 3(′) → 3(′)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

n = even

1 ⊗ 3 → 3

1′ ⊗ 3′ → 3

1 ⊗ 3′ → 3′

1′ ⊗ 3 → 3′

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

α

⎛

⎜

⎝

β1
β2
β3

⎞

⎟

⎠
,

2 ⊗ 2 → 1(′)

{

n = even

n = odd

2⊗ 2 → 1

2⊗ 2 → 1′

}

α1β2 + (−1)nα2β1 ,

2 ⊗ 2 → 2

{

n = even 2⊗ 2 → 2

}

(

α2β2
α1β1

)

,

– 83 –

Group theory 



where [83]

S = U⇤
PMNS

diag(+1, �1, �1) UT
PMNS

(63)

U = U⇤
PMNS

diag(�1, +1, �1) UT
PMNS

(64)

SU = U⇤
PMNS

diag(�1, �1, +1) UT
PMNS

(65)

and
K = {1, S, U, SU} (66)

is called the Klein symmetry ZS
2

⇥ ZU
2

. For the case that U
PMNS

is equal to the tri-bimaximal mixing
matrix U

TB

in Eq.14, then S, U and T may be identified as the generators of S
4

in Eq.59. In this way
one may associate TB mixing with the discrete symmetry group S

4

. However, if the mixing matrix is
something other than U

TB

then S and U will di↵er from the generators in Eq.59 and one must look
for some other group. This exemplifies the so called “direct” approach to model building whereby one
postulates a discrete symmetry group G, whose generator T enforces the diagonal charged lepton mass
matrix, while its generators S and U enforce a particular Klein symmetry associated with a particular
PMNS matrix. Di↵erent groups and generator embeddings will yield di↵erent predictions for the PMNS
matrix.

From a dynamical point of view, the theory must organise itself so that the discrete symmetry group
G is broken by Higgs fields which know about flavour and are called flavons. The flavons may be EW
singlets or doublets. There may be flavons �l whose VEVs preserve T (i.e. T h�li = h�li) and other �⌫

whose VEVs preserve S, U (i.e. Sh�⌫i = h�⌫i and Uh�⌫i = h�⌫i). For example, consider the case of S
4

in the T diagonal basis of Eq.59 [20], where we emphasise that:

U = ⌥
0

@
1 0 0
0 0 1
0 1 0

1

A , SU = US = ⌥1

3

0

@
�1 2 2
2 2 �1
2 �1 2

1

A , for 3,30 respectively. (67)

In this basis one can check by explicit matrix multiplication (e.g. T h�T i = h�T i, where T is the matrix
in Eq.59 and h�T i is the column vector given below) that the symmetry preserving vacuum alignments
are as follows [72]:

h�T i ⇠ 3 ⇠
0

@
1
0
0

1

A , preserves T, breaks S, U,

h�0
T i ⇠ 30 ⇠

0

@
1
0
0

1

A , preserves T, U breaks S,

h�Si ⇠ 3 ⇠
0

@
1
1
1

1

A , preserves S breaks T, U,

h�0
Si ⇠ 30 ⇠

0

@
1
1
1

1

A , preserves S, U breaks T,

29

Charged 
Lepton Sector

Neutrino 
Sector

S,U  preserved 

G
T preserved   

�l �⌫

Family 
symmetry 

Generators 
S,T,U

Figure 12: This diagram illustrates the so called direct approach to models of lepton mixing.

h�SUi ⇠ 3 ⇠
0

@
2

�1
�1

1

A , preserves SU breaks T, U,

and the two important SU preserving alignments for 30 flavons,

h�0
atm

i ⇠ 30 ⇠
0

@
0
1

�1

1

A , preserves SU breaks T, U, (68)

h�0
sol

i ⇠ 30 ⇠
0

@
1
3

�1

1

A , preserves SU breaks T, U. (69)

These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S
4

can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �l

⇤

LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS
2

⇥ ZU
2

of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM

2

mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.

30
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These flavons �l (identified with one or more of the T preserving flavons) only carefully engineered
to only appear in terms responsible for charged lepton masses. The other flavons �⌫ (identified with
one or more of the S, U preserving flavons) only couple to terms responsible for neutrino masses.

This is the so called “direct approach” illustrated in Fig.12. For example G = S
4

can lead to TB
mixing if T is preserved in the charged lepton sector, and S, U are preserved in the neutrino sector, which
can be achieved dynamically by assuming that di↵erent symmetry preserving flavons are confined to a
particular sector. For example the charged lepton mass matrix Me may arise from a non-renormalisable
Lagrangian term �l

⇤

LHdec where ⇤ is a heavy mass scale once the flavon �l and Higgs Hd get VEVs.
Since only �l (not �⌫) appears in the charged lepton sector, the mass matrix Me therefore respects the
T symmetry (see Eq.61) preserved by the �l VEV. Similarly m⌫ respects the S, U symmetry (see Eq.62)
preserved by the �⌫ VEV.

In such a “direct approach” the full Klein symmetry ZS
2

⇥ ZU
2

of the neutrino mass matrix arises
as a subgroup of the initial family symmetry G. Given the measurement of the reactor angle, the only
viable direct models are those based on �(6N2) [84–86], with quite large N required. Such models
generally predict TM

2

mixing and a CP phase � = 0, ⇡, both of which are disfavoured by current data.
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Semi-Direct Models  
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Figure 13: The semi-direct approach to models of lepton mixing. Since TB and GR mixing are excluded, some of the
symmetry must be broken in either the charged lepton sector (T breaking) or the neutrino sector (U breaking). In the
semi-direct approach some symmetry always remains as shown leading to mixing sum rule predictions. For the case of
S

4

, the figure indicates that T breaking (with S, U and hence TB preserved in the neutrino sector) leads to charged
lepton correction sum rules. Similarly, U breaking (with T preserved in the charged lepton sector) can lead to TM

1

or
TM

2

mixing and sum rules, depending on whether SU or S is preserved in the neutrino sector. The A
4

group does not
contain U and (with T and S preserved), leads to the TM

2

mixing and sum rule. Note that the TM
2

mixing sum rule is
experimentally disfavoured.

