Electron neutrino mass determination using ¹⁶³Ho electron capture

Loredana Gastaldo

Kirchhoff Institute for Physics, Heidelberg University

Contents

- Direct neutrino mass determination ٠
- ¹⁶³Ho and electron neutrino mass ٠
- The ECHo neutrino mass experiment ٠
- **HOLMES and NuMECS** •
- ¹⁶³Ho and sterile neutrinos ٠
- Conclusions and outlook ٠

Take-home messages

- Where a finite electron neutrino mass affects the ¹⁶³Ho EC spectrum
- Experimental methods (advantages and disadvantages)
- International efforts present status of the experiments
- What else can be learned from the ¹⁶³Ho EC spectrum

Neutrino mass determination

Cosmology

Neutrinoless Double beta decay

- $M_{\nu} = \sum m_i$
- Model dependent
- Need of satellites
- Present limit 0.12 1 eV
- Next future 15-50 meV

$$m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right|$$

- Model dependent
- Laboratory experiments
- Present limit 0.1 0.4 eV
- Next future 15-50 meV

Kinematics of β -decay and electron capture

$$m^2(v_e) = \sum_i \left| U_{ei} \right|^2 m^2_i$$

- Model independent
- Laboratory experiments

10m

4

• Present limit 2 eV

250 um

• Next future 200 meV

Direct neutrino mass determination

(1)

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v_e}) < 2 eV$$
 ³H

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

Direct neutrino mass determination

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

$$m(\overline{v}_e) < 2 \ eV$$
 ³H (1)
 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Direct neutrino mass determination

Kinematics of beta decay

$$m^{2}(v_{e}) = \sum_{i} |U_{ei}|^{2} m_{i}^{2}$$

- Model independent
- Laboratory experiments

Next future 200 meV

$$m(\overline{\nu}_e) < 2 \ eV$$
 ³H (1)

 $m(v_e) < 225 \ eV$ ¹⁶³Ho (2)

(1) Ch. Kraus *et al.,* Eur. Phys. J. C **40** (2005) 447 N. Aseev *et al.,* Phys. Rev D **84** (2011) 112003

(2) P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Talk by Igor Tkachev

Beta decay and electron capture

• $\tau^{}_{1/2}\,\cong$ 12.3 years $\,$ (4*10^8 atoms for 1 Bq) $\,$

• Q_β = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

- $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Beta decay of ³H

Beta decay of ³H

Only a small fraction of events in the last eV below the endpoint: 2 *10⁻¹³

Very low background is required

The KATRIN experiment

Main ideas:

- high activity source 10¹¹ e⁻/s
 - high resolution MAC-E* filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

*MAC-E: Magnetic Adiabatic Collimation with Electrostatic Filter

The KATRIN experiment

J. Angrik et al (KATRIN Collaboration) 2004 Wissenschaftliche Berichte FZ Karlsruhe 7090

The KATRIN experiment: present status

The KATRIN experiment: present status

Photo K. Valerius

³H based experiments

KATRIN - Karlsruhe Tritium Neutrino Experiment

Main ideas:

- high activity source: 10¹¹ e⁻/s
 - high resolution MAC-E filter to select electrons close to the end point
 - count electrons as function of retarding potential
 - \rightarrow integral spectrum

Project8

Main ideas:

- Source = detector: $10^{11} 10^{13} {}^{3}\text{H}_{2}$ molecules /cm³
- Use cyclotron frequency to extract electron energy
- Differential spectrum

PROJECT 8

PTOLEMY - Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield

Main ideas:

- large area tritium source: 100 g atomic ³H
 - MAC-E lter to select electrons close to the end point
 - RF tracking and time-of-flight systems
 - cryogenic calorimetry \rightarrow differential spectrum

Beta decay and electron capture

• $\tau_{1/2} \cong 12.3$ years (4*10⁸ atoms for 1 Bq)

• Q_{FC} = 18 592.01(7) eV

E.G. Myers et al., Phys. Rev. Lett. 114 (2015) 013003

• $\tau_{1/2} \cong 4570$ years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

- $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)
- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Electron capture in ¹⁶³Ho: Q_{EC} determination

- Calorimetric measurements
- Measurements of x-rays

★
$$Q_{\rm EC} = m(^{163}{\rm Ho}) - m(^{163}{\rm Dy})$$

Penning Trap Mass Spectroscopy @TRIGA TRAP (Uni-Mainz) (*) @SHIPTRAP (GSI – Darmstadt) (**)

$$v_c = \frac{qB}{m}$$

•
$$au_{1/2} \cong$$
 4570 years (2*10¹¹ atoms for 1 Bq)

