The **TWIST** Experiment: Testing the Standard Model with Muon Decay

Glen Marshall, for the **TWIST** Collaboration
μCF-07, Dubna, 18-21 June 2007
The TRIUMF Weak Interaction Symmetry Test

- Tests Standard Model predictions for muon decay.
- Uses highly polarized μ^+ beam (μ^- doesn’t work!).
- Stops μ^+ in a very symmetric detector.
- Tracks e^+ through uniform, well-known field.
- Extracts decay parameters by comparison to detailed and verified simulation.
Michel parameter description

- Muon decay parameters ρ, η, $P_\mu \xi$, δ
 - Michel, Kinoshita & Sirlin, and others.
 - muon differential decay rate vs. energy and angle:
 \[
 \frac{d^2 \Gamma}{dx \, d \cos \theta} = \frac{1}{4} m_\mu W_{\mu e}^4 G_F^2 \sqrt{x^2 - x_0^2} \cdot \{ F_{IS}(x, \rho, \eta) + P_\mu \cos \theta \cdot F_{AS}(x, \xi, \delta) \} + R.C.
 \]
 - where
 \[
 F_{IS}(x, \rho, \eta) = x(1 - x) + \frac{2}{9} \rho (4x^2 - 3x - x_0^2) + \eta x_0(1 - x)
 \]
 \[
 F_{AS}(x, \xi, \delta) = \frac{1}{3} \sqrt{x^2 - x_0^2} \left[\xi \{ 1 - x \} + \frac{2}{3} \xi \delta \left\{ 4x - 3 + \left(\sqrt{1 - x_0^2} - 1 \right) \right\} \right]
 \]
 - and
 \[
 W_{\mu e} = \frac{m_\mu^2 + m_e^2}{2m_\mu}, \quad x = \frac{E_e}{W_{\mu e}}, \quad x_0 = \frac{m_e}{W_{\mu e}}.
 \]
Pre-TWIST decay parameters

- From the Review of Particle Physics (SM values in parentheses):
 - \(\rho = 0.7518 \pm 0.0026 \) (Derenzo, 1969) (0.75)
 - \(\eta = -0.007 \pm 0.013 \) (Burkard et al., 1985) (0.00)
 - \(\delta = 0.7486 \pm 0.0026 \pm 0.0028 \) (Balke et al., 1988) (0.75)
 - \(P_{\mu\xi} = 1.0027 \pm 0.0079 \pm 0.0030 \) (Beltrami et al., 1987) (1.00)
 - \(P_{\mu}(\xi\delta/\rho) > 0.99682 \) (Jodidio et al., 1986) (1.00)

The goal of TWIST is to find any new physics which may become apparent by improving the precision of each of \(\rho, \delta, \) and \(P_{\mu\xi} \) by at least one order of magnitude compared to prior experimental results.
• Full $O(\alpha)$ radiative corrections with exact electron mass dependence.
• Leading and next-to-leading logarithmic terms of $O(\alpha^2)$.
• Leading logarithmic terms of $O(\alpha^3)$.
• Corrections for soft pairs, virtual pairs and an ad-hoc exponentiation.

Anastasiou et al., hep-ph/0505069 to $O(\alpha^2)$ (not yet published, not implemented).
Michel parameters and coupling constants

- Fetscher and Gerber coupling constants (see PDG):

\[M = \frac{4G_F}{\sqrt{2}} \sum_{\gamma=S,V,T} \sum_{\epsilon,\mu=R,L} g_{\epsilon\mu}^\gamma \langle \bar{\epsilon} \epsilon | \Gamma^\gamma | (\nu_e)_n \rangle \langle (\bar{\nu}_\mu)_m | \Gamma^\gamma | \mu_\mu \rangle \]

\[\rho = \frac{3}{4} - \frac{3}{4} \text{Re} \left[(g^V_{RL})^2 + (g^V_{LR})^2 + 2|g^T_{RL}|^2 + 2|g^T_{LR}|^2 \right] \]

\[\eta = \frac{1}{2} \text{Re} \left[(g^V_{RR})^2 + (g^V_{LL})^2 + (g^V_{RL})^2 + 4|g^T_{LR}|^2 + 4|g^T_{RR}|^2 \right] \]

\[\xi = 1 - \frac{1}{2} |g^S_{LR}|^2 - \frac{1}{2} |g^S_{RR}|^2 - 4|g^V_{RL}|^2 + 2|g^V_{LR}|^2 - 2|g^V_{RR}|^2 \]

\[\xi \delta = \frac{3}{4} - \frac{3}{8} |g^S_{RR}|^2 - \frac{3}{8} |g^S_{LR}|^2 - \frac{3}{2} |g^V_{RR}|^2 - \frac{3}{4} |g^V_{LR}|^2 - \frac{3}{4} |g^V_{RR}|^2 \]

\[-\frac{3}{2} |g^T_{RL}|^2 - 3|g^T_{LR}|^2 + \frac{3}{4} \text{Re} \left[(g^S_{LR})^2 - (g^S_{RL})^2 \right] \]
Coupling constants

