[^0]
AM Semikhatov

Logarithmic Conformal Field Theory

AM Semikhatov
Lebedev Physics Institute

Dubna Workshop on LCFTetc, June 2007

Logarithmic Conformal Field Theory: How far can we go with representation theory?

AM Semikhatov
Lebedev Physics Institute

Dubna Workshop on LCFTetc, June 2007

Plan of the Talk

1 Motivation
2. Representation theory and CFT

3 Quantum groups

Plan of the Talk

1 Motivation

2 Representation theory and CFT

Plan of the Talk

1 Motivation

2 Representation theory and CFT

3 Quantum groups

1 Motivation

2 Representation theory and CFT

3 Quantum groups

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years . . . in. . . : WZNW models [19-32],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years . . . in. . . : WZNW models [19-32],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years . . . in. . . : WZNW models [19-32], gravitational dressing [33,34],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48],

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].
... applications has been to disordered systems and the quantum Hall effect [18,51-60].

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].
...applications has been to disordered systems and the quantum Hall effect $[18,51-60]$. ... to string theory [61-70] and in the AdS/CFT correspondence [71-78].

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].
...applications has been to disordered systems and the quantum Hall effect [18,51-60]. ... to string theory [61-70] and in the AdS/CFT correspondence [71-78]. The holographic relation between logarithmic operators and vacuum instability was considered in [79,80].

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in....: WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].
... applications has been to disordered systems and the quantum Hall effect [18,51-60]. ... to string theory [61-70] and in the AdS/CFT correspondence [71-78]. The holographic relation between logarithmic operators and vacuum instability was considered in [79,80]. An approach to LCFT using nilpotent dimensions was given in [81,82].

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in....: WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].
... applications has been to disordered systems and the quantum Hall effect $[18,51-60]$. ... to string theory [61-70] and in the AdS/CFT correspondence [71-78]. The holographic relation between logarithmic operators and vacuum instability was considered in [79,80]. An approach to LCFT using nilpotent dimensions was given in [81,82]. ... the appearance of a logarithmic partner of the stress tensor in $c=0$ LCFTs [37,83,84], ... [85,86].

A 2002 quotation

Logarithmic CFTs may be interesting from several standpoints.
A Nichols, 2002:
LCFTs have now been studied for over ten years ... in.... WZNW models [19-32], gravitational dressing [33,34], polymers and percolation [35-38], 2d turbulence [39-43], certain limits of QCD [44-46], the Seiberg-Witten solution of $\mathcal{N}=2$ supersymmetric Yang-Mills [47,48], and the Abelian sand-pile model [49,50].
... applications has been to disordered systems and the quantum Hall effect $[18,51-60]$. ... to string theory [61-70] and in the AdS/CFT correspondence [71-78]. The holographic relation between logarithmic operators and vacuum instability was considered in [79,80]. An approach to LCFT using nilpotent dimensions was given in [81,82]. ... the appearance of a logarithmic partner of the stress tensor in $c=0$ LCFTs [37,83,84], ... [85,86]. . . of particular interest has been the analysis of LCFTs in the presence of a boundary [87-91].

And more recently

```
PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach)
    Pierce and Rasmussen (dense polymers)
    M Jeng, G Piroux, P Ruelle (sand-pile moclel)
_ F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)
| vertex-operator algebras with nonsemisimple representation categories:
YZ Huang,J Lepowsky, and L Zhang;
J Fuchs; M Miyamoto; A Milas;
Flohr, N Carqueville
V Schomerus and H Saleur (supergeometry }\Longrightarrow\mathrm{ logs)
M Gaberdiel and I Runkel (boundary logarithmic theories)
Flohr and Gaberdiel (torus amplitudes)
H Eberle and Flohr (fusion)
```

A Gainutdinov, Semikhatov

And more recently

■ PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach) Pierce and Rasmussen (dense polymers) M Jeng, G Piroux, P Ruelle (sand-pile model)
\qquad YZ Huang, J Lepowsky, and L Zhang; I Fuchs: M Mivamoto: A Milas: Flohr, N Carqueville - M Gaberdiel and I Runkel (boundary logarithmic theories) Flohr and Gaberdiel (torus amolitudes) H Eberle and Flohr (fusion)

[^1]
And more recently

- PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach) Pierce and Rasmussen (dense polymers)
M Jeng, G Piroux, P Ruelle (sand-pile model)
■ F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)

And more recently

■ PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach)
Pierce and Rasmussen (dense polymers)
M Jeng, G Piroux, P Ruelle (sand-pile model)
■ F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)

- vertex-operator algebras with nonsemisimple representation categories:

YZ Huang, J Lepowsky, and L Zhang;
J Fuchs; M Miyamoto; A Milas;
Flohr, N Carqueville

And more recently

■ PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach)
Pierce and Rasmussen (dense polymers)
M Jeng, G Piroux, P Ruelle (sand-pile model)
■ F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)

- vertex-operator algebras with nonsemisimple representation categories:

YZ Huang, J Lepowsky, and L Zhang;
J Fuchs; M Miyamoto; A Milas;
Flohr, N Carqueville
■ V Schomerus and H Saleur (supergeometry \Longrightarrow logs)

And more recently

■ PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach)
Pierce and Rasmussen (dense polymers)
M Jeng, G Piroux, P Ruelle (sand-pile model)
■ F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)

- vertex-operator algebras with nonsemisimple representation categories:

YZ Huang, J Lepowsky, and L Zhang;
J Fuchs; M Miyamoto; A Milas;
Flohr, N Carqueville
■ V Schomerus and H Saleur (supergeometry \Longrightarrow logs)
■ M Gaberdiel and I Runkel (boundary logarithmic theories) Flohr and Gaberdiel (torus amplitudes)
H Eberle and Flohr (fusion)

And more recently

■ PA Pearce, J Rasmussen, and JB Zuber ("Temperly-Lieb" approach)
Pierce and Rasmussen (dense polymers)
M Jeng, G Piroux, P Ruelle (sand-pile model)
■ F Lesage, P Mathieu, J Rasmussen, H Saleur (WZW models)

- vertex-operator algebras with nonsemisimple representation categories:

YZ Huang, J Lepowsky, and L Zhang;
J Fuchs; M Miyamoto; A Milas;
Flohr, N Carqueville
■ V Schomerus and H Saleur (supergeometry \Longrightarrow logs)

- M Gaberdiel and I Runkel (boundary logarithmic theories) Flohr and Gaberdiel (torus amplitudes)
H Eberle and Flohr (fusion)
■ not to mention S Hwang, J Fuchs, Semikhatov, I Tipunin and B Feigin, A Gainutdinov, Semikhatov, Tipunin
hep-th/0306274, hep-th/0504093, math.QA/0512621, hep-th/0606196,
math.QA/0606506

And more recently

And yet more recently

- T Creutzig, T Quella, and V Schomerus (boundary)
- D Adamovic and A Milas (Logarithmic intertwiners and W-algebras) - Semikhatov (sl(2) model)

And yet more recently

- T Creutzig, T Quella, and V Schomerus (boundary)

■ N Read and H Saleur $\times 2$

And yet more recently

- T Creutzig, T Quella, and V Schomerus (boundary)
- N Read and H Saleur $\times 2$

■ D Adamovic and A Milas (Logarithmic intertwiners and W-algebras)

And yet more recently

- T Creutzig, T Quella, and V Schomerus (boundary)
- N Read and H Saleur $\times 2$

■ D Adamovic and A Milas (Logarithmic intertwiners and W-algebras)

- Semikhatov ($\widehat{s l}(2)$ model)

And yet more recently

- T Creutzig, T Quella, and V Schomerus (boundary)
- N Read and H Saleur $\times 2$

■ D Adamovic and A Milas (Logarithmic intertwiners and W-algebras)

- Semikhatov ($\widehat{s \ell}(2)$ model)

Logarithms:

Logarithmic Conformal Field Theory:
nondiagonalizable action of a number of operators of the type of a Hamiltonian

Logarithms:

Logarithmic Conformal Field Theory:
 nondiagonalizable action of a number of operators of the type of a Hamiltonian

"Nonunitary evolution" $e^{t H}$

Logarithms:

Logarithmic Conformal Field Theory:

nondiagonalizable action of a number of operators of the type of a Hamiltonian
"Nonunitary evolution" $e^{t H} \Longrightarrow$ applications to models with disorder, systems with transient and recurrent states (sand-pile model), percolation,

Logarithms:

Logarithmic Conformal Field Theory:

nondiagonalizable action of a number of operators of the type of a Hamiltonian

log: whence comest thou?