- $Q_{\rm EC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV
 - S. Eliseev et al., *Phys. Rev. Lett.* **115** (2015) 062501 (**) F. Schneider et al., Eur. Phys. J. A **51** (2015) 89 (*)

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

• $\tau_{1/2} \cong$ 4570 years (2*10¹¹ atoms for 1 Bq)

• $Q_{\rm FC}$ = (2.833 ± 0.030^{stat} ± 0.015^{syst}) keV

S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

P. T. Springer, C. L. Bennett, and P. A. Baisden Phys. Rev. A 35 (1987) 679

Source = Detector

Volume 118B, number 4, 5, 6

PHYSICS LETTERS

9 December 1982

CALORIMETRIC MEASUREMENTS OF ¹⁶³HOLMIUM DECAY AS TOOLS TO DETERMINE THE ELECTRON NEUTRINO MASS

A. DE RÚJULA and M. LUSIGNOLI¹ CERN, Geneva, Switzerland

Energy [keV]

(a) F. Gatti et al., Physics Letters B 398 (1997) 415-419

(b) E. Laesgaard et al., Proceeding of 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7), (1984).

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

28

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

F. Gatti et al., Physics Letters B 398 (1997) 415-419

(c) F.X. Hartmann and R.A. Naumann, Nucl. Instr. Meth. A 3 13 (1992) 237.

Description of the ¹⁶³Ho EC spectrum

- (2) B. Alpert et al, Eur. Phys. J. C (2015) 75:112
- (3) M. Croce et al., arXiv:1510.03874

Requirements for sub-eV sensitivity

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

 Fraction of events at endpoint regions
➢ In the interval 2.832 -2.833 keV only 6×10⁻¹³

0

Statistics in the end point region

• $N_{ev} > 10^{14} \rightarrow A \approx 1 \text{ MBq}$

Unresolved pile-up ($f_{pu} \sim a \cdot \tau_r$)

- *f*_{pu} < 10⁻⁵
- $\tau_r < 1 \,\mu s \rightarrow a \sim 10 \,\text{Bq}$
- 10⁵ pixels

Precision characterization of the endpoint region

• $\Delta E_{\text{FWHM}} < 3 \text{ eV}$

Background level

• < 10⁻⁶ events/eV/det/day

Low temperature detectors for direct determination of the electron neutrino mass

MII

E

NI

NII
Low temperature micro-calorimeters

- Very small volume
- Working temperature below 100 mK small specific heat small thermal noise
- Very sensitive temperature sensor

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

Temperature sensors

Resistance at superconducting transition, TES

Magnetization of paramagnetic material, MMC

Metallic magnetic calorimeters (MMCs)

A. Fleischmann et al., AIP Conf. Proc. **1185**, 571, (2009)

MMC geometry and read-out

- Planar temperature sensor
- B-field generated by persistent current
- transformer coupled to SQUID

• Two-stage SQUID read-out

MMCs: 1d-array for soft x-rays (T=20 mK)

Multiplexing readout

Microwave SQUID multiplexing

Single HEMT amplifier and 2 coaxes to read out **100 - 1000** detectors

- Reliable fabrication of 64-pixel array
- Successful characterization of first prototypes
 → optimization of design parameters

Microwave SQUID Multiplexer for the Readout of Metallic Magnetic Calorimeters S.Kempf et al., J. Low. Temp. Phys. **175** (2014) 850-860

*I*_{mod}

First detector prototype for ¹⁶³Ho

- Absorber for calorimetric measurement

 → ion implantation @ ISOLDE-CERN in 2009
 on-line process
- About 0.01 Bq per pixel

Field and heater bondpads

Heatsink

SQUIDbondpads

• Operated over more than 4 years

0

L. Gastaldo et al., Nucl. Inst. Meth. A, 711 (2013) 150 P. C.-O. Ranitzsch et al., http://arxiv.org/abs/1409.0071v1

Calorimetric spectrum

- Rise Time ~ 130 ns
- $\Delta E_{\text{FWHM}} = 7.6 \text{ eV} @ 6 \text{ keV} (2013)$
- Non-Linearity < 1% @ 6keV

	1000	- NI	¹⁶³ Ho –
eV	800	-	_
. 2.0	600	_	
ounts pe	400	_	First calorimetric measurement of the OI-line
ŏ		OI	MI
	200	NII	- ¹⁴⁴ Pm N/II
	0	<u>I</u>	
	(J.U	0.5 1.0 1.5 2.0 Energy <i>E</i> [keV]
	Q _{EC}	= (2.8	$58 \pm 0.010^{\text{stat}} \pm 0.05^{\text{syst}}$) keV

