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A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:

LCFTs have now been studied for over ten years . . . in. . . : WZNW
models [19–32], gravitational dressing [33,34], polymers and
percolation [35–38], 2d turbulence [39–43], certain limits of
QCD [44–46], the Seiberg–Witten solution of N = 2 supersymmetric
Yang–Mills [47,48], and the Abelian sand-pile model [49,50].
. . . applications has been to disordered systems and the quantum Hall
effect [18,51–60]. . . . to string theory [61–70] and in the
AdS/CFT correspondence [71–78]. The holographic relation between
logarithmic operators and vacuum instability was considered in [79,80].
An approach to LCFT using nilpotent dimensions was given in [81,82].
. . . the appearance of a logarithmic partner of the stress tensor in c = 0
LCFTs [37,83,84], . . . [85,86]. . . . of particular interest has been the
analysis of LCFTs in the presence of a boundary [87–91].
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And more recently

PA Pearce, J Rasmussen, and JB Zuber (“Temperly–Lieb” approach)
Pierce and Rasmussen (dense polymers)
M Jeng, G Piroux, P Ruelle (sand-pile model)
F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)
vertex-operator algebras with nonsemisimple representation categories:
YZ Huang, J Lepowsky, and L Zhang;
J Fuchs; M Miyamoto; A Milas;
Flohr, N Carqueville
V Schomerus and H Saleur (supergeometry =⇒ logs)
M Gaberdiel and I Runkel (boundary logarithmic theories)
Flohr and Gaberdiel (torus amplitudes)
H Eberle and Flohr (fusion)
not to mention S Hwang, J Fuchs, Semikhatov, I Tipunin and B Feigin,
A Gainutdinov, Semikhatov, Tipunin
hep-th/0306274, hep-th/0504093, math.QA/0512621, hep-th/0606196,

math.QA/0606506 [this talk]
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T Creutzig, T Quella, and V Schomerus (boundary)
N Read and H Saleur ×2
D Adamovic and A Milas (Logarithmic intertwiners and W -algebras)
Semikhatov (ŝ`(2) model)
. . .
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Logarithmic Conformal Field Theory:

nondiagonalizable action of a number of operators of the type of a
Hamiltonian
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Logarithms:
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nondiagonalizable action of a number of operators of the type of a
Hamiltonian

log: whence comest thou?

Let L0 ∼ z
∂

∂z
act nondiagonally:

zg ′(z) = ∆g(z),

zh ′(z) = ∆h(z) + g(z).

Solution:
g(x) = B x∆,

h(x) = A x∆ + B x∆ log(x).
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Motivation
Representation theory and CFT

Quantum groups

Rational models: basic representation-theory unput

Virasoro algebra [Lm, Ln] = (m − n)Lm+n + c
12(m3 − m)δm+n,0

Highest-weight modules Ln > 1|∆〉 = 0, L0|∆〉 = ∆|∆〉
Verma
irreducible

Rational (p, p ′)-models at c = 13 − p
p ′ −

p ′

p :

Kac table of “good” modules:
1
2 (p − 1) × (p ′ − 1) nonisomorphic
Virasoro irreps

p ′−1


. . .

. . . . . . . . . . . . . . .
. . .
. . .︸ ︷︷ ︸

p−1

These irreps have no extensions among themselves =⇒ semisimple
(diagonalizable)

=⇒ chiral space of states =
⊕

(irreps)

=⇒ numerous deep properties of rcft. . .
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Motivation
Representation theory and CFT

Quantum groups

LCFT: “minimal” extension

adding 1 row and 1 column:

p ′−1


. . .

. . . . . . . . . . . . . .
. . .
. . .︸ ︷︷ ︸

p−1

Also, a new possibility: (p, 1) models
with the extended Kac table

. . .︸ ︷︷ ︸
p

Drastic consequences

Representations admit indecomposable extensions

0→ X→ A→ Y→ 0, or
Y• −→ X•

=⇒ chiral space of states =
⊕

(projective modules)

The symmetry extends from Virasoro to a larger W -algebra
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Drastic consequences:

Representations admit indecomposable extensions

0→ X→ A→ Y→ 0, or
Y• −→ X•

=⇒ chiral space of states =
⊕

(projective modules)

Projective modules: “maximally indecomposable”
They are home for logarithmic partners

The symmetry extends from Virasoro to a larger W -algebra
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Quantum groups

LCFT: “minimal” extension: New Hope?

adding 1 row and 1 column:
“only” p + p ′ − 1 new boxes

p ′−1


. . .
. . .

