New precision measurements of the strong interaction in kaonic hydrogen

M. Bazzi^a, G. Beer^c, L. Bombelli^d, A.M. Bragadireanu^e, M. Cargnelli^b, M. Catitti^a,

C. Curceanu (Petrascu)^a, C. Fiorini^d, T. Frizzi^d, F. Ghio^f, B. Girolami^f, C. Guaraldo^a,

M. Iliescu^a, T. Ishiwatari^b, P. Kienle^b, P. Lechner^g, <u>J. Marton^b</u>, K. Nikolics^b,

P. Levi Sandri^a, A. Longoni^d, V. Lucherini^a, D. Pietreanu^a, T. Ponta^e, D.L. Sirghi^a,

F. Sirghi^a, H. Soltau^g, L. Strüder^h, O. Vazquez Doce^a, E. Widmann^b, J. Zmeskal^b ^a INFN, Laboratori Nazionali di Frascati, Italy

^b Stefan Meyer Institut of the Austrian Academy of Sciences, Vienna, Austria

C D A CD A COLLECTION ACQUEINT OF SCIENCES, Vienna, Austria

^c Dept. of Physics and Astronomy, University of Victoria, Canada ^d Politecnico di Milano, Dip. di Elettronica e Informazione, Italy

^e IFIN-HH, Bucharest, Romania

^f INFN Sez. di Roma I and Instituto Superiore di Sanita, Italy

^g PNSensors GmbH, Munich, Germany

^h MPI for Extraterrestrial Physics, Munich, Germany

The measurement of kaonic hydrogen X-ray transitions by the DEAR collaboration at the electron-positron collider DA Φ NE (Frascati, Italy) provided new data for the strong interaction shift ϵ_{1s} and width Γ_{1s} of the 1s state [1]. The repulsive character of the kaonproton interaction at threshold was confirmed, and compared with former experiments the precision of ϵ_{1s} and Γ_{1s} was improved.

A new experiment planned by the SIDDHARTA (Silicon Drift Detectors for Hadronic Atom Research by Timing Application) collaboration [2] is aiming at a substantially improved precision ϵ_{1s} and Γ_{1s} at the eV level. In this experiment new large area silicon drift detectors (SDDs) will be employed as X-ray detectors providing excellent energy resolution and timing capability, thus allowing the efficient background suppression by using the coincidence between the X-ray and the charged kaon pair from Φ decay. Using this method high precision data on ϵ_{1s} and Γ_{1s} of kaonic hydrogen and kaonic deuterium — first time measurement — are anticipated and the isospin-dependent kaon-nucleon scattering lengths will be extracted with an unprecedented accuracy.

The status of the research on kaonic atoms and an outlook to future experiments at $DA\Phi NE$ will be presented.

Work supported by EU within I3-HadronPhysics and TARI-INFN, Contract No. RII3-CT-2004-506078.

^[1] G. Beer et al. (DEAR Collaboration), Phys. Rev. Lett. 94, 212302 (2005).

^[2] http://www.lnf.infn.it/esperimenti/siddharta/