DOUBLE BETA DECAY EXPERIMENTS

A.S. BARABASH ITEP, Moscow

Plan

• Historical introduction

Present status

• Future experiments

I. Historical introduction

Neutrino was introduced by W. Pauli in 1930 β -decay theory (weak interaction) was formulated by E. Fermi in 1933:

 $\begin{array}{l} (\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}\text{+1}) + \mathrm{e}^{\scriptscriptstyle +} + \nu^{\scriptscriptstyle \sim} \\ (\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}\text{-1}) + \mathrm{e}^{\scriptscriptstyle +} + \nu \end{array}$

The birth of double beta decay

 2β(2ν) decay was introduced by
 M. Goeppert-Mayer in 1935:

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\tilde{V}$$

(T_{1/2} ~ 10²¹-10²² y)

2ν -ββ Decay (A,Z)→(A,Z+2) + 2e⁻ + 2ν[~])

 $\nu \neq \overline{\nu}$

Racah's chains (G. Racah, 1937)

- $(A,Z) \rightarrow (A,Z+1) + e^{-} + \tilde{v} (v=v^{-}) \rightarrow v + (A,Z) \rightarrow (A,Z+1) + e^{-}$
- So, it will be possible to see difference between Dirac and Majorana neutrinos!
- W.H. Farry (1938) \rightarrow no any practical possibilities to use this (there were no reactors at that time!)

The birth of neutrinoless double beta decay

 2β(0v) decay was introduced by W.H. Farry in 1939:

$$(A,Z) \to (A,Z+2) + 2e^{-}$$
 (4)

 $(T_{1/2} \sim 10^{15} - 10^{16} y)$

[Parity violation was not known at that time!]

0ν-ββ Decay (A,Z) → (A,Z+2) + 2e⁻

Double beta decay scheme

First experiments

- **1948** first counter experiment (Geiger counters, ¹²⁴Sn; T_{1/2}(0v) > 3-10¹⁵ y)
- 1950 first evidence for 2β2ν decay of ¹³⁰Te in first geochemical experiment:

T_{1/2} ≈ 1.4·10²¹ y!!!

- 1950-1965 a few tens experiments with sensitivity ~ 10¹⁶-10¹⁹ y
- 1966-1975 in 3 experiments sensitivity to 0v decay reached ~ 10²¹ y!!!

Geochemical experiments

- Selection of mineral, contains 2β nuclei (¹³⁰Te, ⁸²Se, for example).
- Age and geological history of the mineral (age is ~ (0.1-4)x10⁹ yr) have to be known.
- 3. Extraction of daughter atoms (Xe, Kr,).
- 4. Determination of isotopic composition (using **mass-spectrometer**).
- 5. Excess of ¹³⁰Xe or ⁸²Kr gives information about 2β-decay rate.

Measurement time is a few billion years!

1957 - situation is changed!

- P and C violation
- V-A structure of weak interaction
- Helicity of v(v~) is ~ 100%
 ↓

 $2\beta(0\nu)$ -decay is suppressed (if even possible?) and $T_{1/2}(0\nu) > T_{1/2}(2\nu)$

Best results in 1966-1975

T_{1/2}(0v;⁷⁶Ge) > 5·10²¹ y; Ge(Li) detector, 1973
 (E. Fiorini et al.)

(1967 – first result for ⁷⁶Ge with Ge(Li) detector)

- $T_{1/2}(0v; {}^{48}Ca) > 2 \cdot 10^{21} y$; streamer chamber + magnetic field + plastic scint., 1970 (C. Wu et al.)
- $T_{1/2}(0v;^{82}Se) > 3.1 \cdot 10^{21} y$; streamer chamber + magnetic field + plastic scint., 1975 (C. Wu et al.)

Fig. 3. Cutaway drawing of double beta decay apparatus.

Geochemical experiments with ¹³⁰Te, ¹²⁸Te, ⁸²Se (2v measurements: ~ 10²¹, ~10²⁴ and ~10²⁰ y)

Main achievements in 1976-1987

 2β2ν decay was first time detected in direct (counting) experiment ⇒

 $T(^{82}Se)_{1/2} = 1.1^{+0.8} \cdot 10^{20} y$ (35 events; TPC, **1987**,

S. Elliott, A. Hahn, M. Moe)

First time enriched Ge

detector was used in experiment (ITEP-ErFI; 1987)

Main achievements in 1988-2003

• $T_{1/2}(0v;^{76}Ge) > (1.6-1.9) \cdot 10^{25} y;$

(HM and IGEX; enriched HPGe detectors)

- $T_{1/2}(0v) > 10^{22}-10^{23}$ y for ¹³⁶Xe, ⁸²Se, ¹¹⁶Cd, ¹⁰⁰Mo
- 2v-decay was detected for many nuclei (TPC, ELEGANT-V, NEMO-2, HM, IGEX, Solotvino, Liq. Ar...) + transition to the 0⁺ excited states (Soudan, Modane, TUNL-ITEP)
- First time ECEC(2v) process was detected (¹³⁰Ba, geochemical experiment)

Klapdor's Claim

Klapdor-Kleingrothaus H V, Krivosheina I V, Dietz A and Chkvorets O, *Phys. Lett.* B **586** 198 (2004).

Used five ⁷⁶Ge crystals, with a total of 10.96 kg of mass, and 71 kg-years of data.

 $τ_{1/2}$ = 1.2 x 10²⁵ y (4.2 σ)

 $0.24 < m_v < 0.58 \text{ eV} (\pm 3 \text{ sigma})$

(NME from Eur. Lett. 13(1990)31)

There are some problems with this result:

- 1) Only one measurement.
- 2) Only ~4 σ level (independent analysis gives even ~ 2.7 σ).
- 3) In contradiction with HM'01 and IGEX.
- 4) Moscow part of Collaboration: **NO EVIDENCE**.
- 5) ²¹⁴Bi peaks are overestimated.
- 6) "Total" and "analyzed" spectra are not the same.

"2β community": very conservative reaction

In any case new experiments are needed, which will confirm (or reject) this result

Mod.Phys.Lett. A21(2006)1547

Old data, new pulse shape anal. $\tau_{1/2} = 2.23^{+0.44}_{-0.31} \times 10^{25} \text{ y}$ (6 σ) $m_v = 0.32 \pm 0.03 \text{ eV}$ $n = 11\pm1.8 \text{ events} \Rightarrow$ where is a statistical error?! non-correct peak position?!