5.3 Semi-direct models

In the “semi-direct” approach, one may use smaller discrete family groups such as S
4

or A
5

. If applied
in a “direct” way, such groups would lead to either TB or BM (for S

4

) or GR mixing (for A
5

), as in
Fig.13. To obtain a non-zero reactor angle, one of the generators T or U must be broken. Thus the
semi-direct models do not enforce the full residual symmetry.

Consider the following two interesting possibilities depicted in Fig.13:

1. The ZT
3

symmetry of the charged lepton mass matrix is broken, but the full Klein symmetry
ZS

2

⇥ZU
2

in the neutrino sector is respected. This corresponds to having charged lepton corrections,
with solar sum rules discussed in section 3.4.

2. The ZU
2

symmetry of the neutrino mass matrix is broken, but the ZT
3

symmetry of the charged
lepton mass matrix is unbroken. In addition either ZS

2

or ZSU
2

(with SU being the product of S
and U) is preserved. This leads to either TM

1

mixing (if ZSU
2

is preserved); or TM
2

mixing (if ZS
2

is preserved). Then we have the atmospheric sum rules as discussed in section 3.3.

In A
4

there is no U generator to start with, but it is possible that ZS
2

preserved. This could also arise
of S

4

is broken to A
4

at higher order [51]. In such cases, only half the Klein symmetry ZS
2

is preserved,
corresponding to the S generator of A

4

or S
4

, together with the ZT
3

symmetry of the diagonal T generator
enforcing the diagonality of the charged lepton mass matrix. However, the S generator implies TM

2

mixing and sum rules which are disfavoured due to the solar angle being smaller than its tri-bimaximal

31

1701.04413

a ⇡ r cos �a ⇡ �r
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CP violation  Feruglio,Hagedorn; 
Holthausen,Lindner Schmidt; 

Ding,SFK,Luhn,Stuart; 
Nishi,Xing; Hagedorn,Meroni, 
Molinaro; Ding,SFK,Neder; 
Branco, SFK, Varzielas, 

Chen,...       

E.g. in semi-direct 
models where   

  

Typically predicts 
maximal Dirac Phase 

G⌫ ⇠ ZS
2

� = ±⇡/2Charged 
Lepton Sector

Neutrino 
Sector

Family and 
CP symmetry  

G � HCP

Gl � H l
CP G⌫ � H⌫

CP

Figure 14: The residual CP symmetry approach to model building including both discrete family (flavour) and
CP symmetry. The idea is that the original high energy theory conserves CP but CP is spontaneously broken in the
low energy theory. Nevertheless one may define residual CP symmetries which are preserved in the charged lepton and
neutrino sectors, which survive along with preserved subgroups of the original family symmetry in each of these sectors.
The semi-direct product sign indicates that CP does not always commute with flavour symmetry.

The question of spontaneous CP violation amounts to whether the vacuum does or does not respect
CP symmetry. In order for the vacuum to be CP invariant, the following relation has to be satisfied:
< 0|�i|0 >= Xij < 0|�⇤

j |0 > [93]. The presence of G usually allows for many choices for X. If any X
can be found then CP is conserved by the vacuum. If no choice of X exists then the vacuum violates
CP . In order to prove that no choice of X exists one can construct CP -odd invariants.

In extensions of the Higgs sector of the SM, the CP violation arising from the parameters of the scalar
potential can be studied in a similar basis invariant way to the quark or lepton sector. For example, in the
two Higgs Doublet Model (HDM) (for a recent analysis see e.g. [94]) a CP odd invariant was identified
in [95]. More generally, applying the invariant approach to scalar potentials has revealed relevant
CPIs [96–98], including for the 2HDM [99, 100]. This analysis was recently extended to potentials
involving three or six Higgs fields (which can be either electroweak doublets or singlets) which form
irreducible triplets under a discrete symmetry [101].

5.5 Residual CP symmetry

The residual CP approach is based on models with discrete family symmetry, which are generalised to
the case of a conserved CP where X may be non-trivial, but must satisfy the consistency condition
in Eq.80 (see e.g. [91] and references therein) which is spontaneously broken as shown in Fig.14, i.e.
preserving a di↵erent residual CP in the charged lepton and/or neutrino sectors. Of course the complete
theory spontaneously violates CP , but the preservation of di↵erent residual CP symmetries (and flavour
symmetries), in the two sectors provides predictive power, since it serves to constrain the charged lepton
and neutrino mass matrices separately. The residual flavour symmetry constraint on the mass matrices

35
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Figure 15: Some possible candidate unified gauge groups which are subgroups of E
6

. We shall focus on SU(5),
SO(10) and the Pati-Salam gauge group SU(4)C ⇥ SU(2)L ⇥ SU(2)R (in pale blue).

where r, b, g are quark colours and c denotes CP conjugated fermions.
The SU(5) gauge group may be broken to the SM by a Higgs multiplet in the 24 representation

developing a VEV,

SU(5) ! SU(3)C ⇥ SU(2)L ⇥ U(1)Y , (87)

with

5 = dc(3,1, 1/3) � L(1,2, �1/2), (88)

10 = uc(3,1, �2/3) � Q(3,2, 1/6) � ec(1,1, 1), (89)

where (Q, uc, dc, L, ec) is a complete quark and lepton SM family. This does not include the RH neutri-
nos, whose CP conjugates are singlets of SU(5), ⌫c = 1, and may be added separately. Higgs doublets
Hu and Hd, which break EW symmetry in a two Higgs doublet model, may arise from SU(5) multi-
plets H5 and H5, providing the colour triplet components can be made heavy. This is known as the
doublet-triplet splitting problem.
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5 = 1/2. From this embedding of the SM into SU(5) we can check

that the states fit into the 10 and 5 as follows:
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The two Higgs doublets fit into a 5(≡ H) and 5(≡ H). Similarly H and H can be
decomposed into weak doublets and color triplets under the SM symmetry. We have

H =

(

t
h

)

, H =

(

t
h

)

with t(h) denoting triplet(doublet) states.
Up and down quark Yukawa couplings at MGUT are given in terms of the operators

λuHi10jk10lmϵijklm + λdH
i
10ij5

j
.