	E _H bind.	E _H exp.	$arGamma_{H}$ lit.	$arGamma_{H}$ ехр
ΜΙ	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
ΝΙ	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
ΟΙ	0.050	0.048	5.0	4.3

P. C.-O. Ranitzsch et al ., to be submitted L. Gastaldo et al., Nucl. Inst. Meth. A, 711, 150-159 (2013)

Where to improve

• Background reduction

Detector design and fabrication:

- Increase activity per pixel
- Stems between absorber and sensor

Understanding of the ¹⁶³Ho spectrum:

Investigate undefined structures

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow >10^{6} \text{ Bq} \rightarrow >10^{17} \text{ atoms}$

Neutron irradiation
 (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	2.48 h 7/2-	15.0 m 1+	2- 2-	29 m 1+	* -
EC	EC	EC	EC	EC,β-	1 10
Dy159	Dy160	Dy161	Dy162	Dy16.	Dy 164
1111		602			and the second sec
144.4 d 3/2-	0+	5/2+	0+	5/2-	6 +
144.4 d 3/2- EC	0+ 2.34	5/2+ 18.9	0+ 25.5	5/2- 24.9	0++ 28.2
144.4 d 3/2- EC Tb158 180 y	0+ 2.34 Tb159	5/2+ 18.9 Tb160 72.3 d	0+ 25.5 Tb161 6.88 d	5/2- 24.9 Tb162 7.60 m	28.2 Tb163 19.5 m
144.4 d 3/2- EC Tb158 180 y 3-	0+ 2.34 Tb159 3/2+	5/2+ 18.9 Tb160 72.3 d 3-	0+ 25.5 Tb161 6.88 d 3/2+	5/2- 24.9 Tb162 7.60 m 1-	28.2 Tb163 19.5 m 3/2+

Charged particle activation

^{nat}Dy(p,xn) ¹⁶³Ho

^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

Small cross-section

Few radioactive contaminants

• •

¹⁶³Ho high purity source

Required activity in the detectors: Final experiment $\rightarrow > 10^6 \text{ Bq} \rightarrow > 10^{17} \text{ atoms}$

• •

Neutron irradiation (n,γ)-reaction on ¹⁶²Er

High cross-section

Radioactive contaminants

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	2.48 h 7/2-	15.0 m 1+	2- 2-	29 m 1+	* -
EC	EC	EC	EC	EC,β-	1 00
Dv159	Dy160	Dy161	Dy162	Dy16	Dy 164
3/2-	0+	5/2+	0+	5/2-	6 ++
EC	2.34	18.9	25.5	24.9	28.2
Tb158	Tb159	Tb160	Tb161	Tb162	Tb163
180 v		14.5 U	0.00 u		
180 y 3-	3/2+	3-	3/2+	1-	3/2+

Charged particle activation

HV

ECHO

^{nat}Dy(p,xn) ¹⁶³Ho

^{nat}Dy(α, xn) ¹⁶³Er (ε) ¹⁶³Ho ¹⁵⁹Tb(⁷Li, 3n) ¹⁶³Er (ε) ¹⁶³Ho

MES

Small cross-section

Few radioactive contaminants

NuMECS

High purity ¹⁶³Ho source in ECHo

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:

~ 10¹⁸ atoms

High purity ¹⁶³Ho source in ECHo

Requirement : >10⁶ Bq \rightarrow >10¹⁷ atoms

- (n, γ)-reaction on ¹⁶²Er
 - High cross-section
 - Radioactive contaminants

- Excellent chemical separation
 Only ^{166m}Ho
- Available ¹⁶³Ho source:

~ 10¹⁸ atoms

Mass separation and ¹⁶³Ho ion-implantation

Mass separation and ¹⁶³Ho ion-implantation

RISIKO @ Physics Institute, Mainz University

- Resonant laser ion source efficiency 42%
- Suppression of neighboring masses > 700

→ ^{166m}Ho/¹⁶³Ho < 10⁻⁵

- Optimization of beam focalization

163Ho off-line implantation: results

Activity per pixel

- Energy resolution
- $\Delta E_{\rm FWHM} \simeq 10 \, {\rm eV}$
- No strong evidence of radioactive contamination in the source
- Symmetric detector response