Heidelberg-Moscow experiment

Gran Sasso

5 HPGe detectors (~ 11 kg of 76 Ge) B \approx 0.17 (0.02) c/keV kg y

1990-2003 (full statistics: 71.7 kg·y)

$T_{1/2}(0v) > 1.9 \cdot 10^{25} \text{ yr}$ (no evidence)

Main achievements in 2004-2012

- NEMO-3 experiment
- -COURICINO experiment
- start of GERDA-I, EXO, KamLAND-Zen experiments

CUORICINO

INFN - Laboratori Nazionali del Gran Sasso - L'Aquila – Italy

Hall C: R&D + final test for CUORE

3200 m.w.e overburden - cosmic rays are no more a bkg problem

* n flux is reduced to ~10⁻⁶ n/cm²/s
μ flux is ~ 2/m²/h

Cuoricino

11 modules 4 detectors each Dimension: 5x5x5 cm³ Mass: 790 g

Total mass 40.7 kg (~11 kg of ¹³⁰Te)

2 modules 9 detectors each, Dimension: 3x3x6 cm³ Mass: 330 g

Low Temperature Detectors (LTD)

Detection Principle $\Delta T = E/C$ C: thermal capacity low C low T (i.e. $T \ll 1K$) dielectrics, superconductors ultimate limit to E resolution: statistical fluctuation of internal energy U $\langle \Delta U^2 \rangle = k_{\rm B} T^2 C$

Thermal Detectors Properties good energy resolution wide choice of absorber materials true calorimeters slow $\tau = C/G \sim 1 \div 10^3$ ms

T = 8 mK

 $T_{1/2} > 2.8 \cdot 10^{24} \text{ yr}$

Cuoricino result on ¹³⁰Te ββ0v decay

<m.,> < 0.3-0.7 eV

NEMO-3 Collaboration (Neutrino Ettore Majorana Observatory) 60 physicists, 17 labs

Laboratoire Souterrain de Modane

Built for Taup experiment (proton decay) in 19<u>81-1982</u>

The NEMO3 detector

Fréjus Underground Laboratory : 4800 m.w.e.

Source: 10 kg of $\beta\beta$ isotopes cylindrical, S = 20 m², 60 mg/cm²

Tracking detector:

drift wire chamber operating in Geiger mode (6180 cells) Gas: He + 4% ethyl alcohol + 1% Ar + 0.1% H₂O

<u>Calorimeter</u>: 1940 plastic scintillators coupled to low radioactivity PMTs

Magnetic field: 25 Gauss Gamma shield: Pure Iron (18 cm) Neutron shield: borated water (~30 cm) + Wood (Top/Bottom/Gapes between water tanks)

 $\implies Able to identify e^-, e^+, \gamma and \alpha$

$\beta\beta$ decay isotopes in NEMO-3 detector

Sector interior view

ββ events selection in NEMO-3

Typical $\beta\beta$ 2 ν event observed from ¹⁰⁰Mo

¹⁰⁰Mo (7kg), 2νββ

 $T_{1/2}(2v) = [7.17 \pm 0.01(stat) \pm 0.54(sys)] \times 10^{18} \text{ yr} \Rightarrow \sim 3.5 \text{ yr},$

Phase II (low Rn), S/B = 76 M²ν(¹⁰⁰Mo) = 0.126 ± 0.006 ~ 700000 событий!

to be compared with earlier published in PRL 95 (182302)

2005:

 $T_{1/2}(2\nu) = [7.11 \pm 0.02(stat) \pm 0.54(sys)] \times 10^{18} \text{ yr} \Rightarrow \sim 1 \text{ yr}$, Phase I, S/B = 40

Summary of 2vββ results (NEMO-3)

Isotope	S/B	(2νββ), y
¹⁰⁰ Mo	40	$(7.11 \pm 0.02(stat)\pm 0.54(syst))\cdot 10^{18}$ (SSD favoured) *
¹⁰⁰ Mo(0+ ₁)	3	$(5.7^{+1.3}_{-0.9}(\text{stat})) \pm 0.8(\text{syst})) \cdot 10^{20} **$ [NPA 781 (2006) 209]
⁸² Se	4	$(9.6 \pm 0.3(stat) \pm 1.0(syst)) \cdot 10^{19} *$
¹¹⁶ Cd	7.5	$(2.74 \pm 0.04(stat) \pm 0.18(syst)) \cdot 10^{19}$ [PRD 95 (2017) 012007]
¹³⁰ Te	0.35	$(7.0^{+1.0}_{-0.8}(\text{stat})^{+1.1}_{-0.9} (\text{syst})) \cdot 10^{20}$ [PRL 107 (2011) 045503
¹⁵⁰ Nd	2.8	(9.34±0.22(stat)±0.62(syst))·10 ¹⁸ [PRC 80 (2009) 032501R]
⁹⁶ Zr	1.0	$(2.35 \pm 0.14(stat) \pm 0.16(syst)) \cdot 10^{19}$ [NPA 847 (2010) 168]
⁴⁸ Ca	6.8	$(6.4^{+0.7}_{-0.6}(\text{stat})^{+1.2}_{-0.9}(\text{syst})) \cdot 10^{19}$ [PRD 93 (2016) 112008]

* Phase 1 data, Phys. Rev. Lett. 95 (2005) 182302. Additional statistics are being analysed, to be published soon.
** Phase 1 data.

Single electron spectrum $2\nu\beta\beta$ (¹⁰⁰Mo)

The ββ2ν half-life of ¹³⁰Te has been a long-standing

mystery:

Geochemical experiments: $(26 \pm 2.8) \times 10^{20}$ years (Kirsten 83) $(27 \pm 1) \times 10^{20}$ years (Bernatowicz 93)

(7.9 ± 1) x 10²⁰ years (Takaoka 96) ~8 x 10²⁰ years (Manuel 91)

- Is the difference between 'old' and 'young' ores due to time dependence of constants..? [A.S.B. JETP Lett. 68 (1998) 1]
- Using geochemical ratio of ⁸²Se/¹³⁰Te and present half-life value for ⁸²Se from direct experiments:
 (9 ± 1) x 10²⁰ years (recommended value, A.S.B. 2001)
- Direct measurement: [6.1 ± 1.4 (stat)^{+2.9}-3.4</sub> (syst)] x 10²⁰ years (Arnaboldi 2003)

$T_{1/2} = [7.0 \pm 0.9(stat) \pm 1.0(syst)] \cdot 10^{20}$ (NEMO-3)

Summary of 0vββ results (NEMO-3)

Isotope	Exposure, kg·yr	Τ _{1/2} (0ν), yr	<m<sub>v>, eV</m<sub>
¹⁰⁰ Mo	34.3	> 1.1·10 ²⁴	0.3-0.6
⁸² Se	3.6	> 3.2·10 ²³	1.1-2.5
¹³⁰ Te	1.4	> 1.3.1023	1.4-5.4
¹¹⁶ Cd	2.15	> 1.0.1023	< 1.4-2.5
¹⁵⁰ Nd	0.19	> 2.0·10 ²²	< 1.6-5.3
⁴⁸ Ca	0.0367	> 2.0.1022	< 6.0-26
⁹⁶ Zr	0.031	> 9.2·10 ²¹	3.6-10.4

II. PRESENT STATUS

- 1. Introduction
- 2. Current experiments
 - GERDA-II
 - Majorana-Demonstrator
 - EXO-200
 - KamLAND-Zen
 - CUORE
1. Introduction