When written in terms of quark and lepton states we obtain the Yukawa couplings
to the Higgs doublets

λuuhQ + λd(dhQ + ehL).

We see that SU(5) relates the Yukawa couplings of down quarks and charged leptons,
i.e. λd = λe at the GUT scale. Assuming this relation holds for all 3 families, we
have17 λb = λτ , λs = λµ, λd = λe at MGUT .

To compare with experiment we must use the renormalization group[RG] equa-
tions to run these relations (valid at MGUT ) to the weak scale. The first relation
gives a prediction for the b-τ ratio which is in good agreement with low energy data.
Note, for heavy top quarks we must now use the analysis which includes the third
generation Yukawa couplings18. We will discuss these results shortly. The next two
relations can be used to derive the relation: λs

λd
= λµ

λe
at MGUT . However at one loop

the two ratios are to a good approximation RG invariants. Thus the relation is valid
at any scale µ < MGUT . This leads to the bad prediction

ms

md
=

mµ

me

for running masses evaluated at 1 GeV. It is a bad prediction since experimentally
the left hand side is ∼ 20 while the rhs is ∼ 200.
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GUTs with Family Symmetry
G

GUT

G
FAM

SU(2)L ⇥ U(1)Y SU(5) PS SO(10)

S
3

[29] [150]
A

4

[36, 49, 51, 62,151–154] [155–158] [66, 159,160]
T 0 [161]
S

4

[31, 49, 51, 154,163] [164,165] [162] [166]
A

5

[51, 169] [170]
T

7

[171,172]
�(27) [173] [174]
�(96) [175,176] [177] [178]
DN [179]
QN [180]
other [181] [182] [183]

Table 3: Flavoured GUTs which include discrete family symmetry groups and the papers that use these sym-
metries to successfully describe the solar, atmospheric and reactor neutrino data.

Example of a flavoured GUT: A
4

⇥ SU(5)

We now describe an example of a recent flavoured GUT from Table 3, namely an A
4

⇥SU(5) SUSY
GUT model [158] with the following features:

• It is renormalisable at the GUT scale, with an explicit SU(5) breaking sector.

• The MSSM is reproduced with R-parity emerging from a discrete Z

R
4

.

• Doublet-triplet splitting is achieved through the Missing Partner mechanism [184].

• A µ term is generated at the correct scale.

• Proton decay is su�ciently suppressed.

• It solves the strong CP problem through the Nelson-Barr mechanism [185,186].

• It explains the hierarchical quark masses and mixing angles.

• It reproduces the Littlest Seesaw model with spontaneously broken CP symmetry.

Apart from A
4

⇥ SU(5) the model also involves the discrete symmetries Z

9

⇥ Z

6

⇥ Z

R
4

. It is
renormalisable at the GUT scale, but many e↵ects, including most fermion masses, come from non-
renormalisable terms that arise when heavy fields (so called “messenger fields”) are integrated out.
Unwanted or potentially dangerous terms are forbidden by the symmetries and the prescribed messenger
sector, including any terms that would generate proton decay or strong CP violation. Such terms may
arise from Planck scale suppressed terms, but prove to be su�ciently small. Due to the completeness of
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Field
Representation

A
4

SU(5) Z
9

Z
6

ZR
4

F 3 5̄ 0 0 1
T
1

1 10 5 0 1
T
2

1 10 7 0 1
T
3

1 10 0 0 1
N c

1

1 1 7 3 1
N c

2

1 1 8 3 1
� 1 1 0 3 1

H
5

1 5 0 0 0
H

¯

5

1 5̄ 2 0 0
H

24

10 24 3 0 0
⇤
24

10 24 0 0 0
H

45

1 45 4 0 2
H

45

1 45 5 0 0

⇠ 1 1 2 0 0
✓
1

1 1 1 3 0
✓
2

1 1 1 4 0

�e 3 1 0 0 0
�µ 3 1 3 0 0
�⌧ 3 1 7 0 0
�
1

3 1 3 2 0
�
2

3 1 1 3 0
�
3

3 1 3 1 0
�
4

3 1 2 1 0
�
5

3 1 6 2 0
�
6

3 1 5 2 0

Table 1: Superfields containing quarks and lep-
tons and symmetry breaking scalars.

Field
Representation

A
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9

Z
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ZR
4

X
1

1 5̄ 7 0 1
X

2

1 5 2 0 1
X

3
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X

4

1 5 3 0 1
X

5

100 5̄ 3 0 1
X

6
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X

7

1 5̄ 2 0 1
X

8
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9
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X

10
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X
11
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X

12

1 5 7 5 1
X

13
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X

14
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⌃
1

1 5̄ 7 0 2
⌃

2

1 5 2 0 0
⌃

3

1 5̄ 5 0 2
⌃

4
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⌃

5
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⌃

6
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⌃

7
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8
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⌃

9
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10
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⌃
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⌃

12
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⌃

13

1 5̄ 4 0 2
⌃

14

1 5 5 0 0
⌃

15

1 5̄ 2 0 2
⌃

16

1 5 7 0 0

Table 2: Superfield messengers for the quark
and lepton Yukawa couplings (and other GUT
breaking couplings discussed in Section 4.2).

are discussed, particularly how to break SU(5) and ZR
4

down to the MSSM with R-parity
in a viable way (i.e. addressing doublet-triplet splitting, the origin of the µ term and
proton decay). We also discuss the resolution to the strong CP problem. In Section 5 we
discuss the link between leptogenesis and the oscillation phase in this model. Finally in
Section 6 we summarise our main results and conclude. Appendix A summarises the A

4

conventions used in this paper, in the basis of [17].

