CERN physics programme and neutrinos

E.Elsen

Director of Research and Computing

VII International Pontecorvo Neutrino Physics School, August 20 - September 1, 2017, Prague Czech Republic

There must be more than the Standard Model...

1st Stars about 400 million yrs.

Dark Energy **Accelerated Expansion**

- -

Development of Galaxies, Planets, etc.

Big Bang Expansion

13.7 billion years

PLANCK

Rotational Curves of Galaxies

- Outer rim of galaxies is seen to rotate faster than expected from Newtonian mechanics
 - there is more mass than is seen interacting

Dark Matter

... executing the ongoing (worldwide) Strategy for Particle Physics

CERN Prévessin

ATLAS

SPS 7 km

LHC 27 km²

LHCb-

Example of Dark Matter Search at the LHC

LHC Physics Programme in a broader context

Goal of LHC – Identify the Physics beyond the Standard Model

- Explore an energy regime that has not been chartered before
 - have entered 13 TeV regime in production mode

• 14 TeV after Long Shutdown 2 and possibly 15 TeV (study group)

- Look for small deviations (small couplings) from the Standard Model
 - Precision measurements of (rare) processes
- Lumínosíty need in both cases
 - Higgs particle as a portal

LHC schedule

Extraordinary LHC Performance in 2016

- Batch Compression Merging and Splitting scheme is boosting bunch brightness: bunches collide more effectively → increased pile-up
- Machine availability has essentially doubled (meticula attention to operation)
- Considerably more physics data to digest

Experimental challenge - pile-up

- With every hard interaction of protons many other protons in the bunch collide
 - Experiments have to separate hard processes from the rest

LHC Luminosity 2016 in pp

- Instantaneous (peak) luminosity drives pile-up
- Availability leads to increased computing and data transfer rates

>10 PB/month

LHC Run 2017 in full swing

- LHC resumed full operation after extended winter stop which saw replacement of
 - SPS dump (vacuum leak)
 - sick LHC dipole in sector 12
- but observe sudden background bursts near quadrupole 16L2 leading to occasional dumps probably due to residual N₂ (intensity limitation)
- Experiments carried out their upgrades
 - CMS pixel detector, etc.

(2017-08-30 06:24 including fill 6146; scripts by C. Barschel)

- 368

neutralino

Vector boson and theoretical understanding

- Rate of interaction, i.e. the cross section for ppcollisions varies dramatically
 - high mass cross sections are of very low rate
 - requires very high selectivity (trigger, event selection)

June 2016 γγ $W\gamma$, (NLO th.) $Z\gamma$, (NLO th.) $Z\gamma$, (NLO th.) WW+WZ WW WW WW WZ WZ WZ ZZ ZZ ZZ 0.5

All results at: http://cern.ch/go/pNj7

Higgs Boson at 7 and 8 TeV (Run 1)

ATLAS and CMS have combined their Run 1 data to extract precise measurement of Higgs coupling

Higgs (125 GeV) compatible with SM

WW WW WW WW WW

ggF

VBF

MΗ

ZH

Ŧ

$H \rightarrow 4 \ell$ and combination with $H \rightarrow \gamma \gamma$

$H \rightarrow \text{fermions}$

F

4.9 σ

from run 2

3.5 σ

$B^0 \rightarrow \mu\mu$ combined result of CMS and LHCb

From limit to measurement for $B^0 \rightarrow \mu\mu$

The rare decay was known to be particularly sensitive for new physics.

25 years of experimental research to reach SM sensitivity.

Compatible with SM – new physics not hiding here?

Measurement of BR($B_s \rightarrow \mu\mu$) and search for $B_d \rightarrow \mu\mu$

- fb⁻¹ of Run 2 data

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.0 \pm 0.6)$$

$$\mathcal{B}(B^0 o \mu^+ \mu^-) <$$

• Re-analyse Run 1 data with improved selection (background halved) and add 1.4

• First single-experiment observation of $B_s \rightarrow \mu\mu$ mode; measurement of BR has same precision as previous Run 1 LHCb-CMS combined analysis [Nature 522 (2015) 68].