Coupling constants $g^{\gamma}_{\epsilon\mu}$ can be related to handedness, e.g., total muon right-handed coupling:

$$Q^{\mu}_{R} \equiv Q_{RR} + Q_{LR} = \frac{1}{4} |g^{S}_{LR}|^2 + \frac{1}{4} |g^{S}_{RR}|^2 + |g^{V}_{LR}|^2 + |g^{V}_{RR}|^2 + 3|g^{T}_{LR}|^2$$

Global analysis of μ decay (Gagliardi et al., PRD 72 (2005) 073002)
- no existing similar analysis for other weak decays.

| $|g^{S}_{RR}|$ | $|g^{V}_{RR}|$ | $|g^{T}_{RR}|$ |
|----------------|----------------|----------------|
| $< 0.066(0.067)$ | $< 0.033(0.034)$ | $\equiv 0$ |

| $|g^{S}_{LR}|$ | $|g^{V}_{LR}|$ | $|g^{T}_{LR}|$ |
|----------------|----------------|----------------|
| $< 0.125(0.088)$ | $< 0.060(0.036)$ | $< 0.036(0.025)$ |

| $|g^{S}_{RL}|$ | $|g^{V}_{RL}|$ | $|g^{T}_{RL}|$ |
|----------------|----------------|----------------|
| $< 0.424(0.417)$ | $< 0.110(0.104)$ | $< 0.122(0.104)$ |

| $|g^{S}_{LL}|$ | $|g^{V}_{LL}|$ | $|g^{T}_{LL}|$ |
|----------------|----------------|----------------|
| $< 0.550(0.550)$ | $> 0.960(0.960)$ | $\equiv 0$ |

Neutrino mass implications at 10^{-7}-10^{-4} for LR/RL:
Decay distribution is linear in ρ, η, $P_{\mu\xi}$, and $P_{\mu\xi\delta}$, so a fit to first order expansion is exact.

Fit data to simulated (MC) base distribution with hidden assumed parameters, $\lambda_{MC} = (\rho, \eta, P_{\mu\xi}, P_{\mu\xi\delta}, P_{\mu\xi\delta})$ plus MC-generated distributions from analytic derivatives, times fitting parameters ($\Delta \lambda$) representing deviations from base MC.

(graphic thanks to Blair Jamieson)
Blind analysis motivation

- Reduce “human” systematics, i.e., biases.
- Keep final result hidden until analysis is completed and systematic uncertainties evaluated.
- In fit procedure, the set of simulation parameters λ_{MC} is encrypted and unknown; results of fits are differences $\Delta \lambda$ from hidden values.

A. Gaponenko, Ph.D. thesis
TWIST relies on a fit to simulation:
- Simulation must be verified.
- Reconstruction systematics eliminated if simulation is perfect.

General method:
- exaggerate a condition (in data or MC) which may cause error.
- measure effect by fitting, using correlated sets where practical.
- scale results according to variance in a data set.
- Linearity? Double counting?

Positron interactions:
- Energy smearing
- Multiple scattering
- Hard interactions
- Material in detector
- Material outside

Chamber response:
- DC and PC efficiencies
- Dead zone
- Long drift times
- HV variations
- Temperature, pressure
- Chamber foil bulges
- Crosstalk
- Variation of t_0

Momentum calibration:
- End point fits
- Field reproduction

Muon beam stability:
- Stopping location
- Beam intensity
- Magnet stability

Spectrometer alignment:
- Translations
- Rotations
- Longitudinal
- Field to detector axis
Fits to data distributions

Above: normalized residuals of fit, and fiducial region used for fit: \(p < 50 \text{ MeV/c}, 0.50 < |\cos \theta| < 0.84, |p_z| > 13.7 \text{ MeV/c}, p_T < 38.5 \text{ MeV/c} \).