2 The Yukawa sector of the model

The model involves an A
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⇥SU(5) CP invariant superpotential at the GUT scale, where all
symmetries, including CP, are spontaneously broken along supersymmetric flat directions,
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in a viable way (i.e. addressing doublet-triplet splitting, the origin of the µ term and
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discuss the link between leptogenesis and the oscillation phase in this model. Finally in
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Figure 1: Diagrams responsible for the masses and mixings of the up-type quarks.
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Figure 2: Diagrams responsible for the masses of the down-type quarks and charged leptons.

From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain e↵ective operators of the form

W
down

= d
33

T
3

H
¯

5

�⌧

M
F + d

22

T
2

H
45

H
24

�µ

M2

F + d
11

T
1

H
¯

5

⇠�e

h⇤
24

i2F + d
12

T
1

H
¯

5

⇠�µ

h⇤
24

i hH
24

iF, (2.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H

¯

5

and H
45

, as discussed in Section 4.2, hence the d
22

term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of �e,µ,⌧

(discussed in Section 3) is

h�ei = ve

0

@
1
0
0

1

A h�µi = vµ

0

@
0
1
0

1

A h�⌧ i = v⌧

0

@
0
0
1

1

A , (2.4)

such that, apart from d
12

, the contraction appearing with T
1,2,3 isolates the respective

F
1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional

term connecting T
1

(�µF ) (see Fig. 2d).

6

G
GUT

G
FAM

SU(2)L ⇥ U(1)Y SU(5) PS SO(10)

S
3

[29] [142]
A

4

[30, 34, 51, 53,64,143–145] [146–149] [68, 150,151]
T 0 [152] [153]
S

4

[31, 51, 53, 145,155] [156,157] [154] [158]
A

5

[53, 159] [160]
T

7

[161,162]
�(27) [163] [164]
�(96) [165,166] [167] [168]
DN [169]
QN [170]
other [171] [172] [173]

Table 3: Flavoured GUTs which include discrete family symmetry groups and the papers that use these sym-
metries to successfully describe the solar, atmospheric and reactor neutrino data.

vuTiTj(v⇠/M)6�i�j, where vu is the VEV of Hu. The resulting symmetric Yukawa matrix for up-type
quarks is

Y u
ij ⇠

0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A (120)

where ⇠̃ = h⇠i /M ⇠ 0.1 yielding a strong up-type mass hierarchy, with quark mixing arising in large
part from the up-sector.

The field ⇠ is in fact quite ubiquitous. As well as explaining the structure of the up-type quark mass
matrix, it is also involved in the mass hierarchy for down-type quarks and charged leptons. And it is
responsible for the mass scales for the RH neutrinos. Furthermore it yields a highly suppressed µ term
⇠ (v⇠/M)8M

GUT

.
The down-type and charged lepton Yukawa matrices Y d ⇠ Y e are obtained from terms like F�TH,

leading to nearly diagonal matrices,

Y d
LR ⇠ Y e

RL ⇠

0

BBBBB@

h⇠i ve

v2

⇤

24

h⇠i vµ

v
⇤

24

vH
24

0

0
vH

24

vµ

M2

0

0 0
v⌧

M

1

CCCCCA
(121)

where ve,µ,⌧ are flavon VEVs, while v
⇤

24

and vH
24

are VEVs of heavy Higgs ⇤
24

and H
24

. Here we
include the subscripts LR to emphasise the role of the o↵-diagonal term to LH mixing from Y d. This
term introduces CP violation into the CKM matrix via the phase of h⇠i. Note that the o↵-diagonal term
in Y e

RL gives mainly RH mixing, with only a subleading negligible contribution to LH charged lepton
mixing ✓e

12

⇠ me/mµ.

45

Froggatt-NielsenUp-type quarks
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From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain e↵ective operators of the form
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where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H
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and H
45

, as discussed in Section 4.2, hence the d
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term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of �e,µ,⌧

(discussed in Section 3) is

h�ei = ve

0

@
1
0
0

1

A h�µi = vµ

0

@
0
1
0

1

A h�⌧ i = v⌧

0

@
0
0
1

1

A , (2.4)

such that, apart from d
12

, the contraction appearing with T
1,2,3 isolates the respective

F
1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional

term connecting T
1

(�µF ) (see Fig. 2d).

6

G
GUT

G
FAM

SU(2)L ⇥ U(1)Y SU(5) PS SO(10)

S
3

[29] [142]
A

4

[30, 34, 51, 53,64,143–145] [146–149] [68, 150,151]
T 0 [152] [153]
S

4

[31, 51, 53, 145,155] [156,157] [154] [158]
A

5

[53, 159] [160]
T

7

[161,162]
�(27) [163] [164]
�(96) [165,166] [167] [168]
DN [169]
QN [170]
other [171] [172] [173]

Table 3: Flavoured GUTs which include discrete family symmetry groups and the papers that use these sym-
metries to successfully describe the solar, atmospheric and reactor neutrino data.

vuTiTj(v⇠/M)6�i�j, where vu is the VEV of Hu. The resulting symmetric Yukawa matrix for up-type
quarks is

Y u
ij ⇠

0

@
⇠̃4 ⇠̃3 ⇠̃2

⇠̃2 ⇠̃
1

1

A (120)

where ⇠̃ = h⇠i /M ⇠ 0.1 yielding a strong up-type mass hierarchy, with quark mixing arising in large
part from the up-sector.