Measurement of R_{K*}

contributions

Heavy Ion Physics

Pb-Pb: J/ ψ suppression at 5 TeV

nuclear modification factor RAA:

$$R_{AA} = \frac{N(J/\psi)_{AA}}{\langle N_{bin} \rangle N(J/\psi)_{pp}}$$

- very different behaviour between LHC and RHIC (vs both centrality and p_T)
- most straightforward explanation: c-cbar recombination at LHC

New and precise 5 TeV data support even further increase

Strangeness production in high-energy pp

Strangeness increases in highmultiplicity ppcollisions

Evidence for Quark-Gluon plasma in pp collisions

High Luminosity LHC

High-Luminosity LHC approved by Council in 2016

High-Luminosity (HL-LHC)

- 5x10³⁴ cm⁻²s⁻¹ levelled;
 i.e. factor 5 over design
 - to yield 3 ab⁻¹ by ~2035

requires

- focussing $\beta^*=15$ cm
- crab crossing

LHC-Injector upgrades – Linac 4 taken into operation*

- Commissioning started
 2014
- protons have been accelerated to 160 MeV
- using π-mode structures PIMS for high energy acceleration

Inauguration 9.5.2017

*not yet connected to booster

HL-LHC schedule

A few physics example for HL-LHC

- measurement of Higgs couplings
 - deviations may be at the few %-level
 - access to second generation couplings $H \rightarrow \mu\mu$
- 20-30% larger discovery potential (8 TeV)
 - precision measurements

SM Physics Menu on the LHC and HL-LHC Running Schedule

Phase II Detector upgrades

- replace radiation-damaged components

- enable detectors to withstand the rates at phase I performance

ATLAS ITk strips TDR (Phase II Upgrade)

- Settled on 5 pixel + 4 strips system
- Only the strips are evaluated in TDR although status of pixel mentioned
- The pixel TDR will follow at the end of 2017
- Large document
 (>500 pages)

Planned deluge of Technical Design Reports (TDRs)

Experiment	System	Date	CORE MCHF	SOURCE	SD=
ATLAS	ITkStrip	Dec-16	61	TDR ITkStrip	Scoping Doc
ATLAS	Muon	Jun-17	34	SD	ATLAS
ATLAS	LAr	Sep-17	36	SD - sFCal	Letter of Inter Document
ATLAS	Tile	Sep-17	9	SD	CERN-LHCC
ATLAS	TDAQ	Dec-17	43	SD	CERN-LHCC
ATLAS	ITkPixel	Dec-17	59	SD	CMS
CMS	Tracker	Jul-17	112	SD	Technical Pro
CMS	Barrel Cal	Sep-17	11	SD	Scoping Doc
CMS	Muon	Sep-17	25	SD	CERN-LHCC CERN-LHCC
CMS	Endcap Cal	Nov-17	64	SD	
CMS	Trigger DAQ/HLT	>2019	24	SD	

Highest energy hadron colliders

From European Strategy of Particle Physics

CERN should undertake design studies for accelerator projects in a global context, with emphasis on protonproton and electron-positron high-energy frontier machines. These design studies should be coupled to a vigorous accelerator R&D programme, including high-field magnets and high-gradient accelerating structures, in collaboration with national institutes, laboratories and universities worldwide.

Future Circular Collider FCC

- Study for A 100 km ring providing collisions at 100 TeV cm
 - employs injector chain of CERN

High-field magnets

- Key to high energies
 - FCC and
 - HE-LHC = use of high field magnets in existing LHC ring
- Technology

 - •

Nb₃Sn allows ~16 T magnets that need to be developed (size, cost, industry...)

