2S–Decay and Cascade Time of Muonic Hydrogen at 0.6 mbar

L. Ludhova^{*a,b*}, F.D. Amaro^{*c*}, A. Antognini^{*d*}, F. Biraben^{*e*}, J.M.R. Cardoso^{*c*},

C.A.N. Conde^c, A. Dax^{b,f}, S. Dhawan^f, L.M.P. Fernandes^c, T.W. Hänsch^d,

V.W. Hughes^f, P. Indelicato^e, L. Julien^e, P.E. Knowles^a, F. Kottmann^g, Y.-W. Liu^h,

J.A.M. Lopes^c, C.M.B. Monteiro^c, F. Mulhauser^a, F. Nez^e, R. Pohl^b, P. Rabinowitzⁱ,

J.M.F. dos Santos^c, L.A. Schaller^a, C. Schwob^e, D. Taqqu^b, and J.F.C.A. Veloso^c

^a Département de Physique, Université de Fribourg, 1700 Fribourg, Switzerland ^b Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland

^c Departamento de Física, Universidade de Coimbra, 3000 Coimbra, Portugal

^d Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany

^e Laboratoire Kastler Brossel, ENS, UPMC and CNRS, 4 place Jussieu, 75252 Paris Cedex 05,

France

^f Physics Department, Yale University, New Haven, Connecticut 06520-8121, USA ^g Institut für Teilchenphysik, ETH Zürich, 8093 Zürich, Switzerland

^h Physics Department, National Tsing Hua University, Hsinchu 300, Taiwan

ⁱDepartment of Chemistry, Princeton University, Princeton, New Jersey 08544-1009, USA

The fast radiative decay of the metastable 2S muonic-hydrogen atoms has been detected for the first time. Its origin are $\mu p(2S)$ atoms formed with kinetic energies above 0.3 eV that are collisionally excited to the 2P state and decay to the 1S ground state via emission of a 1.9 keV X-ray. This reaction is the main outcome of collisions at kinetic energies significantly above 1 eV whereas near 1 eV or less strong competition from slowing-down to below threshold takes place. As the initial kinetic distribution is known[1], the measured decay allows to check the validity of the calculations of both the quenching and the slowing down cross-sections. In order to do this the diffusion of the $\mu p(2S)$ ein the target volume has to be taken into account as it spreads the position distribution and changes the X-ray detection efficiency with time. The results are in good agreement with calculations of T. Jensen[2].

Simultaneously, a reliable determination of the atomic cascade time, 37 ± 5 ns at 0.6 mbar, is obtained. It is much too short to be explained with de-excitation processes calculated for a target of hydrogen atoms. Molecular Coulomb de-excitation as calculated by T. Jensen[3] shortens the cascade time but still gives too large values. Possible explanations of the result will be discussed.

^[1] R. Pohl, PhD thesis 14096, ETH, Zurich, Switzerland (2001)

^[2] T.S. Jensen, V.E. Markushin, Eur. Phys. D 21, 271 (2002).

^[3] T.S. Jensen, V.E. Markushin, Eur. Phys. D **21**, 261 (2002).