Candidates with $Q_{2\beta} > 2 \text{ MeV}$

Nuclei	<mark>Q</mark> _{2β} , keV	Abundance, %
1. ⁴⁸ Ca	4272	0.187
2. ¹⁵⁰ Nd	3371.4	5.6
3. ⁹⁶ Zr	3350	2.8
4. ¹⁰⁰ Mo	3034.4	9.63
5. ⁸² Se	2996	8.73
6. ¹¹⁶ Cd	2805	7.49
7. ¹³⁰ Te	2527.5	<u>34.08</u>
8. ¹³⁶ Xe	2458.7	8.87
9. ¹²⁴ Sn	2287	5.79
10. ⁷⁶ Ge	2039.0	7.61
11. ¹¹⁰ Pd	2000	11.72

Natural γ -rays background - E < 2.615 MeV. So, there are 6 gold and 5 silver isotopes

Shape of 2β-decay spectra

$2\beta^+$, EC β^+ and ECEC processes

- $2\beta^+$: (A,Z) \rightarrow (A,Z-2) + $2\beta^+$ + 2X (+ 2v) (6 nuclei candidates)
- **EC** β +: e-b + (A,Z) \rightarrow (A,Z-2) + β + + X (+ 2v) (16 nuclei candidates)

· ECEC:

 $2e_{b}^{-}+(A,Z) \rightarrow (A,Z-2) + 2X (+2v)$ (34 nuclei candidates)

Candidates for $2\beta^+$ transition

	Q _{ECEC} , keV	
Nuclei		Abundance,
1. ⁷⁸ Kr 2. ¹²⁴ Xe 3. ¹⁰⁶ Cd 4. ⁹⁶ Ru 5. ¹³⁰ Ba 6. ¹³⁶ Ce	2847.47 2790.41 2775.39 2714.51 2544.43 2378.53	0.35 0.09 1.25 5.54 0.101 0.185

(One can compare these values with ~ **10²³-10²⁴ y for 2**β⁻-decay)

- β⁺β⁺ (**0**ν) $\sim 10^{28} - 10^{30} \text{ y}$ β+**EC(0**ν) ~ 10²⁶-10²⁷ y ~ 10²⁸-10³¹ y ECEC(0v)

- Transition to the ground state. For the best candidates ($< m_v > = 1 eV$):

Probability of Decay

ECEC(0v); resonance conditions

- In 1955 (R.Winter, Phys. Rev. 100 (1955) 142) it was mentioned that if there is excited level with "right" energy then decay rate can be very high.
- (Q'-E has to be close to zero. Q'-energy of decay, E-energy of excited state)
- In 1982 the same idea for transition to ground and excited states was discussed (M. Voloshin, G. Mizelmacher, R. Eramzhan, JETP Lett. 35 (1982)).
- In 1983 (J. Bernabeu, A. De Rujula, C. Jarlskog, Nucl. Phys. B 223 (1983) 15) this idea was discussed for ¹¹²Sn (transition to 0+ excited state). It was shown that enhancement factor can be on the level ~ 10⁶!
- In 2004 the same conclusion was done by Z. Sujkowski and S. Wycech (Phys. Rev. C 70 (2004) 052501).

$T_{1/2} \sim 10^{23} - 10^{24} \text{ y for } < m_v > = 1 \text{ eV}$

Main candidates:

- ⁷⁴Se, ⁷⁸Kr, ⁹⁶Ru, ¹⁰²Pd, ¹⁰⁶Cd, ¹¹²Sn, ¹²⁴Xe, ¹³⁰Ba, ¹⁴⁴Sm, ¹³⁶Ce, ¹⁵²Gd, ¹⁵⁶Dy, ¹⁶²Er, ¹⁶⁴Er, ¹⁶⁸Yb, ¹⁸⁰W, ¹⁸⁴Os, ¹⁹⁰Pt
 - Resonance conditions have not been confirmed (practically for all of them). Mainly because of $\Delta Q > 1$ keV. And, in some cases, because of **«not good» quantum numbers (spin and parity)** of the states.

PROBLEMS

- There is no "good" candidate up to now
- Concentration of isotope-candidates is low
 (~ 0.1-1%). Exception is ⁹⁶Ru 5.5%.
- There is no «reliable» information about high energy excited states (information from 50-th and 60-th years of last century). So, «good candidate» can be found in the future!

NEUTRINOLESS DOUBLE BETA DECAY

2 electrons $E_{\beta 1} + E_{\beta 2} = Q_{\beta \beta}$

Oscillation experiments \Rightarrow **Neutrino is massive!!!**

However, the oscillatory experiments cannot solve the problem of the origin of neutrino mass (Dirac or Majorana?) and cannot provide information about the absolute value of mass (because the Δm² is measured).

This information can be obtained in 2β-decay experiments.

$$\langle m_v \rangle = |\Sigma| |Uej|^2 e^{i\phi} m_j|$$

Thus searches for double beta decay are sensitive not only to masses but also to mixing elements and phases ϕ_i .

What one can extract from 2β-decay experiments?

- □ Lepton number nonconservation (∆L=2)
- Nature of neutrino mass (Dirac or Majorana?).
- **Absolute mass scale**.
- Type of hierarchy (normal, inverted, quasi-degenerated).
- **CP** violation in the lepton sector

Neutrinoless double beta decay is being actively searched, because it is closely related to many fundamental concepts of nuclear and particle physics:

- the lepton number nonconservation;
 - the existence of neutrino mass and its origin
- (Dirac or Majorana?);
 - the presence of right-handed currents in
 - electroweak interactions
 - the existence of Majoron;
 - the structure of Higg's sector;
 - the supersymmetry;
 - the heavy sterile neutrino;
 - the existence of leptoquarks.

Input for <m_{ee}> from v-oscillations

DBD and neutrino mass hierarchy

Nuclear Matrix Elements

Spread ~ factor 2-3

No isotope significantly preferred when comparing decay rate per mass!

Choice mainly driven by experimental considerations

Best present limits on <m,>

Nucleus	T _{1/2} , yr	<m<sub>v>, eV QRPA + others</m<sub>	Experiment
⁷⁶ Ge	> 8.10 ²⁵ (> 5.1.10 ²⁵)	< 0.14-0.31 (< 0.17-0.39)	GERDA-II
¹³⁶ Xe	>1.07·10 ²⁶ (>0.5·10 ²⁶)	< 0.06-0.19 (< 0.09-0.28)	KamLAND-Zen
¹³⁰ Te	>6.6·10 ²⁴	< 0.24-0.58	CUORE+CUORIC INO+CUORE0
¹⁰⁰ Mo	> 1.1 .10 ²⁴	< 0.33-0.62	NEMO-3

Conservative limit on <**m**_v> **is 0.3 eV**

QUENCHING OF g_A IN NUCLEAR MATTER (g_A PROBLEM)

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$

$$\Rightarrow$$
 m _{$\beta\beta$} ~ 1/g_A²

 $g_A = 1.27$ from free neutron decay $g_A^{eff} \approx 0.3-0.9$ (from β^- and $2\beta^-(2\nu)$ decay) \downarrow

~ (2-15) times lower sensitivity to $m_{\beta\beta}$?! (but $g_A^{eff}(2\nu) \neq g_A^{eff}(0\nu)$?!)