The field ⇠ is in fact quite ubiquitous. As well as explaining the structure of the up-type quark mass
matrix, it is also involved in the mass hierarchy for down-type quarks and charged leptons. And it is
responsible for the mass scales for the RH neutrinos. Furthermore it yields a highly suppressed µ term
⇠ (v⇠/M)8M

GUT

.
The down-type and charged lepton Yukawa matrices Y d ⇠ Y e are obtained from terms like F�TH,

leading to nearly diagonal matrices,

Y d
LR ⇠ Y e

RL ⇠

0

BBBBB@

h⇠i ve

v2

⇤

24

h⇠i vµ

v
⇤

24

vH
24

0

0
vH

24

vµ

M2

0

0 0
v⌧

M

1

CCCCCA
(121)

where ve,µ,⌧ are flavon VEVs, while v
⇤

24

and vH
24

are VEVs of heavy Higgs ⇤
24

and H
24

. Here we
include the subscripts LR to emphasise the role of the o↵-diagonal term to LH mixing from Y d. This
term introduces CP violation into the CKM matrix via the phase of h⇠i. Note that the o↵-diagonal term
in Y e

RL gives mainly RH mixing, with only a subleading negligible contribution to LH charged lepton
mixing ✓e

12

⇠ me/mµ.

45

Down-type quarks 

Charged Leptons

T1 T1

⇠

⇠

⇠

⇠

H5̄

⌃1

⌃2

⌃3

⌃4

⌃5

⌃6

⌃7

⌃8

T1 T2

⇠

⇠

⇠

H5̄

⌃1

⌃2

⌃3

⌃4

⌃5

⌃6

T1 T3

⇠

⇠

H5̄

⌃1

⌃2

⌃3

⌃4

T2 T2

⇠

⇠

H5̄

⌃1

⌃2

⌃3

⌃4

T2 T3

⇠

H5̄

⌃1

⌃2

T3 T3

H5̄

Figure 1: Diagrams responsible for the masses and mixings of the up-type quarks.

T3 FX1 X2

H5̄ �⌧

(a)

T2

H4̄5 �µH24

X3 X4 X5 X6 F

(b)

T1

H5̄ �e⇠

X7 X8 X9 X10 F

⇤24 ⇤24

(c)

T1

H5̄ �µ⇠

X7 X8 X9 X6 F

⇤24 H24

(d)

Figure 2: Diagrams responsible for the masses of the down-type quarks and charged leptons.

From the diagrams shown in Fig. 2, integrating out the fermion messengers X, which
acquire large masses as a result of either explicit mass terms or GUT scale Higgs VEVs,
we obtain e↵ective operators of the form

W
down

= d
33

T
3

H
¯

5

�⌧

M
F + d

22

T
2

H
45

H
24

�µ

M2

F + d
11

T
1

H
¯

5

⇠�e

h⇤
24

i2F + d
12

T
1

H
¯

5

⇠�µ

h⇤
24

i hH
24

iF, (2.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the
doublets inside H

¯

5

and H
45

, as discussed in Section 4.2, hence the d
22

term also leads
to a relevant Yukawa coupling. The alignment of the respective flavon VEVs of �e,µ,⌧

(discussed in Section 3) is

h�ei = ve

0

@
1
0
0

1

A h�µi = vµ

0

@
0
1
0

1

A h�⌧ i = v⌧

0

@
0
0
1

1

A , (2.4)

such that, apart from d
12

, the contraction appearing with T
1,2,3 isolates the respective

F
1,2,3 family. This would lead to diagonal Yukawa structures if not for the additional

term connecting T
1

(�µF ) (see Fig. 2d).

6



Neutrinos with 
Littlest Seesaw
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where v
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and v
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are generally complex. Denoting the phases of VEVs as ⇢i = arg(vi),
only the relative phase ⇢

atm

�⇢
sol

between the VEVs is physically relevant, and is con-
strained to a discrete set of values, as discussed in Section 3.3. The flavon ⇠ (already
responsible for the up quark masses) is also acting as a Majoron by generating hierar-
chical right-handed neutrino masses. At the e↵ective level, the Dirac terms result from
coupling the neutrinos (and H

5

) to �
atm

and �
sol

via the flavon ✓
2

(an A
4

singlet carrying
Z
6

charge). The corresponding diagrams with associated messengers appear in Fig 3.
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Figure 3: Renormalisable diagrams leading to neutrino e↵ective terms. Diagrams (a) and (b)
are responsible for neutrino Yukawa terms (leading to Dirac masses) while (c) and (d) give
right-handed neutrino Majorana mass terms.

In turn, the Majorana mass term for N c
atm

is also non-renormalisable and we refer to the
superfield � as the respective messenger. It couples only to N c

atm

and simply provides the
non-renormalisable mass term for N c
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, suppressed relative to the mass of N c
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. As � has
the quantum numbers of a third right-handed neutrino, one can also consider this field as
mediating a double seesaw mechanism, responsible for the N c
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mass. The mixing term
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, though allowed by the symmetries, is absent as there is no combination of
messengers able to produce it.

We write h⇠i = |v⇠|ei⇢⇠ , where ⇢⇠ is chosen from a discrete set of available phases, discussed
in Section 4.1 (see Eq. 4.2). This phase originates from the spontaneous CP violation of
a discrete Abelian symmetry [9, 10], in our case the Z
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. We will now show that ⇢⇠ and
⇢
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sol

fix the relative phases within the e↵ective neutrino mass matrix and consequently
the leptonic mixing angles.