. . . . . . . . . . . . . .. . .
. . .
. . .︸ ︷︷ ︸

p−1

Also, a new possibility: (p, 1) models
with the extended Kac table

. . .︸ ︷︷ ︸
p

Drastic consequences:

Representations admit indecomposable extensions

0→ X→ A→ Y→ 0, or
Y• −→ X•

=⇒ chiral space of states =
⊕

(W -algebra projective modules)

The symmetry extends from Virasoro to a larger W -algebra
(triplet W -algebra [(p, 1): Kausch, Kausch and Gaberdiel])
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Motivation
Representation theory and CFT

Quantum groups

Basic problem:

Virtually nothing is known about projective modules of Virasoro and
“larger” algebras.

So —

in contrast to the rational case, representation theory fails?!
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although involved in the true projective module, is insufficient.

So —

in contrast to the rational case, representation theory fails?!
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Motivation
Representation theory and CFT

Quantum groups

The Indecomposables Strike Back

Basic problem:

Virtually nothing is known about projective modules of Virasoro and
“larger” algebras.

So —

in contrast to the rational case, representation theory fails?!
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Motivation
Representation theory and CFT

Quantum groups

Return of the FreeField approach

Basic problem:

Virtually nothing is known about projective modules of Virasoro and
“larger” algebras.

So —

in contrast to the rational case, representation theory fails?!

Resort to:

1 Free-field construction

2 Kazhdan–Lusztig correspondence
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Motivation
Representation theory and CFT

Quantum groups

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., S±=

∫
eα±ϕ(z)dz

2 rational models are the cohomology of (the differential associated with)
screenings

3 Take the kernel of the screenings

4 The kernel is a representation space of a W -algebra
— the maximum local algebra acting in the kernel.
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Motivation
Representation theory and CFT

Quantum groups

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., S±=

∫
eα±ϕ(z)dz

2 rational models are the cohomology of (the differential associated with)
screenings

3 Take the kernel of the screenings

4 The kernel is a representation space of a W -algebra
— the maximum local algebra acting in the kernel.

Key differences from the rational case

The LCFT model may be dependent on the free-field representation taken,
on the screenings chosen, etc.

The symmetry algebra of a LCFT model is larger than the “naive” algebra
(e.g., Virasoro).

The space of states in a LCFT is not the direct sum of irreducible
representations but the sum of all (finitely many) projective modules

P =
⊕
ι

Pι.
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Motivation
Representation theory and CFT

Quantum groups

W-algebras and their representations

(p, 1) models: the triplet W -algebra Wp

has 2p irreps X±r , r = 1, . . . , p.

∆X+(r) =
(p − r)2

4p
+

c − 1

24
, ∆X−(r) =

(2p − r)2

4p
+

c − 1

24
.

(p, p ′) models: 2pp ′ irreps of the corresponding Wp,p ′ :
X±r ,r ′ , r = 1, . . . , p, r ′ = 1, . . . , p ′,
∆X+

r,r ′
= ∆r,p ′−r ′;1, ∆X−

r,r ′
= ∆p−r,r ′;−2,

∆r,r ′;n =
(pr ′−p ′r+pp ′n)2 − (p−p ′)2

4pp ′
.

PLUS the 1
2(p − 1)(p ′ − 1) representations from the Virasoro

minimal model.

kernel of the screenings =

N⊕
A

XA

— finite sum of irreducible representatons
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Motivation
Representation theory and CFT

Quantum groups

W-algebra characters

(p, 1): The irreducible W -representation characters are given by

χ+
r (q) =

1

η(q)

(
r

p
θp−r ,p(q) +

2

p
θ ′p−r ,p(q)

)
,

χ−
r (q) =

1

η(q)

(
r

p
θr ,p(q) −

2

p
θ ′r ,p(q)

)
,

1 6 r 6 p.
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W-Characters =⇒ Modular Group Representation

The need for generalized characters:

In LCFT, characters alone are not closed under SL(2,Z) action

(p, 1) models: The 2p characters give rise to a (3p − 1)-dimensional
SL(2,Z)-representation.