Two neutrino double beta decay

- Second order of weak interaction
- Direct measurement of NME values! \Rightarrow
 - The only possibility to check the quality of NME calculations!!!
 - g_{pp} (QRPA parameter \Rightarrow NME(0v)!)
 - g_A problem (1.27; 1; 0.3-0.9 ?)
- This is why it is very important to measure this type of decay for many nuclei, for different processes (2β⁻, 2β⁺, Kβ⁺, 2K, excited states) and with high accuracy.

M. Goeppert-Mayer

Two neutrino double beta decay

- By present time 2β(2ν) decay was detected in 11 nuclei: ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U
 - For ¹⁰⁰Mo and ¹⁵⁰Nd 2 β (2 ν) transition to 0⁺ excited states was detected too
 - ECEC(2v) in ¹³⁰Ba was detected in geochemical experiments

Main goal is: precise investigation of this decay

2 β (2 ν) spectrum for ¹⁰⁰Mo (NEMO-3)

~ 700000 2v events

Background is ~ 2%!!

All parameters of decay are measured!!!

Recommended values for half-lives: [A.S.B. Nucl. Phys. A 935 (2015) 52]

- ${}^{48}Ca (4.4 {}^{+0.6}_{-0.5}) \cdot 10^{19} \text{ y}$
- $^{76}\text{Ge} (1.65^{+0.14}) \cdot 10^{21} \text{ y}$
- ${}^{82}Se (0.92 \pm 0.07) \cdot 10^{20} y$
- ${}^{96}Zr (2.3 \pm 0.2) \cdot 10^{19} y$
- ${}^{100}Mo (7.1 \pm 0.4) \cdot 10^{18} y$

• ${}^{100}Mo - {}^{100}Ru (0_{1}^{+}) -$

- ${}^{150}Nd {}^{150}Sm (0^+) -$
- ¹⁵⁰Nd -(8.2± 0.9) · 10¹⁸ y
- ¹³⁶Xe $(2.19 \pm 0.06) \cdot 10^{21} \text{ y}$
- 128 Te(geo) (2.0 ± 0.3)·10²⁴ y

- ¹³⁰Te $(6.9 \pm 1.3) \cdot 10^{20} \text{ y}$

- ${}^{116}Cd (2.87 \pm 0.13) \cdot 10^{19} y$
- $(6.7^{+0.5}_{-0.4}) \cdot 10^{20} \text{ y}$
 - - ECEC(2ν): ¹³⁰Ba(geo) ~ 10^{21} y

• 238 U(rad) - (2.0 ± 0.6)·10²¹ y

 $(1.2^{+0.3}) \cdot 10^{20} \text{ y}$

2. CURRENT EXPERIMENTS

- GERDA-I, GERDA-II
- Majorana-Demonstrator
- EXO-200
- KamLAND-Zen
- CUORE

GERDA-I (Gran Sasso)

8 HPGe detectors made of enriched Ge (17.66 κr; HM+IGEX)
+ 1 detector made of natural Ge; 3 natural HPGe
ΔE = 4-5 keV
5 enriched BEGe (3 kg, ΔE = 3.2 keV)
Sensitivity: ~ 2.10²⁵ yr for 1 year of measurement
and B = 0.01 c/keV·kg·y

Beginning of data taking: 09.11.2011 End of data taking: May 2013

GERDA-I results

2v decay of ⁷⁶Ge:

 $T_{1/2}(2\nu) = (1.84^{+0.14}_{-0.10}) \cdot 10^{21} \text{ yr}$ (J. Phys. G40 (2013) 035110; in agreement with G-M experiment) $T_{1/2} > 2.1 \cdot 10^{25} \text{ yr}$ (90% CL)

<m_v> < 0.26-0.62 eV

Exposure: 21.6 kg·yr of ⁷⁶Ge BI = 10⁻² c/keV·kg·yr

(nucl-ex/1307.4720)

Klapdor's results:

T_{1/2} **= (1.19**^{+0.37}_{-0.23})⋅10²⁵ yr (PLB586 (2004) 198)

T_{1/2} **= (2.23^{+0.44}**_{-0.31}) ⋅ **10**²⁵ yr (MPL A21 (2006) 1547)

GERDA-II (Gran Sasso)

Detector type: enriched Ge diodes in LAr

- active target: ~ 35 kg
- $\sigma_{_{\rm E}}$ /E: ~0.15-0.2% @ Q value

- pulse shape, LAr and coincidence veto for bkg reduction: (7-35)x10⁻⁴ c/keV/kg/y

Phase II deployed in Dec 2015

[EPJC 73 (2013) 2330]

GERDA-II (Gran Sasso)

Deployed in Dec 2015:

- 30 enriched BEGe (20 kg)
- 7 enriched Coax (15.8 kg)
- 3 natural Coax (7.6 kg)

⇒ 35.8 kg of enr detectors

Dec 2015 - May 2016:

- 82% average duty cycle
- exposure used for analysis:
- **5.8 kg·yr for enriched BEGe;**
- **5.0 kg·yr for enriched coax.**
- blinding window Q ββ ±25 keV

Statistical analysis

- \circ unbinned profile likelihood: flat background (1930-2190 keV) + Gaussian signal
- o frequentist test-statistics and methods Cowan et al., EPJC 71 (2011) 1554
- $\circ \epsilon_{coax}^{PSD}$ to be finalized

Latest GERDA results (TAUP 2017)

46.7 kg y data (Phase I + Phase II) :

 $T_{1/2} > 5.1 \cdot 10^{25} \text{ y} \implies < m_v > 0.17 \cdot 0.39 < eV$

Background: Coax – 2.7·10⁻³ c/keV kg y BeGe – 10⁻³ c/keV kg y

Energy resolution:

Coax – 3.9 keV BeGe – 2.9 keV

Frequentist method: $T_{1/2} > 8.10^{25} \text{ yr}$ (sensitivity is 5.8.10²⁵ yr)

Bayesian method: $T_{1/2} > 5.1 \cdot 10^{25} \text{ yr}$ (sensitivity is $4.5 \cdot 10^{25} \text{ yr}$)

Already in the box ~ 15 kg y data

Final sensitivity for 100 kg y and B = 0 is ~ 1.3.10²⁶ yr (<m> < 0.11-0.24 eV)

Physics reach

Phase I:

18 kg germanium 20 kg y exposure 10^{-2} counts/(kg keV y) **Phase II:** 35 kg germanium 100 kg·y exposure 10⁻³ counts/(kg·keV·y) Phase III: 1000 kg germanium <10⁻⁴ counts/(kg·keV·y)

A. Caldwell, KK, Phys. Rev. D 74 (2006) 092003

The Majorana Demonstrator

Goals:

- Demonstrate backgrounds low enough to justify building a tonne scale experiment.

- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.
- Located underground at 4850' Sanford Underground Research Facility (SURF)
- **Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) is 3 counts/ROI/t/y** (after analysis cuts).
- Assay U.L. currently ≤ 3.5 scales to 1 count/ROI/t/y for a tonne experiment
- 44.1 kg of Ge detectors
 - –29.7 kg of 87% enriched ⁷⁶Ge crystals
 - –14.4 kg of ^{nat}Ge
 - -Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - –ultra-clean, electroformed Cu
 - -22 kg of detectors per cryostat
 - -naturally scalable
- Compact Shield
 - –low-background passive Cu and Pb shield with active muon veto

P-type Point-Contact (PPC) Detectors

Point contact:

Small capacitance: ~1pF
Pronounced weighting field
Small electrical fields
Sub-keV Thresholds
Excellent Pulse-shape
Analysis

Use Commercial BEGe Design

Electroforming

- Eforming complete in May 2015
- Machine shop operational

Him

Electroformed Parts Stored in Nitrogen

Assembled Detector Unit and String

Detector Unit

String Assembly

Detector module

Loading of enrGe in Cryostat 1

Loading of enrGe in Cryostat 2

Majorana-Demonstrator: present status

DS3 & DS4 (Enriched - High Gain)

(<m,> < 0.11-0.24 eV)

MAJORANA DEMONSTRATOR Module Sensitivity

• Expected Sensitivity to $0\nu\beta\beta$ (30 kg enriched material, running 3 years, or 0.09 t-y of ⁷⁶Ge exposure) $T_{1/2} \ge 10^{26}$ y (90% CL).Sensitivity to $<m_y> < 140$ meV (90% CL) [Rod05,err.]

EXO-200

Location: WIPP (USA) – salt mine (1600 M w.e.) Passive shield – 25 cm of Pb Active shield - plastic scintillator (5 cm) ¹³⁶Xe: enrichment – 80.6%; mass – 175 kg; useful mass – 98.5 kg Signal: ionization + scintillation $\Delta E/E(FWHM) = 10.6\%$ at 2.615 MeV (ionization) ~ 3.8% (ionization + scintillation) Strength of electric field – 376 V/cm (V = - 8 kV);

Data tacking since May 2011

EXO-200 results

2v decay Precise value for T_{1/2} is obtained: ~ 19000 2∨ events! **T**_{1/2} = 2.172 ± 0.017(stat) ± 0.06(syst)x10²¹ yr (Phys. Rev. C 89 (2014) 015502) **94.7 kg** ^{ofor}Xe (76.3 kg ¹³⁶Xe)

99.8 kg·yr; ΔE/E = 3.8% (FWHM)

Ov decay: no signal

 $T_{1/2} > 1.1 \cdot 10^{25} \text{ yr (90\% CL)}$

 $< m_{v} > < 190 - 450 \text{ meV}$ (90% C.L.)

Background in 0v region:

~ 1.7x10⁻³ ev/keV·kg·yr

(Nature, 510 (2014) 229)

 $T_{1/2}^{0_{\nu\chi0}} > 1.2 \cdot 10^{24} \text{ yr}$ $< g_{ee} > < 0.8 \cdot 1.7 \cdot 10^{-5}$

EXO-200 (Phase II)

Start of operation – 31 January 2016 Some improvements were done:

- Energy resolution now is 2.89% (FWHM)
- Electric field in drift region is 50% higher
- Improvement in analysis

Total exposure (Phase I + Phase II) is **868.5** (596.7+271.8) days or 177.6 (122+55.6) kg y of ¹³⁶Xe

```
Phase I + Phase II data:
T_{1/2}(0v) > 1.8 \cdot 10^{25} \text{ yr} \qquad < m_v > < 150-400 \text{ meV}
```

KamLAND-Zen

 \diamond Ä \bigcirc 3.16 mφ balloon

(Original idea of R. Ragavan, PRL 72 (1994) 1411)

1st phase enriched Xe 400kg R=1.7 m balloon V=20.5m³,S=36.3m² LS : C10H22(81.8%)+PC(18%) +PPO+Xe(~2.5wt%) ρ LS : 0.78kg $\checkmark l$ high sensitivity with low cost

24 of September 2011 - beginning of data tacking - June 2012 (Phase I)

¹³⁶Xe: 320 kg, enrichment - 91% ∆E/E(FWHM) = 9.5% at 2.5 MeV

11 December 2013 - 27 October 2015 Phase II with 383 kg of ¹³⁶Xe (Phase II)

²³⁸U: 0.2~2.2×10⁻¹⁸ g/g ²³²Th: 1.9~4.8×10⁻¹⁷ g/g

KamLAND-Zen results

(Phase 1, 89.5 kg·yr of ¹³⁶Xe)

- $T_{1/2}(2v) = 2.30 \pm 0.02(stat.) \pm 0.12(sys.) \times 10^{21} yr$
- (PRC 86 (2012) 021601R; in agreement with EXO-200) $T_{1/2}(0v) > 1.9x10^{25} \text{ yr (90\% CL)} \Rightarrow < m_v > < 0.14-0.34 \text{ eV}$ (PRL 110 (2013) 062502)

Ordinary (spectral index n = 1) Majoron-emitting decay of ¹³⁶Xe

T_{1/2} > 2.6×10²⁴ yr

<g_{ee}> < (0.8-1.6)×10⁻⁵

Background is <u>~ 100 times</u> higher than in KamLAND BI ~ 10⁻⁴ c/keV·kg·yr (Fukushima isotopes)

Sensitivity will be ~ 10 better if background problem will be solved

New data with KamLAND-Zen: Phase-II (11 December 2013 - 27 October 2015)

Period-1	L:	270.7	days			
Period-2	2:	263.8	days			
	Σ =	534.5	days	(504	kgxyr	¹³⁶ Xe)

Phase I $T_{1/2}(0v) > 1.9x10^{25} yr$ Phase II $T_{1/2}(0v) > 9.2x10^{25} yr$

Combined T_{1/2}(0v) > 1.07x10²⁶ yr (Sensitivity ~ 0.5x10²⁶ yr)

> <m_v> < 0.06-0.19 (< 0.09-0.28)

 $T_{1/2}(2v)= 2.21 \pm 0.02(stat) \pm 0.12(syst) \times 10^{21} yr$

PRL 117 (2016) 082503; 109903

KamLAND-Zen-800

- 750 kg of enriched Xe
- New (larger) balloon will be installed end of 2017
- In 2 years of measurement:
 T_{1/2}(0v) ~ 2.10²⁶ yr (<m_v> < 45-120 meV)

CUORE (Gran Sasso)

<u>Cryogenic Underground Observatory for Rare Events</u> Closely packed array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) 741 kg TeO₂ granular calorimeter 600 kg Te = 203 kg ¹³⁰Te • Single high granularity detector

Beginning of measurements – April 2017

Detector installation

Completed in August 26 2016 Detector cool down: ~ 7 mK on Jan 27, 2017 Start of data taking: April 14, 2017

Blinded spectrum

- To blind our data we randomly move a fraction of events from +/- 20 keV of 2615 keV to the Q-value and vice versa
- The blinding algorithm produces an artificial peak around the 0vDBD Qvalue and blinds the real 0vDBD rate of ¹³⁰Te.
- This method of blinding the data preserves the integrity of the possible 0vDBD events while maintaining the spectral characteristics with measured energy resolution and introducing no discontinuities in the spectrum.
- When all data analysis procedures are fixed the data are eventually unblinded

