## Friends of $\mu$ CF: exotic atoms, molecules and nuclei of antiprotons and $\bar{K}$ mesons

Toshimitsu Yamazaki<sup>a b</sup> Department of Physics, University of Tokyo <sup>b</sup> RIKEN Nishina Center

I present a topics on the kaonic nuclear molecule  $K^-pp$ , which has recently been predicted and studied profoundly [1]. It is the fundamental unit for "super strong nuclear force", which is caused by a migrating  $K^-$  meson as:

Super strong nuclear force:  $K^-p + p \leftrightarrow p + K^-p$ . (1)

This is a kind of revival of the abandoned Heitler-London=Heisenberg scheme for nuclear force.



Figure 1: (Left) The adiabatic potential  $(V(R) R^2)$ , when a proton approaches a bound  $K^-p$  "atom" ( $\Lambda^*$ ), as a function of the distance between p and p. For comparison the Tamagaki potential for the normal  $V_{NN}$  interaction is shown. (Right) The molecular structure of  $K^-pp$ . The projected density distributions of  $K^-$  in  $K^-pp$  with a fixed p - p distance (= 2.0 fm) and the corresponding  $K^-$  contour distribution are shown,

<sup>[1]</sup> T. Yamazaki and Y. Akaishi, Proc. Japan Acad. B (2007) in press.