Let $L_{0} \sim z \frac{\partial}{\partial z}$ act nondiagonally:

$$
\begin{aligned}
& z g^{\prime}(z)=\Delta g(z), \\
& z h^{\prime}(z)=\Delta h(z)+g(z)
\end{aligned}
$$

Logarithms:

Logarithmic Conformal Field Theory:
nondiagonalizable action of a number of operators of the type of a Hamiltonian

log: whence comest thou?

Let $L_{0} \sim z \frac{\partial}{\partial z}$ act nondiagonally:

$$
\begin{aligned}
& z g^{\prime}(z)=\Delta g(z), \\
& z h^{\prime}(z)=\Delta h(z)+g(z)
\end{aligned}
$$

Solution:

$$
g(x)=B x^{\Delta}
$$

Logarithms:

Logarithmic Conformal Field Theory:
nondiagonalizable action of a number of operators of the type of a Hamiltonian

log: whence comest thou?

Let $L_{0} \sim z \frac{\partial}{\partial z}$ act nondiagonally:

$$
\begin{aligned}
& z g^{\prime}(z)=\Delta g(z), \\
& z h^{\prime}(z)=\Delta h(z)+g(z) .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& g(x)=B x^{\Delta} \\
& h(x)=A x^{\Delta}+B x^{\Delta} \log (x) .
\end{aligned}
$$

Logarithms:

Logarithmic Conformal Field Theory:

nondiagonalizable action of a number of operators of the type of a Hamiltonian

Logarithmic/nonsemisimple theories:
Being logarithmic/nonsemisimple is a property of representations chosen

Logarithms:

Logarithmic Conformal Field Theory:

nondiagonalizable action of a number of operators of the type of a Hamiltonian

Logarithmic/nonsemisimple theories:
Being logarithmic/nonsemisimple is a property of representations chosen (even though algebras often get extended)

1 Motivation

2 Representation theory and CFT

3 Quantum groups

Rational models: basic representation-theory unput

■ Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$

■ Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$
- Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$
- Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma
- irreducible

Rational models: basic representation-theory unput

■ Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$

- Highest-weight modules $L_{n} \geqslant 1|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma
- irreducible
- indecomposable

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$
- Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma
- irreducible
- Rational $\left(p, p^{\prime}\right)$-models at $c=13-\frac{p}{p^{\prime}}-\frac{p^{\prime}}{p}$:
- Kac table of "good" modules:
$\frac{1}{2}(p-1) \times\left(p^{\prime}-1\right)$ nonisomorphic Virasoro irreps

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$
- Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma
- irreducible
- Rational $\left(p, p^{\prime}\right)$-models at $c=13-\frac{p}{p^{\prime}}-\frac{p^{\prime}}{p}$:
- Kac table of "good" modules: $\frac{1}{2}(p-1) \times\left(p^{\prime}-1\right)$ nonisomorphic Virasoro irreps

- These irreps have no extensions among themselves \Longrightarrow semisimple (diagonalizable)

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$
- Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma
- irreducible
- Rational $\left(p, p^{\prime}\right)$-models at $c=13-\frac{p}{p^{\prime}}-\frac{p^{\prime}}{p}$:
- Kac table of "good" modules: $\frac{1}{2}(p-1) \times\left(p^{\prime}-1\right)$ nonisomorphic Virasoro irreps

- These irreps have no extensions among themselves \Longrightarrow semisimple (diagonalizable)
■ \Longrightarrow chiral space of states $=\bigoplus$ (irreps)

Rational models: basic representation-theory unput

- Virasoro algebra $\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{c}{12}\left(m^{3}-m\right) \delta_{m+n, 0}$
- Highest-weight modules $L_{n \geqslant 1}|\Delta\rangle=0, L_{0}|\Delta\rangle=\Delta|\Delta\rangle$
- Verma
- irreducible
- Rational $\left(p, p^{\prime}\right)$-models at $c=13-\frac{p}{p^{\prime}}-\frac{p^{\prime}}{p}$:
- Kac table of "good" modules: $\frac{1}{2}(p-1) \times\left(p^{\prime}-1\right)$ nonisomorphic Virasoro irreps

- These irreps have no extensions among themselves \Longrightarrow semisimple (diagonalizable)
■ \Longrightarrow chiral space of states $=\bigoplus$ (irreps)
■ \Longrightarrow numerous deep properties of RCFT...

LCFT: "minimal" extension

- adding 1 row and 1 column:

LCFT: "minimal" extension

- adding 1 row and 1 column:
"only" $p+p^{\prime}-1$ new boxes

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

■ Also, a new possibility: $(p, 1)$ models with the extended Kac table

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table Nonlogarithmic content: void

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

■ Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:

■ Representations admit indecomposable extensions

$$
0 \rightarrow X \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \stackrel{y}{\bullet} \longrightarrow{ }^{X}
$$

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:

■ Representations admit indecomposable extensions

$$
0 \rightarrow x \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \quad \begin{aligned}
& \bullet \\
& \bullet
\end{aligned}
$$

$■ \Longrightarrow$ chiral space of states $=\bigoplus$ (projective modules)

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:

■ Representations admit indecomposable extensions

$$
0 \rightarrow x \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \quad \begin{aligned}
& \bullet \\
& \bullet
\end{aligned}
$$

■ \Longrightarrow chiral space of states $=\bigoplus$ (projective modules)
Projective modules: "maximally indecomposable"

LCFT: "minimal" extension

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:

■ Representations admit indecomposable extensions

$$
0 \rightarrow x \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \quad \begin{aligned}
& \bullet \\
& \bullet
\end{aligned}
$$

- \Longrightarrow chiral space of states $=\bigoplus$ (projective modules)

Projective modules: "maximally indecomposable" They are home for logarithmic partners

LCFT: "minimal" extension: New Hope?

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:
- Representations admit indecomposable extensions

$$
0 \rightarrow X \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \stackrel{y}{\bullet} \longrightarrow{ }^{x}
$$

■ \Longrightarrow chiral space of states $=\bigoplus$ (projective modules)

- The symmetry extends from Virasoro to a larger W-algebra

LCFT: "minimal" extension: New Hope?

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:
- Representations admit indecomposable extensions

$$
0 \rightarrow X \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \stackrel{y}{\bullet} \longrightarrow{ }^{x}
$$

■ \Longrightarrow chiral space of states $=\bigoplus(W$-algebra projective modules $)$

- The symmetry extends from Virasoro to a larger W-algebra

LCFT: "minimal" extension: New Hope?

- adding 1 row and 1 column: "only" $p+p^{\prime}-1$ new boxes

- Also, a new possibility: $(p, 1)$ models with the extended Kac table

- Drastic consequences:
- Representations admit indecomposable extensions

$$
0 \rightarrow x \rightarrow \mathcal{A} \rightarrow y \rightarrow 0, \text { or } \quad \begin{aligned}
& \bullet \\
& \bullet
\end{aligned}
$$

■ \Longrightarrow chiral space of states $=\bigoplus(W$-algebra projective modules $)$

- The symmetry extends from Virasoro to a larger W-algebra (triplet W-algebra [($p, 1)$: Kausch, Kausch and Gaberdiel])

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

Basic problem:

Virtually nOTHING is known about projective modules of Virasoro and "larger" algebras.

For the ($p, 1$) triplet W-algebra, projective modules must have the structure

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

For the ($p, 1$) triplet W-algebra, projective modules must have the structure

but none of the construction details are worked out

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

For the (p, p^{\prime}) triplet W-algebra, even the more complicated structure

although involved in the true projective module, is insufficient.

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

So -

in contrast to the rational case, representation theory fails?!

The Indecomposables Strike Back

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

So -
in contrast to the rational case, representation theory fails?!

Return of the FreeField approach

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

So -
in contrast to the rational case, representation theory fails?!

Resort to:

1 Free-field construction

Return of the FreeField approach

Basic problem:

Virtually nothing is known about projective modules of Virasoro and "larger" algebras.

So -
in contrast to the rational case, representation theory fails?!

Resort to:

1 Free-field construction
2 Kazhdan-Lusztig correspondence

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=\int e^{\alpha_{ \pm} \varphi(z)} d z$

44 The kernel is a representation space of a W-algebra

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=\int e^{\alpha_{ \pm} \varphi(z)} d z$

3 Take the kernel of the screenings

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=\int e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of screenings
3 Take the kernel of the screenings

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings ("kernel > cohomology")

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

- the maximum local algebra acting in the kernel.