(p, p ′) models: The 2pp ′ + 1
2(p − 1)(p ′ − 1) characters give rise to

a 1
2(3p − 1)(3p ′ − 1)-dimensional SL(2,Z)-representation.
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It is highly probable that these dimensions 3p − 1 and 1
2 (3p − 1)(3p ′ − 1) are the

dimensions of the spaces of torus amplitudes.
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SL(2,Z)-representation.

(p, p ′) models: The 2pp ′ + 1
2(p − 1)(p ′ − 1) characters give rise to

a 1
2(3p − 1)(3p ′ − 1)-dimensional SL(2,Z)-representation.

Theorem

The (3p − 1)-dimension SL(2,Z)-representation Zcft has the structure

Zcft = Rp+1 ⊕ C2 ⊗Rp−1,

Rp−1 is the [“sinπrs
p ”] SL(2,Z)-representation realized in the ŝ`(2)p−2

minimal model, Rp+1 is a [“cosπrs
p ”] SL(2,Z)-representations of dimension

p + 1, and C2 is the defining two-dimensional representation of SL(2,Z).
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a 1
2(3p − 1)(3p ′ − 1)-dimensional SL(2,Z)-representation.

Theorem

The 1
2(3p − 1)(3p ′ − 1)-dimensional SL(2,Z)-representation Zcft has the

structure

Zcft = Rmin ⊕ Rproj ⊕ C2 ⊗ (R� ⊕ R�
)⊕ C3 ⊗ Rmin,

Rmin is the 1
2 (p − 1)(p ′− 1)-dimensional SL(2,Z)-representation on the

characters of the (p, p ′) Virasoro minimal model, C3 ∼= S2(C2), and Rproj, R�,
and R� are SL(2,Z)-representations of the respective dimensions
1
2 (p + 1)(p ′+ 1), 1

2 (p − 1)(p ′+ 1), and 1
2 (p + 1)(p ′− 1).
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Some details for (p, p ′)
Generalized characters:

subrep. dimension basis

Rmin
1
2
(p − 1)(p ′− 1) χr,r ′ , (r , r ′) ∈ I1

Rproj
1
2
(p + 1)(p ′+ 1) κr,r ′ , (r , r ′) ∈ I0

C2 ⊗ R� 2 · 1
2
(p − 1)(p ′+ 1) ρ�

r,r ′ , ϕ
�
r,r ′ , (r , r ′) ∈ I�

C2 ⊗ R� 2 · 1
2
(p + 1)(p ′− 1) ρ�

r,r ′ , ϕ
�
r,r ′ , (r , r ′) ∈ I�

C3 ⊗ Rmin 3 · 1
2
(p − 1)(p ′− 1) ρr,r ′ , ψr,r ′ , ϕr,r ′ , (r , r ′) ∈ I1
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κr,r ′ = χr,r ′ + 2χ+
r,r ′ + 2χ−

r,p ′−r ′ + 2χ−
p−r,r ′ + 2χ+

p−r,p ′−r ′ , (r , r ′) ∈ I1,

κ0,r ′ = 2χ+
p,p ′−r ′ + 2χ−

p,r ′ , 1 6 r ′6 p ′− 1,

κr,0 = 2χ+
p−r,p ′ + 2χ−

r,p ′ , 1 6 r 6 p − 1,

κ0,0 = 2χ+
p,p ′ ,

κp,0 = 2χ−
p,p ′
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ρ�
r,r ′(τ) = p ′r−pr ′

2 χr,r ′(τ) + p ′(r − p)(χ+
r,r ′(τ) + χ−

r,p ′−r ′(τ))

+ p ′r(χ+
p−r,p ′−r ′(τ) + χ−

p−r,r ′(τ)), (r , r ′) ∈ I1,

ρ�
r,0(τ) = p ′(rχ+

p−r,p ′(τ) − (p−r)χ−
r,p ′(τ)), 1 6 r 6 p−1,

ϕ�
r,r ′(τ) = τρ�

r,r ′(τ), (r , r ′) ∈ I�,
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(
(p−r)(p ′−r ′)χ+

r,r ′(τ) + rr ′χ+
p−r,p ′−r ′(τ) −

(pr ′−p ′r)2

4pp ′ χr,r ′(τ)

