The formation of the deeply-bound K^-pp state in 3He(in-flight K^-,n) reaction spectrum

T. Koikea and T. Haradab

a Advanced Meson Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
b Research Center for Physics and Mathematics, Osaka E.C. univ, Neyagawa, Osaka 572-8530, Japan

In the study of \bar{K} properties in nuclear medium, it is important subject to verify the presence of the deeply-bound kaonic nuclei. The FINUDA collaboration at DAΦNE reported the evidence of a deeply-bound K^-pp state by using the stopped K^- reaction on several nuclear targets [1], but it is not confirmed due to the possibility of the different interpretation [2]. Among the various \bar{K}-nuclear systems, K^-pp is the lightest and the most fundamental kaonic nuclei. Recently, a new experimental search of K^-pp using the in-flight (K^-,n) reaction on 3He target is proposed for J-PARC [3]. Our purpose is to calculate the expected spectra for preparing the forthcoming J-PARC experiment.

The formation of the K^-pp bound state by the 3He(in-flight K^-,n) reaction is investigated theoretically. The inclusive and semi-exclusive spectra at $p_{K^-} = 1.0 \text{ GeV}/c$ and $\theta_n = 0^\circ$ are calculated in the distorted-wave impulse approximation using the Green’s function method. We employ optical potentials between the K^- and “pp” core-nucleus, and demonstrate systematically the dependence of the spectral shape on V_0 and W_0, which are the real and imaginary parts of the strength for the optical potential, respectively. Some examples of the calculated inclusive and semi-exclusive spectra are shown in Figure 1 [4].

![Figure 1: The calculated inclusive and semi-exclusive spectra as a function of the neutron momentum in the case of (left) $V_0 = -300 \text{ MeV}$ and $W_0 = -70 \text{ MeV}$ and (right) $V_0 = -350 \text{ MeV}$ and $W_0 = -100 \text{ MeV}$.](image_url)