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

W-algebra generators for $(3,2)$

$$
\begin{aligned}
W^{+} & =\left(\frac{35}{27}\left(\partial^{4} \varphi\right)^{2}+\frac{56}{27} \partial^{5} \varphi \partial^{3} \varphi+\frac{28}{27} \partial^{6} \varphi \partial^{2} \varphi+\frac{8}{27} \partial^{7} \varphi \partial \varphi-\frac{280}{9 \sqrt{3}}\left(\partial^{3} \varphi\right)^{2} \partial^{2} \varphi\right. \\
& -\frac{70}{3 \sqrt{3}} \partial^{4} \varphi\left(\partial^{2} \varphi\right)^{2}-\frac{280}{9 \sqrt{3}} \partial^{4} \varphi \partial^{3} \varphi \partial \varphi-\frac{56}{3 \sqrt{3}} \partial^{5} \varphi \partial^{2} \varphi \partial \varphi-\frac{28}{9 \sqrt{3}} \partial^{6} \varphi(\partial \varphi)^{2} \\
& +\frac{35}{3}\left(\partial^{2} \varphi\right)^{4}+\frac{280}{3} \partial^{3} \varphi\left(\partial^{2} \varphi\right)^{2} \partial \varphi+\frac{280}{9}\left(\partial^{3} \varphi\right)^{2}(\partial \varphi)^{2}+\frac{140}{3} \partial^{4} \varphi \partial^{2} \varphi(\partial \varphi)^{2} \\
& +\frac{56}{9} \partial^{5} \varphi(\partial \varphi)^{3}-\frac{140}{\sqrt{3}}\left(\partial^{2} \varphi\right)^{3}(\partial \varphi)^{2}-\frac{560}{3 \sqrt{3}} \partial^{3} \varphi \partial^{2} \varphi(\partial \varphi)^{2}-\frac{70}{3 \sqrt{3}} \partial^{4} \varphi(\partial \varphi)^{4} \\
& \left.+70\left(\partial^{2} \varphi\right)^{2}(\partial \varphi)^{4}+\frac{56}{3} \partial^{3} \varphi(\partial \varphi)^{5}-\frac{28}{\sqrt{3}} \partial^{2} \varphi(\partial \varphi)^{6}+(\partial \varphi)^{8}-\frac{1}{27 \sqrt{3}} \partial^{8} \varphi\right) e^{2 \sqrt{3} \varphi},
\end{aligned}
$$

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra
W-algebra generators for $(3,2)$

$$
\begin{array}{r}
W^{-}=\left(\frac{217}{192}\left(\partial^{5} \varphi\right)^{2}-\frac{2653}{3456} \partial^{6} \varphi \partial^{4} \varphi-\frac{23}{384} \partial^{7} \varphi \partial^{3} \varphi-\frac{11}{1152} \partial^{8} \varphi \partial^{2} \varphi-\frac{1}{768} \partial^{9} \varphi \partial \varphi-\frac{1225}{64 \sqrt{3}} \partial^{4} \varphi\left(\partial^{3} \varphi\right)^{2}\right. \\
-\frac{13475}{576 \sqrt{3}}\left(\partial^{4} \varphi\right)^{2} \partial^{2} \varphi+\frac{2695}{64 \sqrt{3}} \partial^{5} \varphi \partial^{3} \varphi \partial^{2} \varphi+\frac{2555}{192 \sqrt{3}} \partial^{5} \varphi \partial^{4} \varphi \partial \varphi-\frac{2891}{576 \sqrt{3}} \partial^{6} \varphi\left(\partial^{2} \varphi\right)^{2}-\frac{1351}{192 \sqrt{3}} \partial^{6} \varphi \partial^{3} \varphi \partial \varphi \\
-\frac{103}{192 \sqrt{3}} \partial^{7} \varphi \partial^{2} \varphi \partial \varphi-\frac{13}{384 \sqrt{3}} \partial^{8} \varphi(\partial \varphi)^{2}+\frac{3535}{32}\left(\partial^{3} \varphi\right)^{2}\left(\partial^{2} \varphi\right)^{2}-\frac{735}{16}\left(\partial^{3} \varphi\right)^{3} \partial \varphi-\frac{3395}{54} \partial^{4} \varphi\left(\partial^{2} \varphi\right)^{3} \\
+\frac{245}{24} \partial^{4} \varphi \partial^{3} \varphi \partial^{2} \varphi \partial \varphi+\frac{12635}{576}\left(\partial^{4} \varphi\right)^{2}(\partial \varphi)^{2}+\frac{245}{12} \partial^{5} \varphi\left(\partial^{2} \varphi\right)^{2} \partial \varphi+\frac{105}{32} \partial^{5} \varphi \partial^{3} \varphi(\partial \varphi)^{2} \\
-\frac{2443}{288} \partial^{6} \varphi \partial^{2} \varphi(\partial \varphi)^{2}-\frac{19}{96} \partial^{7} \varphi(\partial \varphi)^{3}-\frac{13405}{144 \sqrt{3}\left(\partial^{2} \varphi\right)^{5}+\frac{8225}{24 \sqrt{3}} \partial^{3} \varphi\left(\partial^{2} \varphi\right)^{3} \partial \varphi-\frac{105 \sqrt{3}}{4}\left(\partial^{3} \varphi\right)^{2} \partial^{2} \varphi(\partial \varphi)^{2}} \\
+\frac{665}{24 \sqrt{3}} \partial^{4} \varphi\left(\partial^{2} \varphi\right)^{2}(\partial \varphi)^{2}+\frac{245}{2 \sqrt{3}} \partial^{4} \varphi \partial^{3} \varphi(\partial \varphi)^{3}-\frac{245}{8 \sqrt{3}} \partial^{5} \varphi \partial^{2} \varphi(\partial \varphi)^{3}-\frac{91}{24 \sqrt{3}} \partial^{6} \varphi(\partial \varphi)^{4}+\frac{16205}{144}\left(\partial^{2} \varphi\right)^{4}(\partial \varphi)^{2} \\
+\frac{385}{4} \partial^{3} \varphi\left(\partial^{2} \varphi\right)^{2}(\partial \varphi)^{3}+\frac{525}{8}\left(\partial^{3} \varphi\right)^{2}(\partial \varphi)^{4}+\frac{35}{3} \partial^{4} \varphi \partial^{2} \varphi(\partial \varphi)^{4}-7 \partial^{5} \varphi(\partial \varphi)^{5}+\frac{665}{3 \sqrt{3}\left(\partial^{2} \varphi\right)^{3}(\partial \varphi)^{4}} \\
\quad+\frac{105 \sqrt{3}}{2} \partial^{3} \varphi \partial^{2} \varphi(\partial \varphi)^{5}-\frac{35}{3 \sqrt{3}} \partial^{4} \varphi(\partial \varphi)^{6}+\frac{455}{6}\left(\partial^{2} \varphi\right)^{2}(\partial \varphi)^{6}+5 \partial^{3} \varphi(\partial \varphi)^{7}+\frac{25}{\sqrt{3}} \partial^{2} \varphi(\partial \varphi)^{8}
\end{array}
$$

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

- the maximum local algebra acting in the kernel.

Key differences from the rational case

- The symmetry algebra of a LCFT model is larger than the "naive" algebra (e.g., Virasoro).

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

- the maximum local algebra acting in the kernel.

Key differences from the rational case

- The symmetry algebra of a LCFT model is larger than the "naive" algebra (e.g., Virasoro).
- The space of states in a LCFT is not the direct sum of irreducible representations

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

- the maximum local algebra acting in the kernel.

Key differences from the rational case

- The symmetry algebra of a LCFT model is larger than the "naive" algebra (e.g., Virasoro).
- The space of states in a LCFT is not the direct sum of irreducible representations but the sum of all (finitely many) projective modules

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

- the maximum local algebra acting in the kernel.

Key differences from the rational case

- The symmetry algebra of a LCFT model is larger than the "naive" algebra (e.g., Virasoro).
- The space of states in a LCFT is not the direct sum of irreducible representations but the sum of all (finitely many) projective modules

$$
\mathbb{P}=\bigoplus \mathfrak{P}_{\iota}
$$

LCFTs in terms of free fields

1 Take screenings in a free-field realization: e.g., $S_{ \pm}=e^{\alpha_{ \pm} \varphi(z)} d z$
2 rational models are the cohomology of (the differential associated with) screenings
3 Take the kernel of the screenings
4 The kernel is a representation space of a W-algebra

- the maximum local algebra acting in the kernel.

