muCF07, Dubna 18-21 June 2007

Importance of Fluctuations of cross section in muon-catalysed t-t fusion

Sachie Kimura and Aldo Bonasera

LNS-Istituto Nazionale di Fisica Nucleare, Italy

muCF07, Dubna 18-21 June 2007 - p.1/1

- Recent Experimental Observation: T dependence of λ_c and $\omega^{\rm eff}$

cf. N. Kawamura, et al., Phys.Rev.Lett. 90, 043401(2003)

"Discovery of Temperature-Dependent Phenomena of Muon-Catalyzed Fusion in Solid Deuterium and Tritium Mixtures"

due to the resonant molecular formation in

$$t\mu + \mathsf{D}_2 + \mathsf{D}_2$$

• Importance of the resonant state of $dt\mu$ mesomolecules

$t + t + \mu \rightarrow {}^{5} \mathbf{He}^{*} + n \rightarrow \alpha + n + n + Q(11.33MeV)$

cf. T. Matsuzaki, Phys.Lett.B 557, 176(2003)

"Evidence for strong n- α correlations in the t+t reaction proved by the neutron energy distribution of muon catalysed t-t fusion"

- No shallow bound state in $tt\mu$
- λ_c can be estimated using "in-flight" fusion model? \Rightarrow No T dependence

• the μ cycling rate and the reaction rate

 $\lambda = \rho_{LH} < \sigma v >$

 $ho_{LH} = 4.25 \times 10^{22} cm^{-2}$ as a function of T

• Large Enhancement of the cross section by μ^-

$$\sigma(\mathsf{E}) = \mathsf{f}_{\boldsymbol{\mu}} \sigma_{\mathsf{0}}(\mathsf{E})$$

• Fluctuation of $f_{\mu} \leftarrow$ Chaotic dynamics of the 3-body system

Screening Potential /(R) $f_{\mu} \equiv \frac{\sigma(E)}{\sigma_{0}(E)} = \frac{\sigma_{0}(E + U_{\mu})}{\sigma_{0}(E)}$ $\sim \exp\{\pi\eta(E)\frac{U_{\mu}}{E}\}$ Ε $\mathsf{U}_{\mu}\sim rac{\mathsf{E}}{\pi\eta(\mathsf{E})}\mathsf{log}\,\mathsf{f}$ R U_{μ} : Screening Potential

muCF07, Dubna 18-21 June 2007 – p.5/1

Constrained Molecular Dynamics (CoMD)

S.Kimura and A.Bonasera, Phys. Rev. A 72, 014703 (2005)

Lagrange multiplier method for constraints

$$\begin{split} \mathcal{L} = \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} - \sum_{i,j(\neq i)} U(\mathbf{r}_{ij}) + \sum_{i,j(\neq i)} \lambda_{i} \left(\frac{\mathbf{r}_{ij} \mathbf{p}_{ij}}{\boldsymbol{\xi} \hbar} - 1 \right) \\ \mathbf{r}_{ij} = |\mathbf{r}_{i} - \mathbf{r}_{j}|; \ \mathbf{p}_{ij} = |\mathbf{p}_{i} - \mathbf{p}_{j}| \end{split}$$

muCF07, Dubna 18-21 June 2007-p.6/1

Constrained Molecular Dynamics (CoMD) S.Kimura and A.Bonasera, Phys. Rev. A 72, 014703 (2005)

Lagrange multiplier method for constraints

$$\begin{split} \mathcal{L} &= \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} - \sum_{i,j(\neq i)} \mathsf{U}(\mathbf{r}_{ij}) + \sum_{i,j(\neq i)} \lambda_{i} \left(\frac{\mathbf{r}_{ij} \mathbf{p}_{ij}}{\boldsymbol{\xi} \hbar} - 1 \right) \\ \mathbf{r}_{ij} &= |\mathbf{r}_{i} - \mathbf{r}_{j}|; \ \mathbf{p}_{ij} = |\mathbf{p}_{i} - \mathbf{p}_{j}| \\ \boldsymbol{\xi} &= 1 (\text{for Heisenberg principle}) \end{split}$$

muCF07, Dubna 18-21 June 2007-p.6/1

Constrained Molecular Dynamics (CoMD)

S.Kimura and A.Bonasera, Phys. Rev. A 72, 014703 (2005)

Lagrange multiplier method for constraints

$$\begin{aligned} \mathcal{L} &= \sum_{i} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} - \sum_{i,j(\neq i)} \mathsf{U}(\mathbf{r}_{ij}) + \sum_{i,j(\neq i)} \lambda_{i} \left(\frac{\mathbf{r}_{ij}\mathbf{p}_{ij}}{\boldsymbol{\xi}\hbar} - 1 \right) \\ \mathbf{r}_{ij} &= |\mathbf{r}_{i} - \mathbf{r}_{j}|; \ \mathbf{p}_{ij} = |\mathbf{p}_{i} - \mathbf{p}_{j}| \\ \boldsymbol{\xi} &= 1 (\text{for Heisenberg principle}) \end{aligned}$$