In a Supersymmetric (SUSY) model, the relevant terms in the superpotential giving
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◦ Explains quark mass hierarchies, mixing angles and the CP phase. 
◦ Reproduces Littlest Seesaw model predictions  

◦ Z9 flavour symmetry fixes the phase η to be 2pi/3  

◦ Leptogenesis fixes Matm ~ 1010  GeV     

◦ Renormalisable at GUT scale, SU(5) breaking potential, 
spontaneously broken CP.  

◦ The MSSM is reproduced with R-parity from discrete Z4R .  

◦ Doublet-triplet splitting via the Missing Partner mechanism.  
◦ mu term is generated at the correct scale.  
◦ Proton decay is sufficiently suppressed.  
◦ Solves strong CP problem through the Nelson-Barr mechanism . 

Summary of  A4 x SU(5)



Questions?



Tutorial Questions
2. Consider a Dirac neutrino mass model involving one right-handed neutrino ⌫atm

R

with Yukawa couplings [4],

⌫atm

R (dLe + eLµ + fL⌧ )H, (7)

where Le = (⌫e, e)L, etc., H is the Higgs doublet and d, e, f are real Yukawa
couplings.

(a) When the Higgs gets a VEV in its first component, explain why this model
leads to one massive Dirac neutrino, together with two massless neutrinos.

(b) If we interpret the massive neutrino as the atmospheric neutrino, show that
left-handed component can be parametrized in terms of two angles ✓

13

and ✓
23

as

⌫atm

L = s
13

⌫eL + s
23

c
13

⌫µL + c
23

c
13

⌫⌧L. (8)

where ⌫atm

L is correctly normalised (s
13

= sin ✓
13

, etc.). Then, by comparing the
above parametrisation of ⌫atm

L to the third column of the PMNS matrix (with zero
CP phase), explain why ✓

13

is the reactor angle and ✓
23

is the atmospheric angle.

(c ) Using Eqs.7 and 8, find expressions for the sine of the reactor angle sin ✓
13

and the tangent of the atmospheric angle tan ✓
23

in terms of the Yukawa couplings
d, e, f .

(d) If the solar neutrino is identified as one of the massless neutrinos, explain why
the solar angle ✓

12

is not well defined in this model.
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3. Consider a see-saw neutrino model involving two right-handed neutrinos ⌫sol

R and
⌫atm

R with Yukawa couplings [5],

⌫sol

R (aLe + bLµ + cL⌧ )H + ⌫atm

R (dLe + eLµ + fL⌧ )H, (9)

and heavy right-handed Majorana masses,

M
sol

⌫sol

R (⌫sol

R )c +M
atm

⌫atm

R (⌫atm

R )c. (10)

(a) After the Higgs gets a VEV in its first component, write down the Dirac mass
matrix mD

RL.

(b) Write down the (diagonal) right-handed neutrino heavy Majorana mass matrix
MRR.

(c ) Using the see-saw formula, m⌫ = (mD
RL)

TM�1

RRm
D
RL, calculate the light e↵ective

left-handed Majorana neutrino mass matrix m⌫ (i.e. the physical neutrino mass
matrix).

(d) Assuming that the determinant of m⌫ vanishes (which you may if you wish
check by explicit calculation) what is the physical implication of this?

(e) Imposing the constraints d = 0 and e = f , with a = b = �c known as
“constrained sequential dominance” [6], show that the resulting physical neutrino
mass matrix m⌫ is diagonalised by the tri-bimaximal mixing matrix, UT

TB

m⌫U
TB

.
What is the physical interpretation of this result if the charged lepton mass matrix
is diagonal?

(f) If the charged lepton mixing matrix has a Cabibbo-like mixing angle [1],

Ue =

0

@
ce
12

se
12

e�i�e
12 0

�se
12

ei�
e
12 ce

12

0
0 0 1

1

A (11)

calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix U = UeUTB

(you
don’t need to calculate the whole matrix). Comparing the absolute value of the
(1,3) element to that of the standard parameterisation of the PMS matrix, find
s
13

in terms of se
12

and show that choosing ✓e
12

= ✓C ⇡ 13� (the Cabibbo angle)
gives a reasonable value for the reactor angle [7]. Comparing the absolute value of
the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS
matrix, find relations between PMNS parameters. By combining and expanding
these relations show that they lead to the approximate “solar sum rule”,

✓
12

� 35� ⇡ ✓
13

cos �, (12)

[Hint: take the sine of both sides of the Eq.12, assuming sin ✓
13

⇡ ✓
13

as well as
sin 35� ⇡ 1/

p
3.] Discuss the resulting prediction for the CP phase � [7].
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calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix U = UeUTB

(you
don’t need to calculate the whole matrix). Comparing the absolute value of the
(1,3) element to that of the standard parameterisation of the PMS matrix, find
s
13

in terms of se
12

and show that choosing ✓e
12

= ✓C ⇡ 13� (the Cabibbo angle)
gives a reasonable value for the reactor angle [7]. Comparing the absolute value of
the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS
matrix, find relations between PMNS parameters. By combining and expanding
these relations show that they lead to the approximate “solar sum rule”,

✓
12

� 35� ⇡ ✓
13

cos �, (12)

[Hint: take the sine of both sides of the Eq.12, assuming sin ✓
13

⇡ ✓
13

as well as
sin 35� ⇡ 1/

p
3.] Discuss the resulting prediction for the CP phase � [7].
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Tutorial Questions

1. The PMNS matrix for Dirac neutrinos is [1],

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23
s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23

 , (1)

where s13 = sin θ13, etc.

