A Determination of the Running b-quark Mass $\overline{m}_b(M_Z)$ Augusta de la comagonation de la come de la comagonation de la come com #### Quarkmasses in Q D Quark masses cannot be directly measured due to confinement. Indirect determination: - 1.) Compute influence of quark masses on properties of hadrons - 2.) Measure these properties and compare to predictions Important consequence: Quark mass values depend on computational scheme that one uses to make predictions. Two of the most common quark mass definitions: - Pole mass m^{pole} - $\overline{\mathsf{MS}}$ mass (running mass) $\overline{\mathsf{m}}(\mu)$ #### Quark masses in Q D 1.) $\overline{m}_b(\mu)$ depends on the renormalization scale! $$\begin{split} \mu^2 \frac{\partial \overline{\mathbf{m}}(\mu)}{\partial \mu^2} &= \gamma_{\mathbf{m}}(\alpha_{\mathbf{s}}) \overline{\mathbf{m}}(\mu) \\ \sim \overline{\mathbf{m}}(\mu) &= \overline{\mathbf{m}}(\mu_0) \left[\frac{\alpha_{\mathbf{s}}(\mu)}{\alpha_{\mathbf{s}}(\mu_0)} \right]^{\frac{12}{33 - 2n_{\mathbf{f}}}} \left\{ 1 + \mathrm{O}(\alpha_{\mathbf{s}}) \right\} \end{split}$$ (solution of the renormalization group equations) 2.) m_b^{pole} and $\overline{m}_b(\mu)$ differ only in order α_s : $$\mathbf{m}^{\text{pole}} = \overline{\mathbf{m}}(\mu) \left[1 + \frac{\alpha_{\text{s}}(\mu)}{\pi} \left(\frac{4}{3} - \ln \frac{\overline{\mathbf{m}}(\mu)^2}{\mu^2} \right) + \ldots \right]$$ → we need a NLO calculation to fix the renormalization scheme of the mass parameter \sim study mass effects in jetrates at NLO theoretical predictions from 3 different groups: - P. ..ason C. C to 37 - ... Be... futher British Lurg Por # Why a determination of the b mass at high scale? at low scale ($\sim 10 \text{ GeV}$): - $+ m_{pol} \leftrightarrow \overline{m}(\mu)$ well behaved, no large log's - + small errors of the exp. results - large higher order corrections if m_{pol} is used (can be avoided by PS mass - → precise determination of the b mass possible $$\overline{\mathbf{m}}(\mu=\overline{\mathbf{m}})=4.25\pm0.08~\mathrm{GeV}$$ In the second of th at high scale (\sim m_Z): - + pQ D works fine - + high statistic - + measurement of $\overline{m}(\mu)$ at high scale μ - mass effects are in general small, but... - \sim less precise, but direct observation of the running #### Mass effects in Jet physics what size one would expect? naively: mass effects of order $\left(\frac{m_b^2}{s}\right) \sim 0.1\%$ this naive expectation is not necessarily true for observables with an additional scale in jetrates effects may be enhanced due to additional scale s y_{cut} : $$\left(rac{\mathsf{m}_\mathsf{b}^2}{\mathsf{s}\;\mathsf{y}_\mathsf{cut}} ight) \sim 1\%$$ qualitative understanding of mass effects: diminished phase space for gluon emission due to quark mass kinematic effects in the definition of jet clustering schemes mass enters differently in different jet algorithms \rightsquigarrow effects depend on the algorithm | Algorithm | Resolution y _{ij} | Recombination | | | |-----------|--|---|--|--| | DURHAM | $\frac{2min(E_{i}^2,E_{j}^2)}{s}(1-cos\vartheta_{ij})$ | $p_k = p_i + p_j$ | | | | GENEVA | $\frac{8E_iE_j(1-\cos\vartheta_{ij})}{9(E_i+E_j)^2}$ | $p_k = p_i + p_j$ | | | | E | $\frac{(\mathbf{p_i} + \mathbf{p_j})^2}{s}$ | $\mathbf{p_k} = \mathbf{p_i} + \mathbf{p_j}$ | | | | E0 | $\frac{(p_i + p_j)^2}{s}$ | $E_k = E_i + E_j,$ | | | | P | $\frac{(\mathbf{p_i} + \mathbf{p_j})^2}{s}$ | $\begin{split} \vec{p}_k &= \frac{E_k}{ \vec{p}_i + \vec{p}_j } (\vec{p}_i + \vec{p}_j) \\ \vec{p}_k &= \vec{p}_i + \vec{p}_j, \\ E_k &= \vec{p}_k \end{split}$ | | | | P0 | $\frac{(\mathbf{p_i} + \mathbf{p_j})^2}{\mathbf{\hat{s}}}$ | same as P | | | #### **Experimental Results** SLD analyses, flavor independence of $lpha_s$ (comparison with theoretical prediction for fixed value of m_b) | Alg. | y_c | r^b | stat. | exp. syst. | had. | |------|-------|-------|-------|---|---| | D | 0.010 | 0.964 | 0.023 | +0.038 | +0.001 | | G | 0.080 | 0.995 | 0.032 | | $\begin{vmatrix} -0.006 \\ +0.020 \\ 0.008 \end{vmatrix}$ | | E | 0.040 | 1.050 | 0.026 | $ \begin{array}{r} -0.036 \\ +0.038 \\ -0.042 \end{array} $ | $ \begin{array}{r} -0.008 \\ +0.011 \\ -0.046 \end{array} $ | | E0 | 0.020 | 1.054 | 0.019 | $+0.030 \\ -0.037$ | +0.007 -0.045 | | Р | 0.020 | 1.048 | 0.019 | $+0.027 \\ -0.037$ | $+0.002 \\ -0.026$ | | P0 | 0.015 | 1.055 | 0.017 | $+0.028 \\ -0.035$ | $+0.007 \\ -0.037$ | #### Definition of the Observable define R₃ⁱ to be the flavour specific fraction of events containing 3 or more jets consider as observable: $$r^b(y_c) \equiv R_3^b(y_c)/R_3^{uds}(y_c),$$ expanded in α_s $$\begin{array}{ll} r^b & = & \frac{\mathsf{A}^b}{\mathsf{A}^{\mathsf{uds}}} + \frac{\alpha_{\mathsf{s}}}{2\pi} \left(\frac{\mathsf{B}^b + \mathsf{C}^b}{\mathsf{A}^{\mathsf{uds}}} - \frac{\mathsf{B}^{\mathsf{uds}} + \mathsf{C}^{\mathsf{uds}}}{\mathsf{A}^{\mathsf{uds}}} \frac{\mathsf{A}^b}{\mathsf{A}^{\mathsf{uds}}} \right) \\ & + & \mathsf{O} \left(\alpha_{\mathsf{s}}^2 \right) \end{array}$$ with the coefficients A, B, C defined by $$\begin{array}{lll} \mathsf{R}_3^\mathsf{q}(\mathsf{y}_\mathsf{c}) & = & \frac{\alpha_\mathsf{s}}{2\pi} \mathsf{A}^\mathsf{q}(\mathsf{y}_\mathsf{c}) + \left(\frac{\alpha_\mathsf{s}}{2\pi}\right)^2 (\mathsf{B}^\mathsf{q}(\mathsf{y}_\mathsf{c}) + \mathsf{C}^\mathsf{q}(\mathsf{y}_\mathsf{c})) \\ & + & \mathsf{O}\left(\alpha_\mathsf{s}^3\right), \end{array}$$ A \sim LO 3-Jet contribution, B \sim NLO 3-Jet contribution, C \sim LO 4-Jet contribution. #### Theoretical prediction the calculation of A^b, B^b, C^b as a function of m is based on we use a fit of the form $$\mathbf{r}_{\text{theo.}}^{\text{b}} = 1 + \alpha \frac{\mathbf{m}^2}{\mathbf{s}} + \beta \frac{\mathbf{m}^2}{\mathbf{s}} \ln(\frac{\mathbf{m}^2}{\mathbf{s}}) + \gamma \frac{\mathbf{m}^4}{\mathbf{s}^2}$$ to parmetrize the numerical results | Algorithm | α | β | γ | |-----------|----------|--------|----------| | D | 79.3 | 17.16 | -4610.8 | | G | -89.6 | -11.04 | 3229.9 | | E | 207.6 | 16.10 | -13029.9 | | E0 | 42.2 | -3.58 | -3881.3 | | Р | 211.7 | 28.51 | -5060.9 | | P0 | 236.8 | 30.95 | -3417.6 | ### **Experiment vs Theory** (fu= wz) #### Refined analyses take correlations into account and fit only one value for the mass: | Algorithm | E | E0 | Р | P0 | D | G | |-----------|------|------|------|------|------|------| | E | 1.00 | 0.70 | 0.67 | 0.65 | 0.61 | 0.49 | | E0 | | 1.00 | 0.84 | 0.82 | 0.61 | 0.49 | | Р | | | 1.00 | 0.71 | 0.65 | 0.56 | | P0 | | | | 1.00 | 0.52 | 0.41 | | D | | | | | 1.00 | 0.64 | | G | | | | | | 1.00 | E,E0,P,P0 are highly correlated (> 0.65) try to fit all algorithms with one mass $$\sim \chi^2 = 22/5$$ try to omit one algorithm in the fitting procedure $\sim \chi^2 > 12$ try to omit two algorithms $\sim \chi^2 < 5$ only if two of (E,E0,P,P0) are omitted. \sim there is some inconsistency #### Two ways out - 1.) throw away the algorithms of the JADE family because of bad soft gluon behavior \sim will yield low χ^2 because mass from D, G are very close to each other - 2.) introduce an additional uncertainty due to higher order effects which may affect the different algorithms differently we choose the second way under the assumption of an additional uncertainty $\epsilon=0.02$ we obtain $$\begin{split} \overline{m}(\mu = M_Z) \\ = 2.52 \pm 0.27 (\text{stat.})^{+0.33}_{-0.47} (\text{syst.})^{+0.54}_{-1.46} (\text{theor.}) \; \frac{\text{GeV}}{\text{c}^2} \end{split}$$ the theoretical uncertainty includes the uncertainty from hadronization, and the introduced uncertainty ϵ the value for $\overline{m}(\mu=M_Z)$ remains stable under a further increment of ϵ ## Comparison with the DELPHI result #### **Conclusion** - mass effects well established in jet physics - high precision reached at e⁺e⁻ colliders makes it possible to extract the mass of the b quark - ullet direct observation of the running of \overline{m} - \sim Q D works well