− (p−r)r ′χ−
r,p ′−r ′(τ) − r(p ′−r ′)χ−

p−r,r ′(τ)
)
, (r , r ′) ∈ I1

ψr,r ′(τ) = 2τρr,r ′(τ) + iπpp ′χr,r ′(τ), (r , r ′) ∈ I1,

ϕr,r ′(τ) = τ2ρr,r ′(τ) + iπpp ′τχr,r ′(τ), (r , r ′) ∈ I1.
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involving τ explicitly:

ρ
�(τ, τ) =

p−1∑
r=1

im τ |ρ
�
r,0(τ)|

2 + 2
∑

(r,r ′)∈I1

im τ |ρ
�
r,r ′(τ)|

2
,

ρ(τ, τ) =
∑

(r,r ′)∈I1

ρr,r ′(τ)(8(im τ)2
ρr,r ′(τ) + 4pp ′πim τ χr,r ′(τ))

+ χr,r ′(τ)(4pp ′πim τ ρr,r ′(τ) + (πpp ′)2
χr,r ′(τ)).

A-series:
κ[A](τ, τ) =

= |κ0,0(τ)|
2 + |κp,0(τ)|

2 + 2

p−1∑
r=1

|κr,0(τ)|
2 + 2

p ′−1∑
r ′=1

|κ0,r ′(τ)|
2 + 4

∑
(r,r ′)∈I1

|κr,r ′(τ)|
2

D-series (in the case p ′ ≡ 0 mod 4):

κ[D](τ, τ) = |κ0,0(τ) + κp,0(τ)|
2 +

p−1∑
r=1

|κr,0(τ) + κp−r,0(τ)|
2

+
∑

2 6 r ′ 6 p ′−1
r ′ even

|κ0,r ′(τ) + κ0,p ′−r ′(τ)|
2 +

∑
(r,r ′)∈I1

r ′ even

2 |κr,r ′(τ) + κr,p ′−r ′(τ)|
2
.

E6-type invariant for (p, p ′) = (5, 12):

κ[E6](τ, τ) = |κ0,1(τ) − κ0,7(τ)|
2 + |κ0,2(τ) − κ0,10(τ)|

2 + |κ0,5(τ) − κ0,11(τ)|
2

+ 2|κ1,1(τ) − κ1,7(τ)|
2 + 2|κ2,1(τ) − κ2,7(τ)|

2 + 2|κ2,5(τ) − κ3,1(τ)|
2

+ 2|κ2,2(τ) − κ3,2(τ)|
2 + 2|κ1,5(τ) − κ4,1(τ)|

2 + 2|κ1,2(τ) − κ4,2(τ)|
2
.
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2 + |κp,0(τ)|

2 + 2

p−1∑
r=1

|κr,0(τ)|
2 + 2

p ′−1∑
r ′=1

|κ0,r ′(τ)|
2 + 4
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(r,r ′)∈I1
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2
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κ[D](τ, τ) = |κ0,0(τ) + κp,0(τ)|
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2
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∑
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2
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2 + 2|κ1,2(τ) − κ4,2(τ)|
2
.
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Quantum groups: Kazhdan–Lusztig correspondence

THE SAME SL(2,Z) REPRESENTATIONS ARE REALIZED ON
CENTERS OF THE CORRESPONDING QUANTUM GROUPS
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At a root of unity =⇒ finite-dimensional

Center Z

Quantum group g is ribbon and factorizable
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At a root of unity =⇒ finite-dimensional (q2p = 1, dim g = 2p3 and
q2pp ′ = 1, dim g = 2p3p ′3)
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Quantum groups: Kazhdan–Lusztig correspondence

THE SAME SL(2,Z) REPRESENTATIONS ARE REALIZED ON
CENTERS OF THE CORRESPONDING QUANTUM GROUPS

Screenings =⇒ quantum group g (“Kazhdan–Lusztig-dual”)