Oliviero Cremonesi - July 28, 2017 - TAUP 2017 - Sudbury

21

JORF

Fit in the ROI

- We determined the yield of $0\nu\beta\beta$ events by performing a simultaneous UEML fit in the energy region 2465-2575 keV
- The fit has 3 components:
 - a posited peak at the Q-value of ¹³⁰Te
 - a floating peak to account for the ⁶⁰Co sum gamma line (2505 keV)
 - a constant continuum background, attributed to multi scatter Compton events from ²⁰⁸TI and surface alpha events

Oliviero Cremonesi - July 28, 2017 - TAUP 2017 - Sudbury

First results from CUORE

Background: 10⁻² c/keV kg y Energy resolution: (7.9 ± 0.6) keV (at 2615 keV) Collected data: 38.1 kg y

T_{1/2} > 4.5·10²⁴ yr (sensitivity is 3.6·10²⁴ yr)

Combined limit (CUORICINO + CUORE-0 + CUORE):

 $T_{1/2} > 6.6 \cdot 10^{24} \text{ yr} \implies < m_{\nu} > < 0.24 \cdot 0.58 \text{ eV}$

III. FUTURE EXPERIMENTS

Main goal is:

To reach a sensitivity $\sim 0.01-0.05 \text{ eV}$ to $\langle m_v \rangle$ (inverted hierarchy region)

- Strategy is:
 - to investigate different isotopes (>2-3);
 - to use different experimental technique

Here I have selected a few propositions which I believe will be realized in the nearest future (~3-10 years)

- CUPID (¹³⁰Te, ¹⁰⁰Mo, ⁸²Se, ... cryogenic thermal detector)
- LEGEND (⁷⁶Ge, HPGe detector)
- **nEXO** (136**Xe**, TPC + Ba⁺)
- KamLAND2-Zen (¹³⁶Xe, liquid scintillator)
- SuperNEMO (⁸²Se or ¹⁵⁰Nd, tracking detector)
- SNO+ (¹³⁰Te, liquid scintillator)

Other proposals: NEXT, PandaX-III, CANDLES, XMASS, AMoRE,....

SUMMARY TABLE

Experi ment	Isotope	Mass, kg	Τ _{1/2} , y	<m<sub>v>, meV</m<sub>	Status
LEGEND	⁷⁶ Ge	200 1000	~ 10 ²⁷ 5·10 ²⁷ -10 ²⁸	40-90 10-40	Funded R&D
CUPID	¹³⁰ Te, ¹⁰⁰ Mo, ⁸² Se,	200-600	(2-5)·10 ²⁷	6-30	R&D
KamLAND 2-Zen	¹³⁶ Xe	1000	~ 6·10 ²⁶	25-70	R&D
nEXO	¹³⁶ Xe	5000	~ 10 ²⁸	6-17	R&D
SuperNEM O	⁸² Se	100-200	(1-2) ⋅10 ²⁶	40-100	R&D
SNO+	¹³⁰ Te	1300 8000	2.10 ²⁶ ∼ 10 ²⁷	37-140 16-60	Funded R&D

CUPID (Cuore Upgrade with Particle IDentification)

- **CUPID** is next step of **CUORE** experiment
- Main goal is to reach sensitivity ~ 10²⁷-10²⁸ yr
- Main problem of CUORE is quite high level of background
- Mail idea is to use existing CUORE infrastructure and new scintillating bolometers (heat + light detection)
- Main candidates are ZnSe, Li₂MoO₄,
 ZnMoO₄, CdWO₄ and TeO₂

CUORE

Cryogenic Underground Observatory for Rare Events Closely packed array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) 741 kg TeO₂ granular calorimeter 600 kg Te = 203 kg ¹³⁰Te Single high granularity detector

Scintillating bolometers

$Zn^{100}MoO_4$: 59 g and 63 g

CaMoO₄: 157 g

ZnSe: 337 g

CdWO₄: 508 g

LUCIFER: Zn⁸²Se; LUMINEU: Zn¹⁰⁰MoO₄/Li₂¹⁰⁰MoO₄; AMORE: ⁴⁰Ca¹⁰⁰MoO₄

Prospects of scintillating bolometers

Main advantages:

- high efficiency (~ 100%)
- good energy resolution (~ 5-10 keV)

╢

- <u>effective suppression of background from α -particles</u>
- suppression of BiPo events

"Zero background" experiment!

CUORE-like experiment (ZnMoO₄, Li₂MoO₄, instead of TeO₂, for example)

CUPID experiment: arXiv:1504.03599

CUPID-0/Se Experiment

- 24 Zn⁸²Se bolometers with a total mass 5.1 kg of ⁸²Se
- 2 ZnSe bolometer ≈ 400 g each, not enriched in ⁸²Se
- total active mass of the detector is
 ~ 10.5 kg
- light detectors high purity Ge wafers with anti-reflecting coating
- thermal sensors made with NTD thermistors
- detector assembled in 5 towers in Cuoricino/CUORE-0 cryostat

Energy resolution is 30 keV 0.47 kg y exposure of ⁸²Se Running experiment

Planed sensitivity is $7 \cdot 10^{24}$ yr for 1 year of measurement and B = 0

CUPID-0/Mo Experiment

- Strong R&D program with ZnMoO₄/Li₂MoO₄ bolometers has been realized
- Measurements with a few ZnMoO₄/Li₂MoO₄ bolometers under lowbackground conditions have been done (LUMINEU)
- Energy resolution ~ 5-7 keV
- 2v-decay of 100Mo has been measured with high accuracy

 $T_{1/2} (2v) = [6.90 \pm 0.15(stat) \pm 0.42(syst)] \cdot 10^{18} yr$

- Experiment with **20(40)** Li₂MoO₄ crystals is under preparation
- Beginning of measurements in the end of 2017-beginning of 2018
- Main goal is to demonstrate possibilities of this approach and put new limit on 0v decay of 100Mo on the level ~ 1.5.1025 yr

CUPID-130Te

- Main problem of CUORE is quite high level of background (because in TeO₂ only heat signal is registered)
- Strong R&D to detect light (Cherenkov effect; sensitive light detector is needed) or to select surface event (using scintillating foils) are under realization and some promising results have been obtained
- So, there is a chance that one can detect two signals in TeO₂ (heat + light)
- As a result it will be possible to decrease background from alfa-particles, surface events,...
- And it is possible to use TeO₂ crystals made of enriched Te-130

LEGEND (Large Enriched Germanium Experiment for Neutrinoless ββ Decay)

Mission: "The collaboration aims to develop a phased, **Ge-76** based doublebeta decay experimental program with discovery potential at a half-life significantly **longer than 10**²⁷ **years**, using existing resources as appropriate to expedite physics results."

Select best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups and experiments.

First phase:

-(up to) 200 kg -Modification of existing GERDA infrastructure at LNGS -BG goal ~ 2x10⁻⁴ c/keV kg y - Start by 2021

Final phase:

-1000 kg

-Timeline connected to U.S. DOE down select process -BG goal is ~ 3x10⁻⁵ c/keV kg y - Location: TBD

Next Generation Ge-76 Experiment

November 2015, Kitty Hawk (Joint M-G meeting)

April 2016, Munich (Meeting of interested parties)

October 2016, Atlanta (Next generation Ge-76 meeting)

NG-Ge76: 1) Phase I – 200 kg of Ge-76 (Gran Sasso) 2) Phase-II – 1000 kg Ge-76 (SNOLAB, Jin Ping,...?)

