Muon Catalyzed d-t Fusion in Non-equilibrated Mixtures of \mathbf{T}_{2} with Normal, Ortho and Para-rich D_{2}

K. Ishida ${ }^{a}$ T. Matsuzaki ${ }^{a}$, H. Imao a, Y. Matsuda ${ }^{a}$, M. Iwasaki ${ }^{a}$, K. Nagamine ${ }^{a, b, c}$, N. Kawamura ${ }^{b}$, M. Kato ${ }^{d}$, H. Sugai ${ }^{d}$, A. Uritani ${ }^{e}$, H. Harano ${ }^{e}$, T. Matsumoto ${ }^{e}$ and G.H. Eaton ${ }^{f}$
${ }^{a}$ RIKEN, Wako 351-0198, Japan
${ }^{b}$ High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
${ }^{c}$ University of California, Riverside, CA 92521, USA
${ }^{d}$ Japan Atomic Energy Agency (JAEA), Tokai 319-1195, Japan
${ }^{e}$ Institute of Advance Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
${ }^{f}$ Rutherford Appleton Laboratory (RAL), Oxon OX11 0QX, UK

It is predicted that the $d t \mu$ molecular formation rate in D / T mixture, and thus the $\mu \mathrm{CF}$ cycling rate, is very much dependent on the ortho-para ratio of the D_{2} molecule[1] because the ratio influences the population of even and odd initial rotational molecular states in the resonant reaction. We performed the first measurement for the three different mixtures of D_{2} (normal) $/ \mathrm{T}_{2}, \mathrm{D}_{2}$ (ortho) $/ \mathrm{T}_{2}$ and D_{2} (para-rich) $/ \mathrm{T}_{2}$ at the RIKEN-RAL Muon Facility by using the ortho-para D_{2} production technique developed for dd- $\mu \mathrm{CF}$ experiments[2, 3], In the measurement, pure T_{2} and pure D_{2} were prepared separately and was mixed to make a liquid target of 20 K . The cycling rate λ_{c} was monitored for the duration of more than 100 hours after $\mathrm{D}_{2}+\mathrm{T}_{2}$ mixing. The λ_{c} decreased with time after mixing in all three cases, which can be attributed to the equilibration due to the molecular recombination as well as the ortho-para D_{2} conversion in the target. We observed difference in λ_{c} value among the three mixtures in the early time region. Surprisingly, the observed effect in the liquid targets was opposite to the first theoretical prediction based on the isolated molecules[1]. A preliminary analysis shows that λ_{c} is larger by about 7%, in D_{2} (ortho) $/ \mathrm{T}_{2}$ compared with that in $\mathrm{D}_{2}($ normal $) / \mathrm{T}_{2}$. while it is smaller in $\mathrm{D}_{2}($ para-rich $) / \mathrm{T}_{2}$.
[1] M. Leon and J.S. Cohen, Phys. Rev. A 31, 2680 (1985).
[2] A. Toyoda et al, Phys. Rev. Lett. 90, 243401 (2003).
[3] H. Imao et al, Phys. Lett. B632, 192 (2006).

