# A Determination of the Running b-quark Mass $\overline{m}_b(M_Z)$

Augusta de la comagonation de la come de la comagonation de la come de la com

#### Quarkmasses in Q D

Quark masses cannot be directly measured due to confinement.

Indirect determination:

- 1.) Compute influence of quark masses on properties of hadrons
- 2.) Measure these properties and compare to predictions

Important consequence:

Quark mass values depend on computational scheme that one uses to make predictions.

Two of the most common quark mass definitions:

- Pole mass m<sup>pole</sup>
- $\overline{\mathsf{MS}}$  mass (running mass)  $\overline{\mathsf{m}}(\mu)$

#### Quark masses in Q D



1.)  $\overline{m}_b(\mu)$  depends on the renormalization scale!

$$\begin{split} \mu^2 \frac{\partial \overline{\mathbf{m}}(\mu)}{\partial \mu^2} &= \gamma_{\mathbf{m}}(\alpha_{\mathbf{s}}) \overline{\mathbf{m}}(\mu) \\ \sim \overline{\mathbf{m}}(\mu) &= \overline{\mathbf{m}}(\mu_0) \left[ \frac{\alpha_{\mathbf{s}}(\mu)}{\alpha_{\mathbf{s}}(\mu_0)} \right]^{\frac{12}{33 - 2n_{\mathbf{f}}}} \left\{ 1 + \mathrm{O}(\alpha_{\mathbf{s}}) \right\} \end{split}$$

(solution of the renormalization group equations)

2.)  $m_b^{pole}$  and  $\overline{m}_b(\mu)$  differ only in order  $\alpha_s$ :

$$\mathbf{m}^{\text{pole}} = \overline{\mathbf{m}}(\mu) \left[ 1 + \frac{\alpha_{\text{s}}(\mu)}{\pi} \left( \frac{4}{3} - \ln \frac{\overline{\mathbf{m}}(\mu)^2}{\mu^2} \right) + \ldots \right]$$

→ we need a NLO calculation to fix the renormalization scheme of the mass parameter

 $\sim$  study mass effects in jetrates at NLO

theoretical predictions from 3 different groups:

- P. ..ason C. C to 37
- ... Be... futher British Lurg Por

# Why a determination of the b mass at high scale?

at low scale ( $\sim 10 \text{ GeV}$ ):

- $+ m_{pol} \leftrightarrow \overline{m}(\mu)$  well behaved, no large log's
- + small errors of the exp. results
- large higher order corrections if  $m_{pol}$  is used (can be avoided by PS mass
- → precise determination of the b mass possible

$$\overline{\mathbf{m}}(\mu=\overline{\mathbf{m}})=4.25\pm0.08~\mathrm{GeV}$$
 In the second of th

at high scale ( $\sim$  m<sub>Z</sub>):

- + pQ D works fine
- + high statistic
- + measurement of  $\overline{m}(\mu)$  at high scale  $\mu$
- mass effects are in general small, but...
- $\sim$  less precise, but direct observation of the running

#### Mass effects in Jet physics

what size one would expect?

naively: mass effects of order  $\left(\frac{m_b^2}{s}\right) \sim 0.1\%$ 

this naive expectation is not necessarily true for observables with an additional scale

in jetrates effects may be enhanced due to additional scale s  $y_{cut}$ :

$$\left(rac{\mathsf{m}_\mathsf{b}^2}{\mathsf{s}\;\mathsf{y}_\mathsf{cut}}
ight) \sim 1\%$$

qualitative understanding of mass effects: diminished phase space for gluon emission due to quark mass

kinematic effects in the definition of jet clustering schemes

mass enters differently in different jet algorithms  $\rightsquigarrow$  effects depend on the algorithm