Key differences from the rational case

- The LCFT model may be dependent on the free-field representation taken, on the screenings chosen, etc.
- The symmetry algebra of a LCFT model is larger than the "naive" algebra (e.g., Virasoro).
- The space of states in a LCFT is not the direct sum of irreducible representations but the sum of all (finitely many) projective modules

$$
\mathbb{P}=\bigoplus_{\imath} \mathfrak{P}_{\iota}
$$

\mathcal{W}-algebras and their representations

■ $(p, 1)$ MODELS: the triplet W-algebra \mathcal{W}_{p}

\mathcal{W}-algebras and their representations

■ $(p, 1)$ MODELS: the triplet W-algebra \mathcal{W}_{p}
has $2 p$ irreps $\mathfrak{X}_{r}^{ \pm}, r=1, \ldots, p$.
$\Delta_{\mathfrak{X}+(r)}=\frac{(p-r)^{2}}{4 p}+\frac{c-1}{24}, \quad \Delta_{\mathfrak{X}-(r)}=\frac{(2 p-r)^{2}}{4 p}+\frac{c-1}{24}$.

\mathcal{W}-algebras and their representations

■ $(p, 1)$ MODELS: the triplet W-algebra \mathcal{W}_{p}
has $2 p$ irreps $\mathfrak{X}_{r}^{ \pm}, r=1, \ldots, p$.
$\Delta_{\mathfrak{X}+(r)}=\frac{(p-r)^{2}}{4 p}+\frac{c-1}{24}, \quad \Delta_{\mathfrak{X}-(r)}=\frac{(2 p-r)^{2}}{4 p}+\frac{c-1}{24}$.

- $\left(p, p^{\prime}\right)$ MODELS: $2 p p^{\prime}$ irreps of the corresponding $\mathcal{W}_{p, p^{\prime}}$:
$\mathfrak{X}_{r, r^{\prime}}^{ \pm}, r=1, \ldots, p, r^{\prime}=1, \ldots, p^{\prime}$,
$\Delta_{x_{r, r^{\prime}}^{+}}=\Delta_{r, p^{\prime}-r^{\prime} ; 1,}, \Delta_{x_{r, r^{\prime}}^{-}}=\Delta_{p-r, r^{\prime} ;-2,}$
$\Delta_{r, r} ; n=\frac{\left(p r^{\prime}-p^{\prime} r+p p^{\prime} n\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}$.

[^2]
\mathcal{W}-algebras and their representations

■ $(p, 1)$ MODELS: the triplet W-algebra \mathcal{W}_{p}
has $2 p$ irreps $\mathfrak{X}_{r}^{ \pm}, r=1, \ldots, p$.
$\Delta_{\mathfrak{X}+(r)}=\frac{(p-r)^{2}}{4 p}+\frac{c-1}{24}, \quad \Delta_{\mathfrak{X}-(r)}=\frac{(2 p-r)^{2}}{4 p}+\frac{c-1}{24}$.

- $\left(p, p^{\prime}\right)$ MODELS: $2 p p^{\prime}$ irreps of the corresponding $\mathcal{W}_{p, p^{\prime}}$:
$\mathfrak{X}_{r, r^{\prime}}^{ \pm}, r=1, \ldots, p, r^{\prime}=1, \ldots, p^{\prime}$,
$\Delta_{x_{r, r^{\prime}}^{+}}=\Delta_{r, p^{\prime}-r^{\prime} ; 1,}, \Delta_{x_{r, r^{\prime}}^{-}}=\Delta_{p-r, r^{\prime} ;-2,}$
$\Delta_{r, r^{\prime} ; n}=\frac{\left(p r^{\prime}-p^{\prime} r+p p^{\prime} n\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}$.
PLUS the $\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ representations from the Virasoro minimal model.

\mathcal{W}-algebras and their representations

- ($p, 1$) MODELS: the triplet W-algebra \mathcal{W}_{p}
has $2 p$ irreps $\mathfrak{X}_{r}^{ \pm}, r=1, \ldots, p$.
$\Delta_{\mathfrak{X}+(r)}=\frac{(p-r)^{2}}{4 p}+\frac{c-1}{24}, \quad \Delta_{\mathfrak{X}-(r)}=\frac{(2 p-r)^{2}}{4 p}+\frac{c-1}{24}$.
- $\left(p, p^{\prime}\right)$ MODELS: $2 p p^{\prime}$ irreps of the corresponding $\mathcal{W}_{p, p^{\prime}}$:
$\mathfrak{X}_{r, r^{\prime}}^{ \pm}, r=1, \ldots, p, r^{\prime}=1, \ldots, p^{\prime}$,
$\Delta_{x_{r, r^{\prime}}^{+}}=\Delta_{r, p^{\prime}-r^{\prime} ; 1}, \Delta_{x_{r, r^{\prime}}^{-}}=\Delta_{p-r, r^{\prime} ;-2}$,
$\Delta_{r, r^{\prime} ; n}=\frac{\left(p r^{\prime}-p^{\prime} r+p p^{\prime} n\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}$.
PLUS the $\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ representations from the Virasoro minimal model.
kernel of the screenings $=\bigoplus_{A}^{N} \mathfrak{X}_{A}$
- finite sum of irreducible representatons

\mathcal{W}-algebra characters

$(p, 1)$: The irreducible W-representation characters are given by

$$
\begin{aligned}
& \chi_{r}^{+}(q)=\frac{1}{\eta(q)}\left(\frac{r}{p} \theta_{p-r, p}(q)+\frac{2}{p} \theta_{p-r, p}^{\prime}(q)\right), \\
& \chi_{r}^{-}(q)=\frac{1}{\eta(q)}\left(\frac{r}{p} \theta_{r, p}(q)-\frac{2}{p} \theta_{r, p}^{\prime}(q)\right),
\end{aligned}
$$

\mathcal{W}-algebra characters

$\left(p, p^{\prime}\right)$: The irreducible W-representation characters are given by

$$
\chi_{r, r^{\prime}}(q)=\frac{1}{\eta(q)}\left(\theta_{p r^{\prime}-p^{\prime} r, p p^{\prime}}(q)-\theta_{p r^{\prime}+p^{\prime} r, p p^{\prime}}(q)\right), \quad\left(r, r^{\prime}\right) \in \mathcal{J}_{1}
$$

\mathcal{W}-algebra characters

(p, p^{\prime}): The irreducible W-representation characters are given by

$$
\chi_{r, r^{\prime}}(q)=\frac{1}{\eta(q)}\left(\theta_{p r^{\prime}-p^{\prime} r, p p^{\prime}}(q)-\theta_{p r^{\prime}+p^{\prime} r, p p^{\prime}}(q)\right), \quad\left(r, r^{\prime}\right) \in \mathcal{J}_{1}
$$

\mathcal{W}-algebra characters

$\left(p, p^{\prime}\right)$: The irreducible W-representation characters are given by

$$
\begin{aligned}
& \chi_{r, r^{\prime}}(q)=\frac{1}{\eta(q)}\left(\theta_{p r^{\prime}-p^{\prime} r, p p^{\prime}}(q)-\theta_{p r^{\prime}+p^{\prime} r, p p^{\prime}}(q)\right), \quad\left(r, r^{\prime}\right) \in \mathcal{J}_{1}, \\
& \chi_{r, r^{\prime}}^{+}= \frac{1}{\left(p p^{\prime}\right)^{2} \eta}\left(\theta_{p r^{\prime}+p^{\prime} r}^{\prime \prime}-\theta_{p r^{\prime}-p^{\prime} r}^{\prime \prime}\right. \\
&-\left(p r^{\prime}+p^{\prime} r\right) \theta_{p r^{\prime}+p^{\prime} r}^{\prime}+\left(p r^{\prime}-p^{\prime} r\right) \theta_{p r^{\prime}-p^{\prime} r}^{\prime} \\
&\left.+\frac{\left(p r^{\prime}+p^{\prime} r\right)^{2}}{4} \theta_{p r^{\prime}+p^{\prime} r}-\frac{\left(p r^{\prime}-p^{\prime} r\right)^{2}}{4} \theta_{p r^{\prime}-p^{\prime} r} r\right), 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime},
\end{aligned}
$$