(a) Show that tri-bimaximal mixing defined by

s13 = 0, s12 =
1√
3
, s23 =

1√
2
, (2)

implies the tri-bimaximal (TB) mixing matrix,

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (3)

(b ) Consider the reactor, solar and atmospheric parameters r,s,a which parame-
terise the deviations from tri-bimaximal mixing [2],

s13 =
r√
2
, s12 =

(1 + s)√
3

, s23 =
(1 + a)√

2
. (4)

By expanding the PMNS mixing matrix to first order in the small parameters
r, s, a, it is possible to show (although you do not need to do this) that,

U ≈


√

2
3
(1− 1

2
s) 1√

3
(1 + s) 1√

2
re−iδ

− 1√
6
(1 + s− a+ r cos δ) 1√

3
(1− 1

2
s− a− 1

2
r cos δ) 1√

2
(1 + a)

1√
6
(1 + s+ a− r cos δ) − 1√

3
(1− 1

2
s+ a+ 1

2
r cos δ) 1√

2
(1− a)

 . (5)

Verify that for TB mixing r = s = a = 0, the mixing matrix reduces to UTB.

Show that, for s ≈ 0, a ≈ r cos δ, the first column of the mixing matrix approxi-
mately corresponds to that of TB mixing (TM1 mixing).

1



Similarly show that for s ≈ 0, a ≈ −(r/2) cos δ, the second column of the mixing
matrix approximately corresponds to that of TB mixing (TM2 mixing).

(c ) Show that the relations a ≈ r cos δ and a ≈ −(r/2) cos δ imply the approximate
“atmospheric sum rules” of the form,

θ23 − 45◦ ≈ C × θ13 cos δ (6)

and find the constant C in each case. [Hint: take the sine of both sides of the
Eq.6, assuming sin θ13 ≈ θ13, then expand sin(θ23−45◦) and use definitions of r, a.]

Then discuss how well these so called “atmospheric sum rules” are satisfied by cur-
rent data on the atmospheric and reactor mixing angles and how future precision
measurements of these angles will fix the CP violating phase δ [3].

(d) If the charged lepton mixing matrix has a Cabibbo-like mixing angle [1],

Ue =

 ce12 se12e
−iδe12 0

−se12eiδ
e
12 ce12 0

0 0 1

 (7)

calculate the (1,3), (3,1) and (3,3) elements of PMNS matrix U = UeUTB (you
don’t need to calculate the whole matrix). Comparing the absolute value of the
(1,3) element to that of the standard parameterisation of the PMS matrix, find
s13 in terms of se12 and show that choosing θe12 = θC ≈ 13◦ (the Cabibbo angle)
gives a reasonable value for the reactor angle [7]. Comparing the absolute value of
the (3,1) and (3,3) elements to that of the standard parameterisation of the PMS
matrix, find relations between PMNS parameters. By combining and expanding
these relations show that they lead to the approximate “solar sum rule”,

θ12 − 35◦ ≈ θ13 cos δ, (8)

[Hint: take the sine of both sides of the Eq.8, assuming sin θ13 ≈ θ13 as well as
sin 35◦ ≈ 1/

√
3.] Discuss the resulting prediction for the CP phase δ [7].
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2. Consider a Dirac neutrino mass model involving one right-handed neutrino νatmR

with Yukawa couplings [4],

νatmR (dLe + eLµ + fLτ )H, (9)

where Le = (νe, e)L, etc., H is the Higgs doublet and d, e, f are real Yukawa
couplings.

(a) When the Higgs gets a VEV in its first component, explain why this model
leads to one massive Dirac neutrino, together with two massless neutrinos.

(b) If we interpret the massive neutrino as the atmospheric neutrino, show that
left-handed component can be parametrized in terms of two angles θ13 and θ23 as

νatmL = s13νeL + s23c13νµL + c23c13ντL. (10)

where νatmL is correctly normalised (s13 = sin θ13, etc.). Then, by comparing the
above parametrisation of νatmL to the third column of the PMNS matrix (with zero
CP phase), explain why θ13 is the reactor angle and θ23 is the atmospheric angle.

(c ) Using Eqs.9 and 10, find expressions for the sine of the reactor angle sin θ13
and the tangent of the atmospheric angle tan θ23 in terms of the Yukawa couplings
d, e, f .

(d) If the solar neutrino is identified as one of the massless neutrinos, explain why
the solar angle θ12 is not well defined in this model.
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3. Consider a see-saw neutrino model involving two right-handed neutrinos νsolR and
νatmR with Yukawa couplings [5],

νsolR (aLe + bLµ + cLτ )H + νatmR (dLe + eLµ + fLτ )H, (11)

and heavy right-handed Majorana masses,

MsolνsolR (νsolR )c +MatmνatmR (νatmR )c. (12)

(a) After the Higgs gets a VEV in its first component, write down the Dirac mass
matrix mD

RL.

(b) Write down the (diagonal) right-handed neutrino heavy Majorana mass matrix
MRR.

(c ) Using the see-saw formula, mν = (mD
RL)TM−1

RRm
D
RL, calculate the light effective

left-handed Majorana neutrino mass matrix mν (i.e. the physical neutrino mass
matrix).

(d) Assuming that the determinant of mν vanishes (which you may if you wish
check by explicit calculation) what is the physical implication of this?

(e) Imposing the constraints d = 0 and e = f , with a = b = −c known as
“constrained sequential dominance” [6], show that the resulting physical neutrino
mass matrix mν is diagonalised by the tri-bimaximal mixing matrix, UT

TBm
νUTB.

What is the physical interpretation of this result if the charged lepton mass matrix
is diagonal?
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Solutions

1. (a ) This is simply a matter of substituting the expressions into the PMNS matrix,
using c13 = (1− s213)1/2, etc.