| Algorithm | Resolution y <sub>ij</sub>                                 | Recombination                                                                                                                                                     |  |  |
|-----------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DURHAM    | $\frac{2min(E_{i}^2,E_{j}^2)}{s}(1-cos\vartheta_{ij})$     | $p_k = p_i + p_j$                                                                                                                                                 |  |  |
| GENEVA    | $\frac{8E_iE_j(1-\cos\vartheta_{ij})}{9(E_i+E_j)^2}$       | $p_k = p_i + p_j$                                                                                                                                                 |  |  |
| E         | $\frac{(\mathbf{p_i} + \mathbf{p_j})^2}{s}$                | $\mathbf{p_k} = \mathbf{p_i} + \mathbf{p_j}$                                                                                                                      |  |  |
| E0        | $\frac{(p_i + p_j)^2}{s}$                                  | $E_k = E_i + E_j,$                                                                                                                                                |  |  |
| P         | $\frac{(\mathbf{p_i} + \mathbf{p_j})^2}{s}$                | $\begin{split} \vec{p}_k &= \frac{E_k}{ \vec{p}_i + \vec{p}_j } (\vec{p}_i + \vec{p}_j) \\ \vec{p}_k &= \vec{p}_i + \vec{p}_j, \\ E_k &=  \vec{p}_k  \end{split}$ |  |  |
| P0        | $\frac{(\mathbf{p_i} + \mathbf{p_j})^2}{\mathbf{\hat{s}}}$ | same as P                                                                                                                                                         |  |  |

#### **Experimental Results**

SLD analyses, flavor independence of  $lpha_s$ 

(comparison with theoretical prediction for fixed value of  $m_b$ )

| Alg. | $y_c$ | $r^b$ | stat. | exp. syst.                                                  | had.                                                        |
|------|-------|-------|-------|-------------------------------------------------------------|-------------------------------------------------------------|
| D    | 0.010 | 0.964 | 0.023 | +0.038                                                      | +0.001                                                      |
| G    | 0.080 | 0.995 | 0.032 |                                                             | $\begin{vmatrix} -0.006 \\ +0.020 \\ 0.008 \end{vmatrix}$   |
| E    | 0.040 | 1.050 | 0.026 | $ \begin{array}{r} -0.036 \\ +0.038 \\ -0.042 \end{array} $ | $ \begin{array}{r} -0.008 \\ +0.011 \\ -0.046 \end{array} $ |
| E0   | 0.020 | 1.054 | 0.019 | $+0.030 \\ -0.037$                                          | +0.007 $-0.045$                                             |
| Р    | 0.020 | 1.048 | 0.019 | $+0.027 \\ -0.037$                                          | $+0.002 \\ -0.026$                                          |
| P0   | 0.015 | 1.055 | 0.017 | $+0.028 \\ -0.035$                                          | $+0.007 \\ -0.037$                                          |

#### Definition of the Observable

define R<sub>3</sub><sup>i</sup> to be the flavour specific fraction of events containing 3 or more jets consider as observable:

$$r^b(y_c) \equiv R_3^b(y_c)/R_3^{uds}(y_c),$$

expanded in  $\alpha_s$ 

$$\begin{array}{ll} r^b & = & \frac{\mathsf{A}^b}{\mathsf{A}^{\mathsf{uds}}} + \frac{\alpha_{\mathsf{s}}}{2\pi} \left( \frac{\mathsf{B}^b + \mathsf{C}^b}{\mathsf{A}^{\mathsf{uds}}} - \frac{\mathsf{B}^{\mathsf{uds}} + \mathsf{C}^{\mathsf{uds}}}{\mathsf{A}^{\mathsf{uds}}} \frac{\mathsf{A}^b}{\mathsf{A}^{\mathsf{uds}}} \right) \\ & + & \mathsf{O} \left( \alpha_{\mathsf{s}}^2 \right) \end{array}$$

with the coefficients A, B, C defined by

$$\begin{array}{lll} \mathsf{R}_3^\mathsf{q}(\mathsf{y}_\mathsf{c}) & = & \frac{\alpha_\mathsf{s}}{2\pi} \mathsf{A}^\mathsf{q}(\mathsf{y}_\mathsf{c}) + \left(\frac{\alpha_\mathsf{s}}{2\pi}\right)^2 (\mathsf{B}^\mathsf{q}(\mathsf{y}_\mathsf{c}) + \mathsf{C}^\mathsf{q}(\mathsf{y}_\mathsf{c})) \\ & + & \mathsf{O}\left(\alpha_\mathsf{s}^3\right), \end{array}$$

A  $\sim$  LO 3-Jet contribution, B  $\sim$  NLO 3-Jet contribution, C  $\sim$  LO 4-Jet contribution.