Variational calculus leads Hamilton Equation with Constraint:

$$\begin{array}{lll} \displaystyle \frac{d\mathbf{r}_{i}}{dt} & = & \displaystyle \frac{\mathbf{p}_{i}}{m_{i}} + \displaystyle \frac{\lambda_{i}\mathbf{r}_{ij}}{\xi\hbar} \displaystyle \frac{\partial\mathbf{p}_{ij}}{\partial\mathbf{p}_{i}} \\ \displaystyle \frac{d\mathbf{p}_{i}}{dt} & = & \displaystyle -\nabla_{\mathbf{r}}\mathsf{U}(\mathbf{r}_{i}) - \displaystyle \frac{\lambda_{i}\mathbf{p}_{ij}}{\xi\hbar} \displaystyle \frac{\partial\mathbf{r}_{ij}}{\partial\mathbf{r}_{i}} \end{array}$$

Tunneling process

Collective coordinates and momenta

 $\label{eq:reconstruction} \mathbf{R}^{\text{coll}} \equiv \mathbf{r}_{\text{P}} - \mathbf{r}_{\text{T}}; \quad \mathbf{P}^{\text{coll}} \equiv \mathbf{p}_{\text{P}} - \mathbf{p}_{\text{T}}; \quad \mathbf{F}_{\text{P}}^{\text{coll}} \equiv \dot{\mathbf{P}}^{\text{coll}}$

muCF07, Dubna 18-21 June 2007 - p.7/19

Tunneling process

$$\frac{d\mathbf{r}_i}{dt} = \frac{\mathbf{p}_i}{m_i}; \quad \frac{d\mathbf{p}_i}{dt} = -\nabla_{\mathbf{r}} U(\mathbf{r}_i)$$

Collective coordinates and momenta

 $\mathbf{R}^{\text{coll}} \equiv \mathbf{r}_{\text{P}} - \mathbf{r}_{\text{T}}; \quad \mathbf{P}^{\text{coll}} \equiv \mathbf{p}_{\text{P}} - \mathbf{p}_{\text{T}}; \quad \mathbf{F}_{\text{P}}^{\text{coll}} \equiv \dot{\mathbf{P}}^{\text{coll}}$

$$\frac{d\mathbf{r}_{\mathsf{T}(\mathsf{P})}^{\Im}}{\mathsf{d}\tau} = \frac{\mathbf{p}_{\mathsf{T}(\mathsf{P})}^{\Im}}{\mathsf{m}_{\mathsf{T}(\mathsf{P})}}; \quad \frac{d\mathbf{p}_{\mathsf{T}(\mathsf{P})}^{\Im}}{\mathsf{d}\tau} = -\nabla_{\mathbf{r}}\mathsf{U}(\mathbf{r}_{\mathsf{T}(\mathsf{P})}^{\Im}) - 2\mathbf{F}_{\mathsf{T}(\mathsf{P})}^{\mathsf{coll}}$$

Tunneling penetrability: $\Pi(E) = (1 + \exp(2\mathcal{A}(E)/\hbar))^{-1}$ $\mathcal{A}(E) = \int_{r_b}^{r_a} \mathbf{P}^{\text{coll}} d\mathbf{R}^{\text{coll}}$ without muon $\Rightarrow \Pi_0(E)$

Enhancement factor: $f_{\mu} = \Pi(E) / \Pi_0(E)$

muCF07, Dubna 18-21 June 2007-p.7/1

Enhancement factor and Variance $\Sigma = \sqrt{\bar{f_{\mu}^2} - (\bar{f_{\mu}})^2}$

muCF07, Dubna 18-21 June 2007 - p.8/15

Muonic Motion and Enhancement factor as an order parameter

Small f_{μ} : Regular

muCF07, Dubna 18-21 June 2007 - p.9/15

Muonic Motion and Enhancement factor as an order parameter

Small f_{μ} : Regular (\Leftarrow Long TR)

muCF07, Dubna 18-21 June 2007 - p.9/15

Muonic Motion and Enhancement factor as an order parameter

Small f_{μ} : Regular (\Leftarrow Long TR)

muCF07, Dubna 18-21 June 2007 – p.9/19

muCF07, Dubna 18-21 June 2007 - p.10/1

$$egin{array}{rcl} \lambda &=&
ho < \sigma v > \ &=&
ho \int \sigma_0 (\mathsf{E} + \mathsf{U}_\mu) v \Psi(\mathsf{E},\mathsf{T}) \mathsf{d}\mathsf{E} \end{array}$$

muCF07, Dubna 18-21 June 2007 - p.11/19

$$egin{array}{rcl} \lambda &=&
ho < \sigma v > \ &=&
ho \int \sigma_0 (\mathsf{E} + \mathsf{U}_\mu) v \Psi (\mathsf{E},\mathsf{T}) \mathsf{d}\mathsf{E} \end{array}$$

$$\sigma_0(\mathsf{E}) = \frac{\mathsf{S}(\mathsf{E})}{\mathsf{E}} e^{-2\pi\eta(\mathsf{E})}$$

$$\mathsf{S}(\mathsf{E}) = 0.20 - 0.32\mathsf{E} + 0.476\mathsf{E}^2[\mathsf{MeVb}]$$

