I present a topic on the kaonic nuclear molecule K^-pp, which has recently been predicted and studied profoundly [1]. It is the fundamental unit for “super strong nuclear force”, which is caused by a migrating K^- meson as:

$$Super ~strong ~nuclear ~force: ~K^-p + p \leftrightarrow p + K^-p.$$ \hspace{1cm} (1)

This is a kind of revival of the abandoned Heitler-London=Heisenberg scheme for nuclear force.

Figure 1: (Left) The adiabatic potential $(V(R) R^2)$, when a proton approaches a bound K^-p “atom” (Λ^*), as a function of the distance between p and p. For comparison the Tamagaki potential for the normal V_{NN} interaction is shown. (Right) The molecular structure of K^-pp. The projected density distributions of K^- in K^-pp with a fixed $p-p$ distance (= 2.0 fm) and the corresponding K^- contour distribution are shown.