At a root of unity =⇒ finite-dimensional (q2p = 1, dim g = 2p3 and
q2pp ′ = 1, dim g = 2p3p ′3)

Center Z: dim Z = 3p − 1 and dim Z = 1
2(3p − 1)(3p ′ − 1)

Quantum group g is ribbon and factorizable =⇒ its center carries an
SL(2,Z) representation [Lyubashenko, Turaev, Kerler]
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Quantum groups: Kazhdan–Lusztig correspondence

THE SAME SL(2,Z) REPRESENTATIONS ARE REALIZED ON
CENTERS OF THE CORRESPONDING QUANTUM GROUPS

Screenings =⇒ quantum group g (“Kazhdan–Lusztig-dual”)

At a root of unity =⇒ finite-dimensional (q2p = 1, dim g = 2p3 and
q2pp ′ = 1, dim g = 2p3p ′3)

Center Z: dim Z = 3p − 1 and dim Z = 1
2(3p − 1)(3p ′ − 1)

Quantum group g is ribbon and factorizable =⇒ its center carries an
SL(2,Z) representation

Theorem

This SL(2,Z)-representation on Z coincides with the
SL(2,Z)-representation generated by the LCFT characters
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THE SAME SL(2,Z) REPRESENTATIONS ARE REALIZED ON
CENTERS OF THE CORRESPONDING QUANTUM GROUPS

Screenings =⇒ quantum group g (“Kazhdan–Lusztig-dual”)

At a root of unity =⇒ finite-dimensional (q2p = 1, dim g = 2p3 and
q2pp ′ = 1, dim g = 2p3p ′3)

Center Z: dim Z = 3p − 1 and dim Z = 1
2(3p − 1)(3p ′ − 1)

Quantum group g is ribbon and factorizable =⇒ its center carries an
SL(2,Z) representation

The quantum group knows surprisingly much about the LCFT
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Quantum groups: Kazhdan–Lusztig correspondence

THE SAME SL(2,Z) REPRESENTATIONS ARE REALIZED ON
CENTERS OF THE CORRESPONDING QUANTUM GROUPS

Screenings =⇒ quantum group g (“Kazhdan–Lusztig-dual”)

At a root of unity =⇒ finite-dimensional (q2p = 1, dim g = 2p3 and
q2pp ′ = 1, dim g = 2p3p ′3)

Center Z: dim Z = 3p − 1 and dim Z = 1
2(3p − 1)(3p ′ − 1)

Quantum group g is ribbon and factorizable =⇒ its center carries an
SL(2,Z) representation

The quantum group knows surprisingly much about the LCFT

Anything else?
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More on KL: Grothendieck rings/Fusion

The “(p, 1)” quantum group has 2p irreps X±r , 1 6 r 6 p. Grothendieck ring:

Xαr Xα
′

s =

r+s−1∑
t=|r−s|+1

step=2

X̃αα
′

t ,

X̃αr =

{
Xαr , 1 6 r 6 p,

Xα2p−r + 2X−α
r−p, p + 1 6 r 6 2p − 1.
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More on KL: Grothendieck rings/Fusion

The “(p, 1)” quantum group has 2p irreps X±r , 1 6 r 6 p. Grothendieck ring:

Xαr Xα
′

s =

r+s−1∑
t=|r−s|+1

step=2

X̃αα
′

t ,

X̃αr =

{
Xαr , 1 6 r 6 p,

Xα2p−r + 2X−α
r−p, p + 1 6 r 6 2p − 1.

This nonsemisimple algebra G2p contains the ideal Vp+1 of projective modules;
the quotient G2p/Vp+1 is a semisimple fusion algebra — the fusion of the unitary

ŝ`(2) representations of level k = p − 2:

Xr Xs =

p−1−|p−r−s|∑
t=|r−s|+1

step=2

Xt , r , s = 1, . . . , p − 1.
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More on KL: Grothendieck rings/Fusion

The “(p, 1)” quantum group has 2p irreps X±r , 1 6 r 6 p. Grothendieck ring:

Xαr Xα
′

s =

r+s−1∑
t=|r−s|+1

step=2

X̃αα
′

t ,

X̃αr =

{
Xαr , 1 6 r 6 p,

Xα2p−r + 2X−α
r−p, p + 1 6 r 6 2p − 1.