HL-LHC magnets provide a ~1.2 km test of the technology (11 T magnets)

an insert of HTS may increase field to 20 T (requires considerable research)

International Collaboration on Magnet Development

- Nb₃Sn magnets: international R&D programme
 - several European countries and US LARP programme and its successor

1.2KM of LHC modified

FCC Conceptual Design Report by end 2018

- pp-Collider (FCC-hh) sets the boundary conditions •
 - 100 km ring, $\sqrt{s}=100$ TeV, L~2x10³⁵
 - HE-LHC is included (~28 TeV)
- e⁺e⁻-Collider as a possible first step •
 - $\sqrt{s} = 90 350 \text{ GeV},$ \dot{L} ~1.3x10³⁴ at high E
- eh-Collider as an option •
 - $\sqrt{s}=3.5$ TeV, L~10³⁴

Highest energy with lepton colliders

Compact Linear Collider CLIC

- e⁺e⁻ collider 1-3 TeV
- currently only option for the TeV region
- 380 GeV study has been completed both for 2-beam and klystrons approach; now explore 250 GeV
- decisive input to next update of European Strategy for Particle Physics

- CDR 2013

- CTF3 has provided key results
 - experimental programme ended 2016
- ready for a demonstrator

e+e⁻ collider

From European Strategy of Particle Physics

There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded. The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate.

Europe looks forward to a proposal from Japan to discuss a possible participation.

International Linear Collider ILC

- e^+e^- collider $\sqrt{s} = 0.5$ TeV (upgradeable to 1 TeV)
 - staged version for $\sqrt{s} = 0.25$ TeV being promoted
- precision Higgs (and Top) • programme and beyond
- Ministry MEXT continues to evaluate the implications of hosting ILC in Japan w.r.t. cost, manpower (skills)

- Project is mature (TDR 2012) - hosting evaluated by Japanese government expect (some) statement by the end of 2018

From European Strategy of Particle Physics

Europe should explore the possibility of major participation in leading long-baseline neutrino projects in the US and Japan.

Neutrinos at CERN

- Long tradition
 - detection of neutral currents at Gargamelle in 1973
 - CDHS and CHARM...
- More recently
 - CNGS
 - sending neutrinos from CERN to Gran Sasso

CNGS 2006 - 2012

CERN v-beam to Gran Sasso

1.8x10²⁰ p.o.t.

OPERA

- $5 v_{\tau}$ were detected in emulsion detector
 - Detection of $v_{\mu} \rightarrow v_{\tau}$ oscillations

ICARUS at Gran Sasso

• LArTPC

- search for v_µ → v_e
 oscillations and
 LSND effect
 - $P_{\nu\mu \to \nu e} \le 5.4 \times 10^{-3}$ @ 90%CL
- search for $v_{\mu} \rightarrow v_{\tau}$ oscillations

Neutrino Physics at CERN in the LHC era

- with the ESPP of 2012... ...decision to end CNGS in 2012
- Establishment of a Neutrino Platform at CERN
 - as a springboard for European Physicists to engage in accelerator based neutrino physics in the US and in Japan
 - Detector development (initial emphasis on Lar TPC) •
 - Extension of EHN1 hall

Charged particles from SPS available

Fast entry into Short Baseline Programme at Fermilab

- ICARUS
 - ended data taking at LNGS
 - pioneered LarTPC technology
 - space at LNGS had to be cleared

ICARUS overhaul at CERN (WA104 - NP01)

- Detector upgrade
 - more PMTs
 - new cathode, inner cabling •
 - new electronics
- Scintillator layer (cosmic tagger)
- New cryostat and cryogenic plant •

Reassembly of the 2 T300 modules inside cryostats and shipment to Fermilab

Sterile neutrino search

Short baseline programme at Fermilab

- To resolve experimental inconsistencies in the measured v-spectrum
 - SBND (near detector)
 - MicroBooNE (operating)
 - MiniBooNE
 - refurbished ICARUS arrived at Fermilab

ICARUS Trip

Burns Habor

Fermilab

ICARUS arrival at Fermilab

- Novel cryostat technology for ICARUS
 - based on GTT technology well established for vessels carrying liquid gases
 - much more demanding on stability

Route Planning	Route Schedule
Dep. CERN	12 June 2017
↓ truck	
Arr. Basel (CH)	14 June 2017
Dep. Basel (CH)	15 or 16 June 2017
↓ barge	
Arr. Antwerp (NL)	21 June 2017
Dep. Antwerp (NL)	earliest/latest on 23/30 June 2017
↓ ship	
Arr. Burns Arbor (USA, IN)	appr. 23-24 days after departure from Antwerp
↓ truck	
FERMILAB	appr. 2 days after dep. from Burns Arbor