Left: comparison of data to fit (MC) vs. momentum, also showing (MC reconstructed)/(MC thrown) comparisons and normalized residuals.
Angular distributions for restricted momentum ranges. Dashed lines show fiducial region of two-dimensional fit.

Dependence of asymmetry on momentum, its two contributions, and comparison of data and fit (MC)distributions.
Summary of results: ρ and δ

- $\rho = 0.75080 \pm 0.00044^{\text{stat}} \pm 0.00093^{\text{syst}} \pm 0.00023^{(\eta)}$
 - 2.5 times better precision than PDG value.
 - Uncertainty scaled for $\chi^2/\text{dof} = 7.5/4$ (CL=0.11) for different data sets.

- $\delta = 0.74964 \pm 0.00066^{\text{stat}} \pm 0.00112^{\text{syst}}$
 - 2.9 times better precision than PDG value.

Using the above values of ρ and δ, with $P_{\mu}(\xi\delta/\rho) > 0.99682$ (PDG) and $Q_{R\mu} \geq 0$, we get

$$0.9960 < P_{\mu} \xi \leq \xi < 1.0040 \text{ (90\% c.l.)}$$

- improves upon $P_{\mu} \xi = 1.0027 \pm 0.0079 \pm 0.0030$.

Systematic uncertainties: ρ and δ

<table>
<thead>
<tr>
<th>Systematic uncertainties</th>
<th>$\rho \times 10^4$</th>
<th>$\delta \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>published</td>
<td>current</td>
</tr>
<tr>
<td>Chamber response (ave)</td>
<td>5.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Stopping target thickness</td>
<td>4.9</td>
<td>-</td>
</tr>
<tr>
<td>Positron interactions</td>
<td>4.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Momentum calibration (ave)</td>
<td>2.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Theoretical radiative correction</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Muon beam stability (ave)</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Track selection algorithm</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>Asymmetric efficiencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total in quadrature</td>
<td>9.3</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Summary of results: $\mathcal{P}_{\mu\xi}$

- $\mathcal{P}_{\mu\xi} = 1.0003 \pm 0.0006\text{(stat)} \pm 0.0038\text{(syst)}$
 - 2.2 times better precision than PDG value (Beltrami et al.).
 - still not as precise as TWIST indirect result from ρ and δ.

- Dominated by systematic uncertainty from spectrometer fringe field depolarization:
 - prospects for improvement are excellent.
 - data taken in 2004; new data with improved muon beam from data taken in 2006-07.
Systematic uncertainties: $P_{\mu \xi}$

<table>
<thead>
<tr>
<th>Systematic uncertainties</th>
<th>$P_{\mu \xi} \times 10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depolarization in fringe field (ave)</td>
<td>3.4</td>
</tr>
<tr>
<td>Depolarization in muon stopping material (ave)</td>
<td>1.2</td>
</tr>
<tr>
<td>Chamber response (ave)</td>
<td>1.0</td>
</tr>
<tr>
<td>Spectrometer alignment</td>
<td>0.3</td>
</tr>
<tr>
<td>Positron interactions (ave)</td>
<td>0.3</td>
</tr>
<tr>
<td>Depolarization in muon production target</td>
<td>0.2</td>
</tr>
<tr>
<td>Momentum calibration</td>
<td>0.2</td>
</tr>
<tr>
<td>Upstream-downstream efficiency</td>
<td>0.2</td>
</tr>
<tr>
<td>Background muon contamination (ave)</td>
<td>0.2</td>
</tr>
<tr>
<td>Beam intensity (ave)</td>
<td>0.2</td>
</tr>
<tr>
<td>Michel η parameter</td>
<td>0.1</td>
</tr>
<tr>
<td>Theoretical radiative correction</td>
<td>0.1</td>
</tr>
<tr>
<td>Total in quadrature</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Improving the systematics

<table>
<thead>
<tr>
<th>Systematic</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>positron interactions</td>
<td>precision target geometry, improved chamber spacing, simulation tuning</td>
</tr>
<tr>
<td>momentum calibration</td>
<td>new techniques with reduced bias</td>
</tr>
<tr>
<td>chamber response</td>
<td>online monitoring, improved instrumentation, drift time measurements</td>
</tr>
<tr>
<td>fringe field depolarization</td>
<td>beam monitoring (TEC), beam alignment and steering</td>
</tr>
<tr>
<td>stopping target depolarization</td>
<td>aluminum and silver targets, depolarization studies with μSR.</td>
</tr>
</tbody>
</table>
Fringe field systematic improvement