Sensitivity vs. Exposure for ⁷⁶Ge

EXO (Enriched Xenon Observatory) USA-RUSSIA-CANADA

• ${}^{136}Xe \rightarrow {}^{136}Ba^{++} + 2e^{-} (E_{2\beta} = 2.47 \text{ MeV})$

Main idea is: to detect all products of the reaction with good enough energy and space resolution (M.Moe PRC 44(1991)931)

Tracking

- ■concept: scale Gotthard experiment adding Ba tagging to suppress background (¹³⁶Xe→¹³⁶Ba⁺⁺+2e)
- single Ba⁺ detected by optical spectroscopy
- two options with 63% enriched Xe
 High pressure Xe TPC
 ²P_{1/2}
- LXe TPC + scintillation 493 nm
 calorimetry + tracking
- expected bkg only by ββ-2 2S
 energy resolution $\sigma_{\rm E}$ =

LXe TPC

Present R&D

F.X(

650 nm

metastable

47s

- Ba⁺ spectroscopy in HP Xe / Ba
- energy resolution in LXe (ion.+
- Prototype scale:
- 200 kg enriched L¹³⁶Xe without tagging
- ► all EXO functionality except Ba
- operate in WIPP for ~two year
- Protorype goals:
- Test all technical aspects of EX (except Ba id)
- ► Measure 2v mode
- Set decent limit for 0v mode (probe Heidelberg- Moscow)

Full scale experiment at WIPP or SNOLAB

■10 t (for LXe \Rightarrow 3 m³)

 $b = 4 \times 10^{-3} \text{ c/keV/ton/y}$

T_{1/2} > 1.3×10²⁸ y in 5 years

 $< m_v > < 0.013 \div 0.037 \text{ eV}$

nEXO

Overall mass: 5 tonnes, 90% enriched ¹³⁶Xe Time Projection Chamber (TPC) Location: SNOLAB (Canada) Running time: 10 years Energy resolution: 2.35% (FWHM) Sensitivity: ~ 9.5.10²⁷ yr (without Ba) ~ 3.10²⁸ yr (with Ba)

Design still not finalized

Sensitivity of nEXO

Sensitivity of nEXO with Ba+

4 m

SuperNEMO

A module

(#)

20 modules

	Demonstrato r module	20 Modules	
Source : ⁸² Se	7 kg	140 kg	
Drift chambers for tracking	2 000	40 000	
Electron calorimeter	500	10 000	
γ veto (up and down)	100	2 000	
T _{1/2} sensitivity	6.6 10²4 y (No background)	1. 10²6 y	
<m,> sensitivity Demonstrator module</m,>	200 - 400 meV	40 - 100 meV	

Start of measurements: Demonstrator – 2018

SuperNEMO - 2022

SuperNEMO Demonstrator (1st module)

MAIN GOALS :

■ To demonstrate the feasibility of large scale detector with requiered performance (efficiency, energy resolution, radiopurity, ...)

- To measure the radon background
- To finalize detector design

To produce competitive physics measurement
 T_{1/2}(ββ0ν) > 6.5 x 10²⁴ years
 < m_v > < 210 – 570 meV
 with 7 kg of ⁸²Se after ~ 2 years of demonstrator data taking

Quarter-tracker zoomed view

SuperNEMO-Demonstrator: present status

- 1. Tracking part is ready and assembled at **LSM.**
- 2. Calorimeter part is ready and assembled at **LSM.**
- 3. Source is ready and will be introduced into the detector in **October 2017.**
- 4. Start of data taking **beginning of 2018.**

KamLAND-Zen project

KamLAND2-Zen with 1 t of ¹³⁶Xe

Sensitivity ~ $6 \cdot 10^{26}$ yr (<m, > < 26-69 meV)

SNO+

Reuse of SNO equipment with Liquid Scintillator in the Acrylic Vessel (Energy resolution is ~ 10.5% (FWHM) at 2.5 MeV)

Original plan: ¹⁵⁰Nd

Current plan: ¹³⁰Te (using natural Te)

- good Te solubility is demonstrated (0.3-3%)
- 34.5% vs 5.6% natural abundance

Scintillator fill in 2018

Initially 0.5% loading (~ 1300 kg of ¹³⁰Te; maybe increased)

Sensitivity is ~ 2·10²⁶ yr (Phase I) ~10²⁷ yr (Phase-II)

Start of data taking end of 2018

Present status of SNO+

- SNO+ is filled with light water and taking physics data
- In 6 months of running, **SNO+** will set world leading limits on invisible nucleon decay
- Scintillator process plant is under commission
- Tellurium plant is under construction
- Neutrinoless Double Beta Decay phase will begin in late 2018
- SNO+ 0νββ sensitivity starts to explore the inverted hierarchy region

Prediction of the FUTURE

This is just my personal prediction:

- Results which we are waiting for in ~
 3 years from now.
- Results which we are waiting for in ~
 10 years from now.
- 3. What to do in the case of normal hierarchy?

NEAR FUTURE (2017-2019)

- 1. GERDA-II (35 kg of ⁷⁶Ge; ~ 1.5x10²⁶ yr).
- 2. MAJORANA-DEMONSTRATOR

(30 kg of ⁷⁶Ge; ~ 1x10²⁶ yr).

⁷⁶Ge - ~ 2x10²⁶ yr <m, > ~ 0.08-0.2 eV

3. KamLAND-Zen (750 kg of ¹³⁶Xe; ~ 2x10²⁶ yr).

¹³⁶Xe - ~ 2x10²⁶ yr <m, >~ 0.04-0.14 eV

4. CUORE (200 kg of ¹³⁰Te; ~ 7·10²⁵ yr). 5. SNO+ (1300 kg of ^{nat}Te; ~ 7·10²⁵ yr).

¹³⁰Te - ~ 1×10^{26} yr <m, > ~ 0.06-0.15 eV

Other experiments: EXO, Super-NEMO-Demonstrator, LUCIFER, NEXT,...

FAR FUTURE (2020-2030)

KamLAND2-Zen (1000 kg of ¹³⁶Xe)

╢

- SNO+ (8000 kg of ¹³⁰Te)
- CUPID (¹⁰⁰Mo, ⁸²Se, ¹³⁰Te, ...)
- LEGEND-I (200 kg ⁷⁶Ge)
- □ nEXO (5000 kg ¹³⁶Xe)
- LEGEND (1000 kg ⁷⁶Ge)

- Start of data taking
 - ~ 2020-2022
 - ~ 2020-2022
 - ~ 2022
 - ~ 2021-2022
 - ~ 2025-2030
 - ~ 2025-2030

<**m**_v> ~ **10-50 meV** (but **g**_A problem!?)