The triplet (p, 1) W -algebra has just 2p irreps
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FUSION in the (p, 1) LCFT model
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The “(p, 1)” quantum group has 2p irreps X±r , 1 6 r 6 p. Grothendieck ring:

Xαr Xα
′

s =

r+s−1∑
t=|r−s|+1

step=2

X̃αα
′

t , CORROBORATED BY a derivation
from characters [FHST (2003)]

X̃αr =

{
Xαr , 1 6 r 6 p,

Xα2p−r + 2X−α
r−p, p + 1 6 r 6 2p − 1.

The triplet (p, 1) W -algebra has just 2p irreps

This “(p, 1)”-quantum-group Grothendieck ring IS A CANDIDATE FOR
FUSION in the (p, 1) LCFT model
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More on KL: Grothendieck rings/Fusion

The “(p, p ′)” quantum group has 2pp ′ irreps X±r,r ′ , 1 6 r 6 p, 1 6 r ′6 p ′.
Grothendieck ring:

X
α
r,r ′X

β
s,s ′ =

r+s−1∑
u=|r−s|+1

step=2

r ′+s ′−1∑
u ′=|r ′−s ′|+1

step=2

X̃
αβ
u,u ′ ,

X̃
α
r,r ′ =



Xαr,r ′ , 1 6 r 6 p, 1 6 r ′6 p ′,

Xα2p−r,r ′ + 2X−α
r−p,r ′ , p+1 6 r 6 2p−1, 1 6 r ′6 p ′,

Xαr,2p ′−r ′ + 2X−α
r,r ′−p ′ , 1 6 r 6 p, p ′+1 6 r ′6 2p ′−1,

X
α
2p−r,2p ′−r ′ + 2X

−α
2p−r,r ′−p ′

+ 2X
−α
r−p,2p ′−r ′ + 4X

α
r−p,r ′−p ′ , p+1 6 r 6 2p−1, p ′+1 6 r ′6 2p ′−1.
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α
r−p,r ′−p ′ , p+1 6 r 6 2p−1, p ′+1 6 r ′6 2p ′−1.

1 This algebra is generated by two elements X+
1,2 and X+

2,1;

2 its radical is generated by the algebra action on X+
p,p ′ ; the quotient over the

radical coincides with the fusion of the (p, p ′) Virasoro minimal models;

3 X+
1,1 is the identity;

4 X−
1,1 acts as a simple current, X−

1,1X
α
r,r ′ = X−α

r,r ′ .
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3 X+
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4 X−
1,1 acts as a simple current, X−

1,1X
α
r,r ′ = X−α

r,r ′ .
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Example: (2, 3) model

The 2pp ′ = 12 representations:

X+
1,1 (2), X−

1,1 (7) X+
2,1 (1), X−

2,1 (5) X+
3,1 ( 1

3
), X−

3,1 ( 10
3
)

X+
1,2 ( 5

8
), X−

1,2 ( 33
8
) X+

2,2 ( 1
8
), X−

2,2 ( 21
8
) X+

3,2 (− 1
24

), X−
3,2 ( 35

24
)

X
+
1,2X

+
1,2 = 2X

−
1,1 + 2X

+
1,1, X

+
1,2X

+
2,1 = X

+
2,2, X

+
1,2X

+
2,2 = 2X

−
2,1 + 2X

+
2,1,

X
+
1,2X

+
3,1 = X

+
3,2, X

+
1,2X

+
3,2 = 2X

−
3,1 + 2X

+
3,1,

X
+
2,1X

+
2,1 = X

+
1,1 + X

+
3,1, X

+
2,1X

+
2,2 = X

+
1,2 + X

+
3,2, X

+
2,1X

+
3,1 = 2X

−
1,1 + 2X

+
2,1,

X
+
2,1X

+
3,2 = 2X

−
1,2 + 2X

+
2,2,

X
+
2,2X

+
2,2 = 2X

−
1,1 + 2X

−
3,1 + 2X

+
1,1 + 2X

+
3,1, X

+
2,2X

+
3,1 = 2X

−
1,2 + 2X

+
2,2,

X
+
2,2X

+
3,2 = 4X

−
1,1 + 4X

−
2,1 + 4X

+
1,1 + 4X

+
2,1,

X
+
3,1X

+
3,1 = 2X

−
2,1 + 2X

+
1,1 + X

+
3,1, X

+
3,1X

+
3,2 = 2X

−
2,2 + 2X

+
1,2 + X

+
3,2,

X
+
3,2X

+
3,2 = 4X

−
1,1 + 4X

−
2,1 + 2X

−
3,1 + 4X

+
1,1 + 4X

+
2,1 + 2X

+
3,1.