J-PARC at Neutrino Platform

- 3% precision H_2O/C_nH_n cross-section ratio
- Study of v_{μ} energy reconstruction
- wide angle θ coverage
- complementary to ND280

Long baseline neutrino programmes

- Fermilab is constructing a long baseline neutrino facility (LBNF), a wide band neutrino beam to the DUNE experiment (40 kt LArTPC) in South Dakota
- Tokyo is considering Hyper-K (water Cherenkov detector) at Kamioka
- Goals: neutrino-oscillation parameters, mass hierarchy and CP-violation, ...

CP violation

- Both Nova and T2K see slight preference for CP violation in neutrino sector
 - angle around 270°
 - good prospects for large mass detectors

LAr Technology

- LarTPC large scale active detectors
 - few mm precision
 - good energy resolution

Neutrino Platform at CERN

To develop experimental techniques, e.g. protoDUNE single phase LArTPC

double phase LArTPC

DUNE detector

Preparing the protoDUNE cryostat structures at CERN

preparing the cryostat inner structures

active volume 6x6x6 m³

at the neutrino platform

DUNE Collaboration

Groundbreaking of SURF July 2017

LBNF / DUNE - far detector

- Sanford Lab Reliability FY16 18 (~30M\$)
 - Ross shaft rehab; Hoist motor rebuild...
- Pre-Exc Construction FY17 18 (~15M\$)
 - Rock disposal systems
 - Ross headframe upgrade, more...
- Excavation & Surface Construction
 FY19 22 (~300M\$)
- Cryostats/Cryogenic Systems FY20 25 (In kind)

International DUNE Project

NEAR DETECTOR

Dual-Phase DUNE FD: 20 times replication of Dual-Phase ProtoDUNE (drift 6m --- 12m) DUNE Conceptual Design Report, July 2015 Active LAr mass:12.096 kton, fid mass:10.643 kton, N. of channels: 153600

FAR DETECTOR - Dual Phase

ProtoDUNE-DP

Summary Neutrino Platform

- detectors construction, installation and commissioning
- been constructed and is being made operational
- In the short term, the CERN Platform is helping in getting a Short Baseline Near detectors are now appearing as new R&D projects.

 CERN offers a platform for Neutrino detectors R&D and later construction. CERN is supporting this platform in an active way both for the infrastructure and for the

• A large neutrino test area (EHN1-1 extension) with charged beams capabilities has

• CERN will assist the EU neutrino community in their long term common plans. We are reacting on demands from the community, in particular for many R&D aspects.

operational at FNAL with an agreed physics program ... and later a Long Baseline.

Towards 2020 Update of European Strategy for Particle Physics

– LHC and HL-LHC exploitation (√)
– Prepare for the next step at the energy frontier
– Rich diversity programme...

LHC and its injector chain used for physics

- LHC
 - ongoing Run 2 @ 13 TeV
- Injectors supporting
 - Fixed target programme
 - ISOLDE (isotopes)
 - n-ToF
 - AD-programme

Physics Beyond Collider Study

- Kickoff meeting held in September 2016 Follow-up in November 2017
 - Study of fixed target programme

Dark sector search complementary to SHiP: invisible decays from missing energy

First implementation in 2016 by NA64 on an electron test beam Wish to extend the method to $\mu / \pi / K / p$ beams (+ possibly higher intensity e's with AWAKE techno)

Physics Beyond Collider Study cont'd

Study of an all-electric storage ring

Sensitivity of 10⁻²⁹ e-cm corresponds to 100 TeV for new physics scale
Summary

- physics return
 - by exploring the highest energies
 - by searching for violations of the SM in (highly sensitive) rare decays
- Preparing Update of the European Strategy for Particle Physics
 - LHC and HL-LHC
 - Energy Frontier (FCC / CLIC)
 - Accelerator based neutrino programme (US & Japan) via neutrino platform
 - Vibrant physics programme Beyond Colliders

Experimental Programme of LHC extremely rich; long range experimental programme guarantees

2018 (end): reports on Physics 2019: community discussion with input from other regions