#### Theoretical prediction

the calculation of A<sup>b</sup>, B<sup>b</sup>, C<sup>b</sup> as a function of m is based on

we use a fit of the form

$$\mathbf{r}_{\text{theo.}}^{\text{b}} = 1 + \alpha \frac{\mathbf{m}^2}{\mathbf{s}} + \beta \frac{\mathbf{m}^2}{\mathbf{s}} \ln(\frac{\mathbf{m}^2}{\mathbf{s}}) + \gamma \frac{\mathbf{m}^4}{\mathbf{s}^2}$$

to parmetrize the numerical results

| Algorithm | $\alpha$ | β      | $\gamma$ |
|-----------|----------|--------|----------|
| D         | 79.3     | 17.16  | -4610.8  |
| G         | -89.6    | -11.04 | 3229.9   |
| E         | 207.6    | 16.10  | -13029.9 |
| E0        | 42.2     | -3.58  | -3881.3  |
| Р         | 211.7    | 28.51  | -5060.9  |
| P0        | 236.8    | 30.95  | -3417.6  |

### **Experiment vs Theory**



( fu= wz)

#### Refined analyses

take correlations into account and fit only one value for the mass:

| Algorithm | E    | E0   | Р    | P0   | D    | G    |
|-----------|------|------|------|------|------|------|
| E         | 1.00 | 0.70 | 0.67 | 0.65 | 0.61 | 0.49 |
| E0        |      | 1.00 | 0.84 | 0.82 | 0.61 | 0.49 |
| Р         |      |      | 1.00 | 0.71 | 0.65 | 0.56 |
| P0        |      |      |      | 1.00 | 0.52 | 0.41 |
| D         |      |      |      |      | 1.00 | 0.64 |
| G         |      |      |      |      |      | 1.00 |

E,E0,P,P0 are highly correlated (> 0.65)

try to fit all algorithms with one mass

$$\sim \chi^2 = 22/5$$

try to omit one algorithm in the fitting procedure  $\sim \chi^2 > 12$ 

try to omit two algorithms  $\sim \chi^2 < 5$  only if two of (E,E0,P,P0) are omitted.

 $\sim$  there is some inconsistency

#### Two ways out

- 1.) throw away the algorithms of the JADE family because of bad soft gluon behavior  $\sim$  will yield low  $\chi^2$  because mass from D, G are very close to each other
- 2.) introduce an additional uncertainty due to higher order effects which may affect the different algorithms differently

we choose the second way

under the assumption of an additional uncertainty  $\epsilon=0.02$  we obtain

$$\begin{split} \overline{m}(\mu = M_Z) \\ = 2.52 \pm 0.27 (\text{stat.})^{+0.33}_{-0.47} (\text{syst.})^{+0.54}_{-1.46} (\text{theor.}) \; \frac{\text{GeV}}{\text{c}^2} \end{split}$$

the theoretical uncertainty includes the uncertainty from hadronization, and the introduced uncertainty  $\epsilon$ 

the value for  $\overline{m}(\mu=M_Z)$  remains stable under a further increment of  $\epsilon$ 

## Comparison with the DELPHI result



#### **Conclusion**

- mass effects well established in jet physics
- high precision reached at e<sup>+</sup>e<sup>-</sup> colliders makes
   it possible to extract the mass of the b quark
- ullet direct observation of the running of  $\overline{m}$
- $\sim$  Q D works well