X−
1,1 acts as a simple current, X−

1,1X
±

r,r ′ = X∓r,r ′ .
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Beyond the Grothendieck ring
The TRUE tensor algebra of Uqs`(2)-representations [K Erdmann et al]:
r + s − p 6 1, then

Xαr ⊗ Xβs =

r+s−1⊕
t=|r−s |+1

step=2

X
αβ
t (min(r , s) terms in the sum).

r + s − p > 2, even: r + s − p = 2n with n > 1, then

Xαr ⊗ Xβs =

2p−r−s−1⊕
t=|r−s |+1

step=2

X
αβ
t ⊕

n⊕
a=1

P
αβ
p+1−2a.

r + s − p > 3, odd: r + s − p = 2n + 1 with n > 1, then

Xαr ⊗ Xβs =

2p−r−s−1⊕
t=|r−s |+1

step=2

X
αβ
t ⊕

n⊕
a=0

P
αβ
p−2a.

The same structure of “indecomposable-aware” fusion in (p, 1) LCFT?
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Indecomposable modules: Wa
s(n) and Ma

s(n)

1 6 s 6 p−1, a =±, and n > 2, module Wa
s (n):

Xa
s• xa

1

��

Xa
s•xa

2

��

xa
1

��

. . .
xa
2

��

xa
1

��

Xa
s•xa

2

��
X−a

p−s• X−a
p−s• . . . X−a

p−s•
1 6 s 6 p−1, a =± , and n > 2, module Ma

s (n):

Xa
s•xa

2

��

xa
1

��

. . .
xa
2

��

xa
1

��

Xa
s•xa

2

��

xa
1

��
X−a

p−s• X−a
p−s• . . . X−a

p−s• X−a
p−s•
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Indecomposable modules: Oa
s(n, z)

1 6 s 6 p − 1, a =±, n > 1, and z ∈ CP1, module Oa
s (n, z):

Xa
s•xa

2

��

xa
1

��

Xa
s•xa

2

��

. . . Xa
s• xa

1

��
X−a

p−s• X−a
p−s• . . . X−a

p−s•

Xa
s•

z2xa
2

>>

z1xa
1

ee

CP1 3 z = (z1 : z2)
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Quantum groups

Summary

We know

extended symmetry of the model:
W -algebra

W -algebra irreps

Quantum-group projective modules

Quantum-group Grothendieck
ring/“fusion”

ZCFT: Characters and generalized
characters, modular
transformations on ZCFT

Modular transformations on
quantum-group center Z

(some) modular invariants

We don’t

structure of W -algebra singular
vectors etc.

W -algebra projective modules

honest W -algebra fusion

honest W -algebra torus amplitudes

full partition function

correlation functions
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honest W -algebra fusion

honest W -algebra torus amplitudes

full partition function

correlation functions
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More than fifty percent success:
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EVEN THOUGH I WAS CHEATING !!
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More

From Free Fields to the Quantum Group

Consider the (p, 1) case. Screening: E =

∮
e

−
√

2
p
ϕ

.

The Wp algebra:

W −(z) = e−
√

2pϕ(z), W 0(z) = [S+,W
−(z)], W +(z) = [S+,W

0(z)],

where S+ =

∮
e
√

2pϕ. The W±,0(z) are primary fields of dimension 2p − 1

with respect to the energy-momentum tensor

T (z) =
1

2
∂ϕ∂ϕ(z) +

(√
2p −

√
2

p

)
∂2ϕ(z).

On a suitably defined free-field space F,

Ker E
∣∣∣
F
=

p⊕
r=1

X+
r ⊕ X−

r ,

a sum of 2p Wp-representations.
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