53 C. Hassel et al., JLTP (2015)

Fabrication 4π absorber

Stems between absorber and sensor prevent athermal phonon loss to the substrate

Definition of the implantation area by microstructuring a photoresist layer

Where to improve

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

Two-holes excited states:

shake-up

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

Two-holes excited states:

shake-up shake-off

- A. Faessler et al. J. Phys. G 42 (2015) 015108
- R. G. H. Robertson Phys. Rev. C 91, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al. Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al. Phys. Rev. C 95, (2017) 045502

A. Faessler et al.
 J. Phys. G 42 (2015) 015108

- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C **91**, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95, (2017) 045502

High statistics and high energy resolution spectra will provide information on the spectral shape

High statistics and high energy resolution spectra will provide information on the spectral shape

- A. Faessler et al.
 J. Phys. G 42 (2015) 015108
- R. G. H. Robertson
 Phys. Rev. C **91**, 035504 (2015)
- A. Faessler and F. Simkovic Phys. Rev. C 91, 045505 (2015)
- A. Faessler et al.
 Phys. Rev. C 91, 064302 (2015)
- A. De Rujula and M. Lusignoli arXiv:1601.04990v1 [hep-ph] 19 Jan 2016
- A. Faessler et al.
 Phys. Rev. C 95 (2017) 045502

Present status

ECHo-1k array

3" wafer with 64 ECHo-1k chip

Suitable for parallel and multiplexed readout

64 pixels which can be loaded with ¹⁶³Ho + 4 detectors for diagnostics

Design performance:

 $\Delta E_{FWHM} \simeq 5 \text{ eV}$ $\tau_r \simeq 90 \text{ ns}$ (single channel readout) $\tau_r \simeq 300 \text{ ns}$ (multiplexed read-out)

S.Kempf et al., J. Low. Temp. Phys. 176 (2014) 426

ECHo-1k array

S.Kempf et al., J. Low. Temp. Phys. 176 (2014) 426

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: 15µW @ 20 mK
 - Possibility to load 200kg for passive shielding

ECHo cryogenic platform

- Large space at MXC enough for several ECHo phases
- cooling power: $15\mu W @ 20 mK$
- Possibility to load 200kg for passive shielding
- Presently equipped with:

2 RF lines for microwave multiplexing readour of 2 MMC arrays

12 ribbons each with 30 Cu98Ni2 0.2 mm,
1.56 Ohm/m, cables from RT to mK
→ allows for parallel readout of 36 two-stage SQUID set-up

ECHo-1k (2015 - 2018)

¹⁶³Ho activity: $A_t = 1 \text{ kBq}$

Detectors: Metallic Magnetic Calorimeters

- → Energy resolution $\Delta E_{\text{FWHM}} \leq 5 \text{ eV}$
- \rightarrow Time resolution $\tau \leq 1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁵
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 100

Read-out : Microwave SQUID Multiplexing

 \rightarrow 2 arrays with ~50 single pixels

Background **b** < 10⁻⁵ /eV/det/day

Measuring time **t** = 1 year

 $m(v_{\rm e}) < 10 \text{ eV} 90\% \text{ C.L.}$

ECHo-1M (next future)

¹⁶³Ho activity: $A_t = 1 \text{ MBq}$

Detectors: Metallic Magnetic Calorimeters

→ Energy resolution $\Delta E_{FWHM} \leq 3 \text{ eV}$ → Time resolution $\tau \leq 0.1 \, \mu s$

Unresolved pile-up fraction	$f_{ m pu}$ \leq 10 ⁻⁶
\rightarrow activity per pixel:	A = 10 Bq
\rightarrow number of detectors	<i>N</i> = 10 ⁵

Read-out : Microwave SQUID Multiplexing

 \rightarrow 100 arrays with ~1000 single pixels

Background **b** < 10⁻⁶ /eV/det/day

Measuring time t = 1 - 3 year

 $m(v_{\rm e}) < 1 \; {\rm eV} \; 90\% \; {\rm C.L.}$

Absorber: Bi-Au or Au + $6.5 \times 10^{13} \, {}^{163}$ Ho per detector \rightarrow 300 dec/sec 163 Ho ion implanted in absorber using dedicated facility at Genoa University

Transition Edge Sensor: MoCu or MoAu superconducting films

IES: Detectors

Definition of the critical temperature thanks to the proximity effect: normal metal suppress superconductivity in a superconducting thin film in good electrical contact

Absorber: Bi-Au or Au + 6.5×10^{13} ¹⁶³Ho per detector \rightarrow **300 dec/sec** ¹⁶³Ho ion implanted in absorber using dedicated facility at Genoa University

Transition Edge Sensor: MoCu or MoAu superconducting films

Microwave multiplexing → HOLMES 4×16 linear sub-array → $\Delta E \approx 1 \text{eV}$ and $\tau_R \approx 1 \mu \text{s}$ goal → 1000 pixels