(for the t + t reaction)

S. Winkler et al., J. Phys. G 18(1991) L147

muCF07, Dubna 18-21 June 2007 - p.11/18

$$\lambda = \rho < \sigma v >$$

= $\rho \int \sigma_0 (\mathsf{E} + \mathsf{U}_\mu) v \Psi(\mathsf{E}, \mathsf{T}) \mathsf{N}(\mathsf{U}_\mu) \mathsf{d} \mathsf{U}_\mu \mathsf{d} \mathsf{E}$

$$\sigma_0(\mathsf{E}) = \frac{\mathsf{S}(\mathsf{E})}{\mathsf{E}} e^{-2\pi\eta(\mathsf{E})}$$

$$\mathsf{S}(\mathsf{E}) = 0.20 - 0.32\mathsf{E} + 0.476\mathsf{E}^2[\mathsf{MeVb}]$$

(for the t + t reaction)

S. Winkler et al., J. Phys. G 18(1991) L147

muCF07, Dubna 18-21 June 2007 - p.11/18

Distributions of U_{μ}

muCF07, Dubna 18-21 June 2007 - p.12/15

Distributions of U_{μ}

muCF07, Dubna 18-21 June 2007 - p.12/19

Distributions of U_{μ}

muCF07, Dubna 18-21 June 2007 - p.12/15

$$\lambda = \rho \int \sigma_0 (\mathsf{E} + \mathsf{U}_\mu) v \Psi(\mathsf{E}, \mathsf{T}) \mathsf{N}(\mathsf{U}_\mu) \mathsf{d}\mathsf{E}\mathsf{d}\mathsf{U}_\mu$$

muCF07, Dubna 18-21 June 2007 - p.13/1

$$\lambda = \rho \int \sigma_0 (\mathsf{E} + \mathsf{U}_{\mu}) v \Psi(\mathsf{E}, \mathsf{T}) \left(\mathsf{N}(\mathsf{U}_{\mu}) \mathsf{d}\mathsf{E}\mathsf{d}\mathsf{U}_{\mu} \right)$$

$$\begin{aligned} \mathsf{N}(\mathsf{U}_{\boldsymbol{\mu}}) &= \frac{1}{\sqrt{2\pi}\Delta\mathsf{U}_{\boldsymbol{\mu}}} \exp\left(-\frac{(\mathsf{U}_{\boldsymbol{\mu}}-\bar{\mathsf{U}}_{\boldsymbol{\mu}})^{2}}{2\Delta\mathsf{U}_{\boldsymbol{\mu}}^{2}}\right) \ (\mathsf{E}>\mathsf{I}.\mathsf{E}.) \\ &= \frac{\pi}{2} \left(\frac{\mathsf{U}_{\boldsymbol{\mu}}}{\bar{\mathsf{U}}_{\boldsymbol{\mu}}}\right) \exp\left(-\frac{\pi}{4} \left(\frac{\mathsf{U}_{\boldsymbol{\mu}}}{\bar{\mathsf{U}}_{\boldsymbol{\mu}}}\right)^{2}\right) \ (\mathsf{E}<\mathsf{I}.\mathsf{E}.) \end{aligned}$$

muCF07, Dubna 18-21 June 2007 - p.13/1

$$\lambda = \rho \int \sigma_0 (\mathsf{E} + \mathsf{U}_\mu) v \Psi(\mathsf{E}, \mathsf{T}) \left(\mathsf{N}(\mathsf{U}_\mu) \right) \mathsf{d}\mathsf{E}\mathsf{d}\mathsf{U}_\mu$$

$$N(U_{\mu}) = \frac{1}{\sqrt{2\pi}\Delta U_{\mu}} \exp\left(-\frac{(U_{\mu} - \bar{U}_{\mu})^{2}}{2\Delta U_{\mu}^{2}}\right) \quad (E > I.E.)$$
$$= \frac{\pi}{2} \left(\frac{U_{\mu}}{\bar{U}_{\mu}}\right) \exp\left(-\frac{\pi}{4} \left(\frac{U_{\mu}}{\bar{U}_{\mu}}\right)^{2}\right) \quad (E < I.E.)$$

muCF07, Dubna 18-21 June 2007 - p.13/1

Reaction Rate of the t+t

muCF07, Dubna 18-21 June 2007 – p.14/1

Reaction Rate of the t+t

muCF07, Dubna 18-21 June 2007 - p.14/1

Reaction Rate of the t+t

muCF07, Dubna 18-21 June 2007 - p.14/1

Conclusions

Importance of Fluctuations of cross section in muon-catalysed *t*-*t* fusion

- Reaction rate and μ cycling rate
- Numerical simulation by the CoMD
- A characteristic change of the slope of $\Delta U_{\mu}/\bar{U}_{\mu}$ at the ionization energy of the μ molecule.
- Fluctuation of σ contributes to enhance the RR
- Obtained RR has no T dependence in the low T region, as expected. However it is smaller than exp. μ cycling rate

