
Temperature dependence of muon transfer rates from t μ to ³He in solid T₂

<u>T. Matsuzaki</u>^a, K. Ishida^a, H. Imao^a, Y. Matsuda^a, N. Kawamura^b, M. Iwasaki^a and K. Nagamine^{a,b,c} ^a *RIKEN*, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan ^b KEK 1-1 Oho, Tukuba, Ibaraki, 305-0801 Japan ^c University of California Riverside, Riverside, California 92521, U.S.A.

RIKEN have conducted muon catalyzed t-t fusion experiments with solid T₂ targets at the RIKEN-RAL Muon Facility in the UK. Muon catalyzed t-t fusions (t-t μ CF) take place spontaneously by stopping negative muons in a tritium target. The negative muons form t μ atoms, and the t μ atoms then collide with T₂ molecules to form tt μ molecules. The t-t fusions occur in the tt μ molecules to induce three-particle decay as shown in a figure. In the themarization process, t μ atoms also collide with ³He atoms accumulated in solid T₂ targets, and muons transfer from t μ to ³He atom through intermediate (t³He μ ⁻) mesomolecule formation with 6.7 keV photon emissions, describes as

 $t\mu^{-} + {}^{3}\text{He} \rightarrow t^{3}\text{He}\mu^{-} * \rightarrow t + {}^{3}\text{He}\mu^{-} + 6.7 \text{ keV}.$

The muon transfer rates were measured by observing time dependent changes of t-t μ CF neutron disappearance rates as a function of time elapsed after ³He removal. We have obtained the muon transfer rates in the range from 5K to 20K, and observed an interesting temperature dependence. The muon transfer process is considered to be closely connected with t μ themarization, collision cross section and lattice structure of solid T₂ at various temperatures. The experimets, results and our understanding will be reported.