\mathcal{W}-algebra characters

$\left(p, p^{\prime}\right)$: The irreducible W-representation characters are given by

$$
\begin{aligned}
& \chi_{r, r^{\prime}}(q)=\frac{1}{\eta(q)}\left(\theta_{p r^{\prime}-p^{\prime} r, p p^{\prime}(q)}-\theta_{p r^{\prime}+p^{\prime} r, p p^{\prime}}(q)\right), \quad\left(r, r^{\prime}\right) \in \mathcal{J}_{1}, \\
& \chi_{r, r^{\prime}}^{+}= \frac{1}{\left(p p \rho^{\prime}\right)^{2} \eta}\left(\theta_{p r^{\prime}+p^{\prime} r}^{\prime \prime}-\theta_{p r^{\prime}-p^{\prime} r}^{\prime \prime}\right. \\
&-\left(p r^{\prime}+p^{\prime} r\right) \theta_{p r^{\prime}+p^{\prime} r}^{\prime}+\left(p r^{\prime}-p^{\prime} r\right) \theta_{p r^{\prime}-p^{\prime} r}^{\prime} r \\
&\left.+\frac{\left(p r^{\prime}+p^{\prime} r\right)^{2}}{4} \theta_{p r^{\prime}+p^{\prime} r}-\frac{\left(p r^{\prime}-p^{\prime} r\right)^{2}}{4} \theta_{p r^{\prime}-p^{\prime} r}\right), 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
& \chi_{r, r^{\prime}}^{-}= \frac{1}{\left(p p^{\prime}\right)^{2} \eta}\left(\theta_{p p^{\prime}-p r r^{\prime}-p^{\prime} r}^{\prime \prime}-\theta_{p p p^{\prime \prime}+p r^{\prime}-p^{\prime} r}^{\prime \prime}\right. \\
&+\left(p r^{\prime}+p^{\prime} r\right) \theta_{p p^{\prime}-p r^{\prime}-p^{\prime} r}^{\prime}+\left(p r^{\prime}-p^{\prime} r\right) \theta_{p p^{\prime}+p r^{\prime}-p^{\prime} r}^{\prime} \\
&+\frac{\left(p r^{\prime}+p^{\prime} r\right)^{-}-\left(p p^{\prime}\right)^{2}}{4} \theta_{p p^{\prime}-p r^{\prime}-p^{\prime} r} \\
&-\frac{\left(p r^{\prime}-p^{\prime} r\right)^{2}-\left(p p^{\prime}\right)^{2}}{4} \theta_{\left.p p^{\prime}+p r^{\prime}-p^{\prime} r\right), \quad 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime} .} .
\end{aligned}
$$

\mathcal{W}-Characters \Longrightarrow Modular Group Representation

The need for generalized characters:
In LCFT, characters alone are not closed under $\operatorname{SL}(2, \mathbb{Z})$ action

\mathcal{W}-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

\mathcal{W}-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.

W-Characters \Longrightarrow Modular Group Representation

■ $(p, 1)$ MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.
It is highly probable that these dimensions $3 p-1$ and $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$ are the dimensions of the spaces of torus amplitudes.

W-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $(3 p-1)$-dimension $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\mathrm{cft}}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=\mathcal{R}_{p+1} \oplus \mathbb{C}^{2} \otimes \mathcal{R}_{p-1}
$$

W-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $(3 p-1)$-dimension $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\mathrm{cft}}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=\mathcal{R}_{p+1} \oplus \mathbb{C}^{2} \otimes \mathcal{R}_{p-1}
$$

\mathcal{R}_{p-1} is the [" $\sin \frac{\pi r s}{p}$ "] $S L(2, \mathbb{Z})$-representation realized in the $\widehat{s \ell}(2)_{p-2}$ minimal model,

W-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $(3 p-1)$-dimension $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\mathrm{cft}}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=\mathcal{R}_{p+1} \oplus \mathbb{C}^{2} \otimes \mathcal{R}_{p-1}
$$

\mathcal{R}_{p-1} is the [" $\sin \frac{\pi r s}{p}$ "] $S L(2, \mathbb{Z})$-representation realized in the $\widehat{s \ell}(2)_{p-2}$ minimal model, \mathcal{R}_{p+1} is a [" $\cos \frac{\pi r s}{p}$ "] $S L(2, \mathbb{Z})$-representations of dimension $p+1$,

W-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $(3 p-1)$-dimension $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\mathrm{cft}}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=\mathcal{R}_{p+1} \oplus \mathbb{C}^{2} \otimes \mathcal{R}_{p-1}
$$

\mathcal{R}_{p-1} is the [" $\sin \frac{\pi r s}{p}$ "] $S L(2, \mathbb{Z})$-representation realized in the $\widehat{s \ell}(2)_{p-2}$ minimal model, \mathcal{R}_{p+1} is a [" $\cos \frac{\pi r s}{p}$ "] $S L(2, \mathbb{Z})$-representations of dimension $p+1$, and \mathbb{C}^{2} is the defining two-dimensional representation of $\operatorname{SL}(2, \mathbb{Z})$.

\mathcal{W}-Characters \Longrightarrow Modular Group Representation

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\text {ctt }}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=R_{\min } \oplus R_{\mathrm{proj}} \oplus \mathbb{C}^{2} \otimes\left(R_{\square} \oplus R_{\boxtimes}\right) \oplus \mathbb{C}^{3} \otimes R_{\min }
$$

W-Characters \Longrightarrow Modular Group Representation

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\text {ctt }}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=R_{\min } \oplus R_{\mathrm{proj}} \oplus \mathbb{C}^{2} \otimes\left(R_{\square} \oplus R_{\square}\right) \oplus \mathbb{C}^{3} \otimes R_{\min },
$$

$R_{\min }$ is the $\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation on the characters of the (p, p^{\prime}) Virasoro minimal model,

W-Characters \Longrightarrow Modular Group Representation

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\text {ctt }}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=R_{\min } \oplus R_{\mathrm{proj}} \oplus \mathbb{C}^{2} \otimes\left(R_{\square} \oplus R_{\square}\right) \oplus \mathbb{C}^{3} \otimes R_{\min },
$$

$R_{\min }$ is the $\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation on the characters of the (p, p^{\prime}) Virasoro minimal model,

W-Characters \Longrightarrow Modular Group Representation

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\text {ctt }}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=R_{\min } \oplus R_{\mathrm{proj}} \oplus \mathbb{C}^{2} \otimes\left(R_{\square} \oplus R_{\square}\right) \oplus \mathbb{C}^{3} \otimes R_{\min }
$$

$R_{\min }$ is the $\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation on the characters of the (p, p^{\prime}) Virasoro minimal model, $\mathbb{C}^{3} \cong S^{2}\left(\mathbb{C}^{2}\right)$,

\mathcal{W}-Characters \Longrightarrow Modular Group Representation

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.

Theorem

The $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation $\mathfrak{Z}_{\text {ctt }}$ has the structure

$$
\mathfrak{Z}_{\mathrm{cft}}=R_{\min } \oplus R_{\mathrm{proj}} \oplus \mathbb{C}^{2} \otimes\left(R_{\square} \oplus R_{\boxtimes}\right) \oplus \mathbb{C}^{3} \otimes R_{\min }
$$

$R_{\min }$ is the $\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation on the characters of the $\left(p, p^{\prime}\right)$ Virasoro minimal model, $\mathbb{C}^{3} \cong \mathrm{~S}^{2}\left(\mathbb{C}^{2}\right)$, and $R_{\text {proj }}, R_{\square}$, and R_{\square} are $S L(2, \mathbb{Z})$-representations of the respective dimensions $\frac{1}{2}(p+1)\left(p^{\prime}+1\right), \frac{1}{2}(p-1)\left(p^{\prime}+1\right)$, and $\frac{1}{2}(p+1)\left(p^{\prime}-1\right)$.

\mathcal{W}-Characters \Longrightarrow Modular Group Representation

■ ($p, 1$) MODELS: The $2 p$ characters give rise to a $(3 p-1)$-dimensional $S L(2, \mathbb{Z})$-representation.

- $\left(p, p^{\prime}\right)$ MODELS: The $2 p p^{\prime}+\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$ characters give rise to a $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$-dimensional $S L(2, \mathbb{Z})$-representation.
It is highly probable that these dimensions $3 p-1$ and $\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$ are the dimensions of the spaces of torus amplitudes.