VERY FAR FUTURE (inverted hierarchy case)

- Needed sensitivity to <m_v> is ~ 1-5
 meV
- Needed sensitivity to T_{1/2} is ~ 10²⁹ 10³⁰ yr
- One needs (as minimum) ~ 10-20 t detector made of enriched material and 10 years of measurement
- Needed background in ROI is ~ 0-2 events during the measurement

Isotope	N of nuclei in 10 t of enriched isotope	Events per 10 yr per 10 t (T _{1/2} = 10 ²⁹ yr)			
⁴⁸ Ca	$1.25 \cdot 10^{29}$	8.6			
⁷⁶ Ge	$7.9 \cdot 10^{28}$	5.5			
⁸² Se	$7.3 \cdot 10^{28}$	5			
¹⁰⁰ Mo	6·10 ²⁸	4.1			
¹¹⁶ Cd	$5.2 \cdot 10^{28}$	3.6			
¹³⁰ Te	$4.6 \cdot 10^{28}$	3.2			
¹³⁶ Xe	$4.4 \cdot 10^{28}$	3			
So, with 10 t and 10 years one can see "effect" if $T_{1/2} \le 10^{29}$ yr					

Possible experimental approaches for 10 t detector

- HPGe detectors (next step of LEGEND)
- Low temperature scintillating bolometers (like CUPID, AMORE,...)
- Liquid scintillator detectors (like KamLAND, SNO+, SK+, BOREXINO,...)
- Liquid (or gas) Xe detectors (like nEXO, XMASS, PandaX-III, NEXT,...)
- New ideas !?

Purity of detector and shield

Needed purity is differ for different experiments

It is better to have "clever" detector, which can recognize 2β events

(granularity, anticoincidence, tracks reconstruction, daughter ions registration,...)

It is more easy to purify liquids and gazes

(We know that in BOREXINO, SNO, KamLAND purity of different liquids and gazes is

~ 10⁻¹⁶-10⁻¹⁷ g/g of U and Th)

In principle, solid material can be purified to the same level (in present experiments it is ~ 10⁻¹²-10⁻¹⁴ g/g)

We have to be careful with cosmogenic isotopes (⁶⁸Ge,....) and Solar neutrino contribution.

So, in principle, one can have pure enough materials for 10 t 2β -decay experiments. But it will take a lot of efforts, time and money.

[∜]

Possibilities of 2β-decay isotope production

Productivity, arb.un.

- Centrifugation
 Laser separation
 Plasma separation
 ~ 0.01
- Electomagnetic separation ~ 0.001

Price is proportional to productivity U Centrifugation is only the method

Productivity of centrifugation

- Now it is ~ 200 kg/yr
- It can be increased in ~ 10 times (with additional money investment)
- 10 t can be produced during 5-10 years
- One has to organize new facility for this goal

Approximate price of **2**β isotopes (obtained by centrifugation)

Isotope	Abundanc e, % 7,61	cPrice per kg, k\$	Cost of <mark>10 t</mark> , MIn.\$	
⁷⁶ Ge		~ 80	800	(640*)
⁸² Se	8,73	~ 80	800	(640*)
¹⁰⁰ Mo	9,63	~ 80	800	(640*)
^{116}Cd	7,49	~ 180	1800	(1440*)
¹³⁰ Te	34,08	~ 20	200	(160*)
¹³⁶ Xe	8,87	~5-10	50-100	(40-80*)
¹⁵⁰ Nd (?)	5,6	> 200	> 2000	

^{*)}For big quantity it can be $\sim 20\%$ lower

Cost of experiments

In addition to isotope price we have to take into account cost of detector.

For example:

- 10t Majorana (~ 10⁴ HPGe crystals) -
 - ~ 200 Mln.\$ (200+640=**840 Mln\$**)
- 10 t CUORE (~ 10⁴ crystals)
 - ~ 100 Mln\$ (100+160=**260 Mln\$**)
- The cheapest case is to use existing (BOREXINO, KamLAND, SNO, SK) or future (LAGUNA,...) detectors
- EXO-10t, NEXT-10t ~ 10-20 Mln.\$ (80+20=100 Mln. \$)
- Examples: ATLAS, CMS ~ 500 Min.\$, ALICE ~ 250 Min.\$

¹³⁶Xe and ¹³⁰Te are the most promising candidates (price)

- But for ¹³⁶Xe we have another problem:
- to have **10 t** of ¹³⁶Xe we need ~ **100 t** of natural Xe;
- world 1 year production is ~ 40 t of natural Xe
- (Earth atmosphere: 78 % of N₂, 21% of O₂, 1% of Ar,... 10⁻⁵ % of Xe)
- Can one collect enough natural Xe to produce 10 t of ¹³⁶Xe in reasonable time???
- If one will collect all world Xe it will take ~ 2.5 yr.
- If one will collect ~ 10% of world Xe it will take ~ 25 yr.)
- Now people use Xe which was collected during many years for some other purposes (bubble chambers, Liq.Xe calorimeters, ...)

Requirements for the 10 t 2β-decay experiment with cost ~ 100- 300 Mln. s

- Energy resolution is ~ 1% or better
- Enriched isotope: ¹³⁶Xe(?) or ¹³⁰Te

Л

BI has to be ~ 10⁻⁶-10⁻⁵ c/keV·kg·y

- Low temperature bolometer (¹³⁰TeO₂) is the best candidate [but background problem!?]
- 10 t ¹³⁶Xe detector is not sensitive to 1-3 meV region

Requirements for the 10 t 2β-decay experiment with cost ~ 800 Mln.\$

- Energy resolution is ~ 1% or better
- Enriched isotope: ⁷⁶Ge, ¹⁰⁰Mo, ⁸²Se
- BI has to be ~ 10⁻⁶-10⁻⁵ c/keV·kg·y
- Underground Lab ~ 6000 m w.e.)

- HPGe detector is the best candidate (LEGEND type experiment)
- Low temperature bolometer contains of ¹⁰⁰Mo, ⁸²Se (ZnMoO₄, ZnSe, Li₂MoO₄,)

IV. Conclusion

- 1. Significant advance has been made in the investigation of **2ν**-decay (**NEMO-3**, **EXO**-**200**,...).
- 2. Present conservative limit on $\langle m_v \rangle$ from $2\beta(0v)$ -decay experiments

is \sim **0.3 eV (g**_A **problem - ?)**

- 3. 4 current "large-scale" experiments continue to produce new results:
 - GERDA-II (35 kg of ⁷⁶Ge);
 - Majorana-Demonstrator (30 kg of ⁷⁶Ge)
 - EXO-200 (200 kg of ¹³⁶Xe);
 - KamLAND-Zen (750 kg of ¹³⁶Xe);
 - CUORE (200 kg of ¹³⁰Te).
- 4. **In 2017-2020** we are waiting for start of **SuperNEMO-Demonstrator**, **SNO+**, **NEXT** and some other experiments.
- 5. Prediction for the end of 2019:

⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe $\Rightarrow \sim (1-2) \cdot 10^{26} \text{ yr} (< m_v > \sim 0.04-0.2 \text{ eV})$

6. **New generation** experiments will reach sensitivity to <**m**_v> on the level of ~ **(0.01-0.05) eV** in ~ **2025-2030**.