First text of multiplexed TES detectors with no implanted ¹⁶³Ho

→ Very good energy resolution

HOLMES Timeline

- End 2016 ¹⁶³Ho implantation in arrays
- 2017 detector characterization
- 2018 + measurements

 3×10^{13} events in 3 years

~ 1 eV sensitivity

A. Nucciotti, Trento Workshop 2016
NuMECS detectors

Transition Edge Sensor: MoCu superconducting films on solid silicon

- Completed the high-yield microfabrication
- Microwave multiplexing technique

 Testing several methods of incorporating Ho into absorbers
* Au nanofoam

¹⁶³Ho depositon

¹⁶³Ho salt on Au Foil

Nanoporous Au SEM

Absorber attached to TES

NuMECS: ¹⁶³Ho spectrum

¹⁶³Ho spectrum measured with detector prototypes

35 eV FWHM Gaussian convolved with calculation from *Faessler et al., Phys. Rev. C. 2015*

74 M. Croce et al., JLTP 184 3 (2016) 938

How does the existence of sterile neutrino affect the EC spectrum?

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sqrt{1 - \frac{{m_{\nu}}^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_{\rm H} \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{{\Gamma_{\rm H}}^2}{4}}$$

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \sum_{i} |U_{ei}|^2 \sqrt{1 - \frac{m_i^2}{(Q_{\rm EC} - E_{\rm C})^2}} \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} \qquad m_v^2 = \sum_{i} |U_{ei}|^2 m_i^2$$

 Electron neutrino mass as superposition of mass eigenstates

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - |U_{e4}|^2\right) + |U_{e4}|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma_{\rm H}^$$

- Electron neutrino mass as superposition of mass eigenstates
- $m_{i=1,2,3} << m_4 \longrightarrow m_{i=1,2,3} \sim 0 \text{ eV}$

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - |U_{e4}|^2\right) + |U_{e4}|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma_{\rm H}^$$

$$\frac{dW}{dE_{\rm C}} = A(Q_{\rm EC} - E_{\rm C})^2 \left[\left(1 - |U_{e4}|^2\right) + |U_{e4}|^2 \sqrt{1 - \frac{m_4^2}{(Q_{\rm EC} - E_{\rm C})^2}} H(Q_{\rm EC} - E_{\rm c} - m_4) \right] \sum_{\rm H} B_H \varphi_{\rm H}^2(0) \frac{\frac{\Gamma_{\rm H}}{2\pi}}{(E_{\rm C} - E_{\rm H})^2 + \frac{\Gamma_{\rm H}^2}{4}} + \frac{\Gamma_{\rm H}^2}{4} + \frac{\Gamma_{\rm H}^$$

m₄=2 keV, U_{e4}²=0.5

no sterile neutrino

Sensitivity to the mixing matrix element at 90% CL as a function of the sterile neutrino mass achievable with about 10¹⁰ events in the full EC spectrum.

P. Filianin et al. arXiv: 1402⁸4400

 \succ postion of kink => m₄

$$\blacktriangleright$$
 depth of kink => $|U_{e4}|^2$

- Statistical Fluctuation
- No Pile Up
- Theoretical Spectrum supposed to be perfectly known

A White Paper on keV Sterile Neutrino Dark Matter arXiv:1602.04816v1⁸⁵

Conclusions and outlook

Three large collaboration aim to reach sub-eV sensitivity on the electron neutrino mass analysing high statistics and high resolution ¹⁶³Ho spectra

- High purity ¹⁶³Ho sources have been produced
- ¹⁶³Ho ions can be successfully enclosed in microcalorimeter absorbers
- Large arrays have been tested and microwave SQUID multiplexing has been successfully proved
- Search for signature of sterile neutrinos (eV- and keV-scale)

A new limit on the electron neutrino mass is approaching

Er161	Er162	Er163	Er164	Er165	Er166
3/2-	0+	5/2-	0+	5/2-	0+
EC	0.14	EC	1.61	EC	33.6
Ho160	Ho161	Ho162	Ho163	Ho164	Ho165
25.0 m 5+	7/2-	15.0 m l+	4570 y 7/2-	1+	7/2-
EC *	EC *	EC *	EC *	EC,β-	100

Take-home messages

- Where a finite electron neutrino mass affects the ¹⁶³Ho EC spectrum
- Experimental methods (advantages and disadvantages)
- International efforts present status of the experiments
- What else can be learned from the ¹⁶³Ho EC spectrum