Some details for (p, p^{\prime})

Generalized characters:

subrep.	dimension	basis
$R_{\text {min }}$	$\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\chi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$
$R_{\text {proj }}$	$\frac{1}{2}(p+1)\left(p^{\prime}+1\right)$	$\varkappa_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{0}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p-1)\left(p^{\prime}+1\right)$	$\rho_{r, r^{\prime}}^{\square}, \varphi_{r, r^{\prime}}^{\square},\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p+1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}^{\triangle}, \varphi_{r, r^{\prime}}^{\triangle},\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{3} \otimes R_{\text {min }}$	$3 \cdot \frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}, \psi_{r, r^{\prime}}, \varphi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$

Some details for (p, p^{\prime})

Generalized characters:

subrep.	dimension	basis
$R_{\text {min }}$	$\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\chi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$
$R_{\text {proj }}$	$\frac{1}{2}(p+1)\left(p^{\prime}+1\right)$	$\chi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{0}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p-1)\left(p^{\prime}+1\right)$	$\rho_{r, r^{\prime}}^{\square}, \varphi_{r, r^{\prime}}^{\square},\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p+1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}^{\triangle}, \varphi_{r, r^{\prime}}^{\boxtimes},\left(r, r^{\prime}\right) \in \mathcal{J}_{\boxtimes}$
$\mathbb{C}^{3} \otimes R_{\text {min }}$	$3 \cdot \frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}, \psi_{r, r^{\prime}}, \varphi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$

$$
\begin{aligned}
\varkappa_{r, r^{\prime}}=\chi_{r, r^{\prime}}+2 \chi_{r, r^{\prime}}^{+}+2 \chi_{r, p^{\prime}-r^{\prime}}^{-}+2 \chi_{p-r, r^{\prime}}^{-}+2 \chi_{p-r, p^{\prime}-r^{\prime}}^{+}, & \left(r, r^{\prime}\right) \in \mathcal{J}_{1} \\
\varkappa_{0, r^{\prime}}=2 \chi_{p, p^{\prime}-r^{\prime}}^{+}+2 \chi_{p, r^{\prime}}^{-}, & 1 \leqslant r^{\prime} \leqslant p^{\prime}-1 \\
\varkappa_{r, 0}=2 \chi_{p-r, p^{\prime}}^{+}+2 \chi_{r, p^{\prime}}^{-}, & 1 \leqslant r \leqslant p-1 \\
\varkappa_{0,0}=2 \chi_{p, p^{\prime}}^{+} & \\
\varkappa_{p, 0}=2 \chi_{p, p^{\prime}}^{-} &
\end{aligned}
$$

Some details for (p, p^{\prime})

Generalized characters:

subrep.	dimension	basis
$R_{\text {min }}$	$\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\chi_{r, r^{\prime},},\left(r, r^{\prime}\right) \in \mathrm{J}_{1}$
$R_{\text {proj }}$	$\frac{1}{2}(p+1)\left(p^{\prime}+1\right)$	$\chi_{r, r^{\prime},\left(r, r^{\prime}\right) \in J_{0}}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p-1)\left(p^{\prime}+1\right)$	$\rho_{r, r^{\prime},}^{\square} \varphi_{r, r^{\prime},}^{\square}\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{2} \otimes R_{\triangle}$	2. $\frac{1}{2}(p+1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime},}^{\otimes} \varphi_{r, r^{\prime},}^{\otimes}$, $\left.r, r^{\prime}\right) \in \mathcal{J}_{\boxtimes}$
$\mathbb{C}^{3} \otimes R_{\text {min }}$	$3 \cdot \frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	

$$
\begin{array}{rlrl}
\rho_{r, r^{\prime}}^{\square}(\tau)= & \frac{p^{\prime} r-p r^{\prime}}{2} \chi_{r, r^{\prime}}(\tau)+p^{\prime}(r-p)\left(\chi_{r, r^{\prime}}^{+}(\tau)+\chi_{r, p^{\prime}-r^{\prime}}^{-}(\tau)\right) & & \\
& +p^{\prime} r\left(\chi_{p-r, p^{\prime}-r^{\prime}}^{+}(\tau)+\chi_{p-r, r^{\prime}}^{-}(\tau)\right), & & \left(r, r^{\prime}\right) \in \mathcal{J}_{1}, \\
\rho_{r, 0}^{\square}(\tau)= & p^{\prime}\left(r \chi_{p-r, p^{\prime}}^{+}(\tau)-(p-r) \chi_{r, p^{\prime}}^{-}(\tau)\right), & & \left(r, r^{\prime}\right) \in p-1, \\
\varphi_{r, r^{\prime}}^{\square}(\tau)= & \tau \rho_{r, r^{\prime}}^{\square}(\tau), &
\end{array}
$$

Some details for (p, p^{\prime})

Generalized characters:

subrep.	dimension	basis
$R_{\text {min }}$	$\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\chi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$
$R_{\text {proj }}$	$\frac{1}{2}(p+1)\left(p^{\prime}+1\right)$	$\varkappa_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{0}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p-1)\left(p^{\prime}+1\right)$	$\rho_{r, r^{\prime}}^{\square}, \varphi_{r, r^{\prime}}^{\square},\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p+1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}^{\triangle}, \varphi_{r, r^{\prime},}^{\square}\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{3} \otimes R_{\text {min }}$	$3 \cdot \frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}, \psi_{r, r^{\prime}}, \varphi_{r, r^{\prime},}\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$

$$
\begin{aligned}
\rho_{r, r^{\prime}}^{\boxtimes}(\tau)= & \frac{p r^{\prime}-p^{\prime} r}{2} \chi_{r, r^{\prime}}(\tau)-p\left(p^{\prime}-r^{\prime}\right)\left(\chi_{r, r^{\prime}}^{+}(\tau)+\chi_{p-r, r^{\prime}}^{-}(\tau)\right) & & \\
& +p r^{\prime}\left(\chi_{p-r, p^{\prime}-r^{\prime}}^{+}(\tau)+\chi_{r, p^{\prime}-r^{\prime}}^{-}(\tau)\right), & & \left(r, r^{\prime}\right) \in \mathcal{J}_{1}, \\
\rho_{0, r^{\prime}}^{\boxtimes}(\tau)= & p\left(r^{\prime} \chi_{p, p^{\prime}-r^{\prime}}^{+}(\tau)-\left(p^{\prime}-r^{\prime}\right) \chi_{p, r^{\prime}}^{-}(\tau)\right), & & 1 \leqslant r^{\prime} \leqslant p^{\prime}-1, \\
\varphi_{r, r^{\prime}}^{\square}(\tau)= & \tau \rho_{r, r^{\prime}}^{\square}(\tau), & & \left(r, r^{\prime}\right) \in \mathcal{J}_{\boxtimes},
\end{aligned}
$$

Some details for (p, p^{\prime})

Generalized characters:

subrep.	dimension	basis
$R_{\text {min }}$	$\frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\chi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$
$R_{\text {proj }}$	$\frac{1}{2}(p+1)\left(p^{\prime}+1\right)$	$\chi_{r, r^{\prime}},\left(r, r^{\prime}\right) \in \mathcal{J}_{0}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p-1)\left(p^{\prime}+1\right)$	$\rho_{r, r^{\prime}}^{\square}, \varphi_{r, r^{\prime},}^{\square}\left(r, r^{\prime}\right) \in \mathcal{J}_{\square}$
$\mathbb{C}^{2} \otimes R_{\square}$	$2 \cdot \frac{1}{2}(p+1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}^{\triangle}, \varphi_{r, r^{\prime},}^{\square}\left(r, r^{\prime}\right) \in \mathcal{J}_{\boxtimes}$
$\mathbb{C}^{3} \otimes R_{\text {min }}$	$3 \cdot \frac{1}{2}(p-1)\left(p^{\prime}-1\right)$	$\rho_{r, r^{\prime}}, \psi_{r, r^{\prime}}, \varphi_{r, r^{\prime},}\left(r, r^{\prime}\right) \in \mathcal{J}_{1}$

$$
\begin{array}{rlrl}
\rho_{r, r^{\prime}}(\tau)= & p p^{\prime}\left((p-r)\left(p^{\prime}-r^{\prime}\right) \chi_{r, r^{\prime}}^{+}(\tau)+r r^{\prime} \chi_{p-r, p^{\prime}-r^{\prime}}^{+}(\tau)-\frac{\left(p r^{\prime}-p^{\prime} r\right)^{2}}{4 p p^{\prime}} \chi_{r, r^{\prime}}(\tau)\right. \\
& \left.-(p-r) r^{\prime} \chi_{r, p^{\prime}-r^{\prime}}^{-}(\tau)-r\left(p^{\prime}-r^{\prime}\right) \chi_{p-r, r^{\prime}}^{-}(\tau)\right), & \left(r, r^{\prime}\right) \in \mathcal{J}_{1} \\
\psi_{r, r^{\prime}}(\tau)= & 2 \tau \rho_{r, r^{\prime}}(\tau)+i \pi p p^{\prime} \chi_{r, r^{\prime}}(\tau), & & \left(r, r^{\prime}\right) \in \mathcal{J}_{1} \\
\varphi_{r, r^{\prime}}(\tau)= & \tau^{2} \rho_{r, r^{\prime}}(\tau)+i \pi p p^{\prime} \tau \chi_{r, r^{\prime}}(\tau), & & \left(r, r^{\prime}\right) \in \mathcal{J}_{1}
\end{array}
$$