(b ) For r = s = a = 0 the mixing matrix reduces to the TB matrix,

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (1)

Assuming s ≈ 0, a ≈ r cos δ, we find the TM1 matrix,

UTM1 ≈


√

2
3
− −

− 1√
6
− −

1√
6
− −

 . (2)

With s ≈ 0, a ≈ −(r/2) cos δ, we find the TM2 matrix,

UTM2 ≈

 −
1√
3
−

− 1√
3
−

− − 1√
3
−

 . (3)

(c ) Following the hint, one finds,

a ≈ r cos δ ←→ θ23 − 45◦ ≈
√

2θ13 cos δ (4)

a ≈ −(r/2) cos δ ←→ θ23 − 45◦ ≈ − θ13√
2

cos δ (5)

i.e. C =
√

2 and C = −1/
√

2.

Current data may involve for example θ23 = 40◦ − 50◦ and θ13 = 8◦ − 9◦, leading
to |θ23−45◦| <∼ 5◦ and hence constraints on the two sum rules, which can be solved
for cos δ in terms of the measured angles. (This is a rather open ended question
which the students can discuss in various ways in detail).
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(d) If the charged lepton mixing matrix involves a Cabibbo-like mixing, then the
PMNS matrix is given by,

UPMNS =

 ce12 se12e
−iδe12 0

−se12eiδ
e
12 ce12 0

0 0 1



√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 =

 · · · · · · se12√
2
e−iδ

e
12

· · · · · · ce12√
2

1√
6
− 1√

3
1√
2


Comparing to the PMNS parametrisation we identify,

s13 =
se12√

2
, (6)

|s23s12 − s13c23c12eiδ| =
1√
6
, (7)

c13c23 =
1√
2
. (8)

The first equation a reactor angle θ13 ≈ 9.2◦ if θe ≈ θC ≈ 13◦ [7]. The second and
third equations allow to eliminate θ23 to give a new relation between the PMNS
parameters, called a solar sum rule, which may be expanded to first order to give
the approximate relation,

θ12 − 35◦ ≈ θ13 cos δ, (9)

or,

cos δ ≈ θ12 − 35◦

θ13
. (10)

This highlights the importance of an accurate measurement of the solar angle in
order to predict the CP phase. Current data on the solar and reactor angles seems
to predict cos δ ≈ 0 or δ ≈ ±90◦, consistent with the experimental hint for the CP
phase δ ≈ −90◦.
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2. (a) Inserting the Higgs VEV, νatmR only couples to one linear combination of left-
handed neutrinos,

νatmL ∝ dνeL + eνµL + fντL, (11)

and the two orthogonal combinations must therefore be massless because they
have no couplings to the single right-handed neutrino.

(b) To check the normalisation we consider the product,

νatmL .νatmL = (s13νeL + s23c13νµL + c23c13ντL).(s13νeL + s23c13νµL + c23c13ντL)

= s213 + (s23c13)
2 + (c23c13)

2 = 1, (12)

where we have used results like νeL.νeL = 1 and νeL.νµL = 0, etc. Comparing to
the PMNS matrix, one can see that the third column with zero phase δ = 0 is
identical to the parameterisation in Eq.??, hence we can identify θ13 as the reactor
angle and θ23 as the atmospheric angle.

(c ) Including a normalisation factor we have from Eq.??,

νatmL =
1√

d2 + e2 + f 2
(dνeL + eνµL + fντL). (13)

Comparing the coefficients of νeL, νµL, ντL to those in the parametrisation in Eq.??,

νatmL = s13νeL + s23c13νµL + c23c13ντL, (14)

we read-off the results,

s13 =
d√

d2 + e2 + f 2
, s23c13 =

e√
d2 + e2 + f 2

, c23c13 =
f√

d2 + e2 + f 2
.(15)

Taking the ratio of the last two terms,

t23 =
e

f
. (16)

(d) The solar neutrino state νsolL is not uniquely specified, since it is degenerate
with another massless state, hence the solar mixing angle θ12 is not well defined.
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3. (a) In the basis, with rows (νsolR , νatmR )T and columns (νeL, νµL, ντL), the Dirac mass
matrix is,

mD
RL =

(
a b c
d e f

)
. (17)

(b) The Majorana mass matrix with rows (νsolR , νatmR )T and columns (νsolR , νatmR ),

MRR =

(
Msol 0

0 Matm

)
. (18)

(c ) Then by multiplying the matrices we find,

mν = (mD
RL)TM−1

RRm
D
RL =


a2

Msol
+ d2

Matm

ab
Msol

+ de
Matm

ac
Msol

+ df
Matm

ab
Msol

+ de
Matm

b2

Msol
+ e2

Matm

bc
Msol

+ ef
Matm

ac
Msol

+ df
Matm

bc
Msol

+ ef
Matm

c2

Msol
+ f2

Matm

 . (19)

(d) By explicit calculation, one can check that detmν = 0. Since the determinant
of a real symmetric matrix is the product of mass eigenvalues

detmν = m1m2m3, (20)

one may conclude that one of the masses is zero, which we take to be the lightest
one m1 = 0.

(e) Setting d = 0 and e = f , with a = b = −c, one finds,

mν =


a2

Msol

a2

Msol

−a2
Msol

a2

Msol

a2

Msol
+ e2

Matm

−a2
Msol

+ e2

Matm
−a2
Msol

−a2
Msol

+ e2

Matm

a2

Msol
+ e2

Matm

 . (21)

By explicit calculation one finds,

UT
TBm

νUTB =

0 0 0

0 3a2

Msol
0

0 0 2e2

Matm

 . (22)

If the charged lepton mass matrix is diagonal, the interpretation is that these
constrained couplings lead to TB mixing, with the lightest neutrino mass m1 = 0,
the second lightest neutrino identified as the solar neutrino with mass m2 = 3a2

Msol

and the heaviest neutrino identified as the atmospheric neutrino with mass m3 =
2a2

Matm
. Note that each of the right-handed neutrinos contributes uniquely to a

particular physical neutrino mass. This general feature is known as sequential
dominance and the particular example with constrained couplings is known as
constrained sequential dominance [5].
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