The TECs (time expansion chambers) are transverse drift chambers operating at 0.08 bar, separated from beam vacuum by 6 μm Mylar windows. Two modules measure x and y. Red lines show measurements of beam, dashed blue lines show resulting simulation.
Left-right symmetric models

- Weak eigenstates in terms of mass eigenstates and mixing angle:
 \[W_L = W_1 \cos \zeta + W_2 \sin \zeta, \quad W_R = e^{i\omega}(-W_1 \sin \zeta + W_2 \cos \zeta) \]

- Assume possible differences in left and right couplings and CKM character.
 Use notation:
 \[t = \frac{g_R^2 m_1^2}{g_L^2 m_2^2}, \quad t_\theta = t \frac{|V_{ud}^R|}{|V_{ud}^L|}, \quad \zeta_g = \frac{g_R^2}{g_L^2} \]

- Then, for muon decay, the Michel parameters are modified:
 \[\rho = \frac{3}{4} (1 - 2\zeta_g^2), \quad \xi = 1 - 2(t^2 + \zeta_g^2), \]
 \[P_\mu = 1 - 2t_\theta^2 - 2\zeta_g^2 - 4t_\theta \zeta_g^2 \cos(\alpha + \omega) \]

 - “manifest” LRS assumes \(g_R = g_L, V^R = V^L, \omega = 0 \) (no CP violation).
 - “pseudo-manifest” LRS allows CP violation (\(\alpha \neq 0 \)), but \(V^R = (V^L)^* \) and \(g_R = g_L \).
 - RS “non-manifest” or generalized LRS makes no such assumptions.

- Most experiments must make assumptions about LRS models!
Limits on LRS parameters: PDG06

| Observable | m_2 (GeV/c2) | $|\zeta|$ | + | - |
|-----------------------------|-------------------|----------|-----|-----|
| $m(K_L - K_S)$ | >1600 | | reach | (P)MLRS |
| Direct W_R searches | >800 (D0) | <10$^{-3}$ | clear signal | (P)MLRS decay model |
| | >786 (CDF) | | | |
| CKM unitarity | | | <10$^{-3}$ | (P)MLRS heavy ν_R |
| β decay | >310 | <0.040 | both parameters | (P)MLRS light ν_R |
| μ decay (\textit{TWIST}) | >406 (>420) | <0.033 (<0.030) | model independence | light ν_R |
Muon decay LRS limits

Exclusion (90% cl) plots for left-right symmetric model mixing angle and right partner boson W_2 mass m_2
Summary

- **TWIST** has produced its first direct measurement of $P_{\mu \xi}$, to add to previous results for ρ and δ.

- Analysis underway for second measurements for ρ and δ, representing further improvements by ~ 2.

- Reduction of depolarization systematics for $P_{\mu \xi}$ seems achievable, but it is not yet known by how much.

- In 2006-2008, **TWIST** will produce its final results: the goal remains the reduction of uncertainty by an order of magnitude compared to previous muon decay parameter experiments.
TWIST Participants

TRIUMF
Ryan Bayes *†
Yuri Davydo\nJaap Doornbos
Wayne Faszer
Makoto Fujiwara
David Gill
Alex Grossheim
Peter Gumplinger
Anthony Hillairet *†
Robert Henderson
Jingliang Hu
John A. Macdonald §
Glen Marshall
Dick Mischke
Mina Nozar
Konstantin Olichanski
Art Olin †
Robert Openshaw
Tracy Porcelli †
Jean-Michel Poutissou
Renée Poutissou
Grant Sheffer
Bill Shin ‡‡

Alberta
Andrei Gaponenko **
Peter Kitching
Robert MacDonald *
Maher Quraan †
Nate Rodning §
John Schaapman
Glen Stinson

British Columbia
James Bueno *
Mike Hasinoff
Blair Jamieson **

Montréal
Pierre Depommier

Regina
Ted Mathie
Roman Tacik

Kurchatov Institute
Vladimir Selivanov
Vladimir Torokhov

Texas A&M
Carl Gagliardi
Jim Musser **
Bob Tribble
Maxim Vasiliev

Valparaiso
Don Koetke
Paul Nord
Shirvel Stanislaus

* Graduate student
** Graduated
† also U Vic
‡ also Manitoba
‡‡ also Saskatchewan
§ deceased

Supported under grants from NSERC (Canada) and DOE (USA).
Computing facilities of WestGrid are gratefully acknowledged.

μCF-07, Dubna, June 18-21, 2007
G.M. Marshall, The TWIST Experiment