Corollary: Several modular invariants

- involving τ explicitly:

$$
\begin{aligned}
\rho^{\square}(\tau, \bar{\tau})= & \sum_{r=1}^{p-1} \operatorname{im} \tau\left|\rho_{r, 0}^{\square}(\tau)\right|^{2}+2 \sum_{\left(r, r^{\prime}\right) \in \mathcal{J}_{1}} \operatorname{im} \tau\left|\rho_{r, r^{\prime}}^{\square}(\tau)\right|^{2}, \\
\rho(\tau, \bar{\tau})= & \sum_{\left(r, r^{\prime}\right) \in \mathcal{J}_{1}} \bar{\rho}_{r, r^{\prime}}(\bar{\tau})\left(8(\operatorname{im} \tau)^{2} \rho_{r, r^{\prime}}(\tau)+4 p p^{\prime} \pi \operatorname{im} \tau \chi_{r, r^{\prime}}(\tau)\right) \\
& +\bar{\chi}_{r, r^{\prime}}(\bar{\tau})\left(4 p p^{\prime} \pi \operatorname{im} \tau \rho_{r, r^{\prime}}(\tau)+\left(\pi p p^{\prime}\right)^{2} \chi_{r, r^{\prime}}(\tau)\right) .
\end{aligned}
$$

Corollary: Several modular invariants

- A-series:

$$
\begin{aligned}
& \varkappa_{[A]}(\tau, \bar{\tau})= \\
= & \left|\varkappa_{0,0}(\tau)\right|^{2}+\left|\varkappa_{p, 0}(\tau)\right|^{2}+2 \sum_{r=1}^{p-1}\left|\varkappa_{r, 0}(\tau)\right|^{2}+2 \sum_{r^{\prime}=1}^{p^{\prime}-1}\left|\varkappa_{0, r^{\prime}}(\tau)\right|^{2}+4 \sum_{\left(r, r^{\prime}\right) \in \mathcal{J}_{1}}\left|\varkappa_{r, r^{\prime}}(\tau)\right|^{2}
\end{aligned}
$$

Corollary: Several modular invariants

- A-series:

$$
\begin{aligned}
& \varkappa_{[A]}(\tau, \bar{\tau})= \\
= & \left|\varkappa_{0,0}(\tau)\right|^{2}+\left|\varkappa_{p, 0}(\tau)\right|^{2}+2 \sum_{r=1}^{p-1}\left|\varkappa_{r, 0}(\tau)\right|^{2}+2 \sum_{r^{\prime}=1}^{p^{\prime}-1}\left|\varkappa_{0, r^{\prime}}(\tau)\right|^{2}+4 \sum_{\left(r, r^{\prime}\right) \in \mathcal{J}_{1}}\left|\varkappa_{r, r^{\prime}}(\tau)\right|^{2}
\end{aligned}
$$

- D-series (in the case $p^{\prime} \equiv 0 \bmod 4$):

$$
\begin{aligned}
\varkappa_{[D]}(\tau, \bar{\tau}) & =\left|\varkappa_{0,0}(\tau)+\varkappa_{p, 0}(\tau)\right|^{2}+\sum_{r=1}^{p-1}\left|\varkappa_{r, 0}(\tau)+\varkappa_{p-r, 0}(\tau)\right|^{2} \\
& +\sum_{\substack{r^{\prime} \leqslant p^{\prime}-1 \\
r^{\prime} \text { even }}}\left|\varkappa_{0, r^{\prime}}(\tau)+\varkappa_{0, p^{\prime}-r^{\prime}}(\tau)\right|^{2}+\sum_{\substack{\left(r, r^{\prime}\right) \in \mathcal{J}_{1} \\
r^{\prime} \text { even }}} 2\left|\varkappa_{r, r^{\prime}}(\tau)+\varkappa_{r, p^{\prime}-r^{\prime}}(\tau)\right|^{2}
\end{aligned}
$$

Corollary: Several modular invariants

- A-series:

$$
\begin{aligned}
& \varkappa_{[A]}(\tau, \bar{\tau})= \\
= & \left|\varkappa_{0,0}(\tau)\right|^{2}+\left|\varkappa_{p, 0}(\tau)\right|^{2}+2 \sum_{r=1}^{p-1}\left|\varkappa_{r, 0}(\tau)\right|^{2}+2 \sum_{r^{\prime}=1}^{p^{\prime}-1}\left|\varkappa_{0, r^{\prime}}(\tau)\right|^{2}+4 \sum_{\left(r, r^{\prime}\right) \in \mathcal{J}_{1}}\left|\varkappa_{r, r^{\prime}}(\tau)\right|^{2}
\end{aligned}
$$

- D-series (in the case $p^{\prime} \equiv 0 \bmod 4$):

$$
\begin{aligned}
\varkappa_{[D]}(\tau, \bar{\tau}) & =\left|\varkappa_{0,0}(\tau)+\varkappa_{p, 0}(\tau)\right|^{2}+\sum_{r=1}^{p-1}\left|\varkappa_{r, 0}(\tau)+\varkappa_{p-r, 0}(\tau)\right|^{2} \\
& +\sum_{\substack{2 \leqslant r^{\prime} \leqslant p^{\prime}-1 \\
r^{\prime} \text { even }}}\left|\varkappa_{0, r^{\prime}}(\tau)+\varkappa_{0, p^{\prime}-r^{\prime}}(\tau)\right|^{2}+\sum_{\substack{\left(r, r^{\prime}\right) \in \mathcal{J}_{1} \\
r^{\prime} \text { even }}} 2\left|\varkappa_{r, r^{\prime}}(\tau)+\varkappa_{r, p^{\prime}-r^{\prime}}(\tau)\right|^{2}
\end{aligned}
$$

- E_{6}-type invariant for $\left(p, p^{\prime}\right)=(5,12)$:

$$
\begin{aligned}
\varkappa_{\left[E_{6}\right]}(\tau, & \bar{\tau})=\left|\varkappa_{0,1}(\tau)-\varkappa_{0,7}(\tau)\right|^{2}+\left|\varkappa_{0,2}(\tau)-\varkappa_{0,10}(\tau)\right|^{2}+\left|\varkappa_{0,5}(\tau)-\varkappa_{0,11}(\tau)\right|^{2} \\
& +2\left|\varkappa_{1,1}(\tau)-\varkappa_{1,7}(\tau)\right|^{2}+2\left|\varkappa_{2,1}(\tau)-\varkappa_{2,7}(\tau)\right|^{2}+2\left|\varkappa_{2,5}(\tau)-\varkappa_{3,1}(\tau)\right|^{2} \\
& +2\left|\varkappa_{2,2}(\tau)-\varkappa_{3,2}(\tau)\right|^{2}+2\left|\varkappa_{1,5}(\tau)-\varkappa_{4,1}(\tau)\right|^{2}+2\left|\varkappa_{1,2}(\tau)-\varkappa_{4,2}(\tau)\right|^{2}
\end{aligned}
$$

1 Motivation

2 Representation theory and CFT

3 Quantum groups

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")
■ At a root of unity \Longrightarrow finite-dimensional

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center \mathfrak{Z}

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center $\mathfrak{Z}: \operatorname{dim} \mathfrak{Z}=3 p-1$ and $\operatorname{dim} \mathfrak{Z}=\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$
- Quantum group \mathfrak{g} is ribbon and factorizable

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON

 CENTERS OF THE CORRESPONDING QUANTUM GROUPS■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center $\mathfrak{Z}: \operatorname{dim} \mathfrak{Z}=3 p-1$ and $\operatorname{dim} \mathfrak{Z}=\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$
- Quantum group \mathfrak{g} is ribbon and factorizable \Longrightarrow its center carries an $S L(2, \mathbb{Z})$ representation

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON

 CENTERS OF THE CORRESPONDING QUANTUM GROUPS■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center $\mathfrak{Z}: \operatorname{dim} \mathfrak{Z}=3 p-1$ and $\operatorname{dim} \mathfrak{Z}=\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$
- Quantum group \mathfrak{g} is ribbon and factorizable \Longrightarrow its center carries an $S L(2, \mathbb{Z})$ representation [Lyubashenko, Turaev, Kerler]

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

- Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")
- At a root of unity \Longrightarrow finite-dimensional ($\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center $\mathfrak{Z}: \operatorname{dim} \mathfrak{Z}=3 p-1$ and $\operatorname{dim} \mathfrak{Z}=\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$

■ Quantum group \mathfrak{g} is ribbon and factorizable \Longrightarrow its center carries an $S L(2, \mathbb{Z})$ representation

Theorem

This $S L(2, \mathbb{Z})$-representation on \mathfrak{Z} coincides with the $S L(2, \mathbb{Z})$-representation generated by the LCFT characters

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

■ Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")

- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center $\mathfrak{Z}: \operatorname{dim} \mathfrak{Z}=3 p-1$ and $\operatorname{dim} \mathfrak{Z}=\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$

■ Quantum group \mathfrak{g} is ribbon and factorizable \Longrightarrow its center carries an $S L(2, \mathbb{Z})$ representation

The quantum group knows surprisingly much about the LCFT

Quantum groups: Kazhdan-Lusztig correspondence

THE SAME $S L(2, \mathbb{Z})$ REPRESENTATIONS ARE REALIZED ON CENTERS OF THE CORRESPONDING QUANTUM GROUPS

- Screenings \Longrightarrow quantum group \mathfrak{g} ("Kazhdan-Lusztig-dual")
- At a root of unity \Longrightarrow finite-dimensional $\left(\mathfrak{q}^{2 p}=1, \operatorname{dim} \mathfrak{g}=2 p^{3}\right.$ and $\mathfrak{q}^{2 p p^{\prime}}=1, \operatorname{dim} \mathfrak{g}=2 p^{3} p^{\prime 3}$)
- Center $\mathfrak{Z}: \operatorname{dim} \mathfrak{Z}=3 p-1$ and $\operatorname{dim} \mathfrak{Z}=\frac{1}{2}(3 p-1)\left(3 p^{\prime}-1\right)$

■ Quantum group \mathfrak{g} is ribbon and factorizable \Longrightarrow its center carries an $S L(2, \mathbb{Z})$ representation

The quantum group knows surprisingly much about the LCFT Anything else?

More on KL: Grothendieck rings/Fusion

The " $(p, 1)$ " quantum group has $2 p$ irreps $X_{r}^{ \pm}, 1 \leqslant r \leqslant p$.

More on KL: Grothendieck rings/Fusion

The " $(p, 1)$ " quantum group has $2 p$ irreps $X_{r}^{ \pm}, 1 \leqslant r \leqslant p$. Grothendieck ring:

$$
\begin{aligned}
& X_{r}^{\alpha} X_{s}^{\alpha^{\prime}}=\sum_{\substack{t=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \tilde{X}_{t}^{\alpha \alpha^{\prime}}, \\
& \widetilde{X}_{r}^{\alpha}= \begin{cases}X_{r}^{\alpha}, & 1 \leqslant r \leqslant p, \\
X_{2 p-r}^{\alpha}+2 X_{r-p}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1 .\end{cases}
\end{aligned}
$$

More on KL: Grothendieck rings/Fusion

The " $(p, 1)$ " quantum group has $2 p$ irreps $X_{r}^{ \pm}, 1 \leqslant r \leqslant p$. Grothendieck ring:

$$
\begin{aligned}
& X_{r}^{\alpha} X_{s}^{\alpha^{\prime}}=\sum_{\substack{t=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \tilde{X}_{t}^{\alpha \alpha^{\prime}}, \\
& \tilde{X}_{r}^{\alpha}= \begin{cases}X_{r}^{\alpha}, & 1 \leqslant r \leqslant p, \\
X_{2 p-r}^{\alpha}+2 X_{r-p}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1 .\end{cases}
\end{aligned}
$$

This nonsemisimple algebra $\mathfrak{G}_{2 p}$ contains the ideal \mathfrak{V}_{p+1} of projective modules; the quotient $\mathfrak{G}_{2 p} / \mathfrak{V}_{p+1}$ is a semisimple fusion algebra - the fusion of the unitary $\hat{s \ell}(2)$ representations of level $k=p-2$:

$$
\bar{X}_{r} \bar{X}_{s}=\sum_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{p-1-|p-r-s|} \bar{X}_{t}, \quad r, s=1, \ldots, p-1
$$

More on KL: Grothendieck rings/Fusion

The " $(p, 1)$ " quantum group has $2 p$ irreps $X_{r}^{ \pm}, 1 \leqslant r \leqslant p$. Grothendieck ring:

$$
\begin{aligned}
& X_{r}^{\alpha} X_{s}^{\alpha^{\prime}}=\sum_{\substack{t=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \tilde{X}_{t}^{\alpha \alpha^{\prime}}, \\
& \tilde{X}_{r}^{\alpha}= \begin{cases}X_{r}^{\alpha}, & 1 \leqslant r \leqslant p, \\
X_{2 p-r}^{\alpha}+2 X_{r-p}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1 .\end{cases}
\end{aligned}
$$

The triplet $(p, 1) W$-algebra has just $2 p$ irreps

More on KL: Grothendieck rings/Fusion

The " $(p, 1)$ " quantum group has $2 p$ irreps $X_{r}^{ \pm}, 1 \leqslant r \leqslant p$. Grothendieck ring:

$$
\begin{aligned}
& X_{r}^{\alpha} X_{s}^{\alpha^{\prime}}=\sum_{\substack{t=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \tilde{X}_{t}^{\alpha \alpha^{\prime}}, \\
& \widetilde{X}_{r}^{\alpha}= \begin{cases}X_{r}^{\alpha}, & 1 \leqslant r \leqslant p, \\
X_{2 p-r}^{\alpha}+2 X_{r-p}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1 .\end{cases}
\end{aligned}
$$

The triplet $(p, 1) W$-algebra has just $2 p$ irreps

This " $(p, 1)$ "-quantum-group Grothendieck ring IS A CANDIDATE FOR FUSION in the $(p, 1)$ LCFT model

More on KL: Grothendieck rings/Fusion

The " $(p, 1)$ " quantum group has $2 p$ irreps $X_{r}^{ \pm}, 1 \leqslant r \leqslant p$. Grothendieck ring:

$$
\begin{array}{ll}
X_{r}^{\alpha} X_{s}^{\alpha^{\prime}}=\sum_{\substack{t=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \tilde{X}_{t}^{\alpha \alpha^{\prime}}, & \begin{array}{l}
\text { CORROBORATED E } \\
\text { from character }
\end{array} \\
\tilde{X}_{r}^{\alpha}= \begin{cases}X_{r}^{\alpha}, & 1 \leqslant r \leqslant p, \\
X_{2 p-r}^{\alpha}+2 X_{r-p}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1\end{cases}
\end{array}
$$

The triplet $(p, 1) W$-algebra has just $2 p$ irreps

This " $(p, 1)$ "-quantum-group Grothendieck ring IS A CANDIDATE FOR FUSION in the $(p, 1)$ LCFT model

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $X_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$.

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $X_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha} X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1}}^{r+s-1} \sum_{u^{\prime}=\left|r^{\prime}-s^{\prime}\right|+1}^{r_{s t e p}^{\prime}=2} \\
& \tilde{X}_{r, r^{\prime}}^{\alpha+s^{\prime}-1} \\
& \tilde{X}_{u, u^{\prime}}^{\alpha \beta},
\end{aligned}, \begin{array}{ll}
X_{r, r^{\prime},}^{\alpha}, & 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, & 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{\alpha-\alpha}}^{\alpha+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{\alpha-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime},}^{\alpha},} & p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .
\end{array}
$$

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $X_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha} X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1}}^{r+s-1} \sum_{u^{\prime}=\left|r^{\prime}-s^{\prime}\right|+1}^{r_{s t e p}^{\prime}=2} \\
& \tilde{X}_{r, r^{\prime}}^{\alpha+s^{\prime}-1} \\
& \tilde{X}_{u, u^{\prime}}^{\alpha \beta},
\end{aligned}, \begin{cases}X_{r, r^{\prime}}^{\alpha}, & 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, & 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{\alpha-\alpha}}^{\alpha+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{\alpha-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime},}^{\alpha},} & p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .\end{cases}
$$

1 This algebra is generated by two elements $X_{1,2}^{+}$and $X_{2,1}^{+}$;

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $\mathcal{X}_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha} X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \sum_{u^{\prime}=\left|r^{\prime}-s^{\prime}\right|+1}^{r_{s t e p}=2} \\
& \tilde{X}_{r, r^{\prime}}^{\alpha+s^{\prime}-1} \tilde{X}_{u, u^{\prime}}^{\alpha \beta},
\end{aligned} \begin{cases}X_{r, r^{\prime}}^{\alpha}, & 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, & 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{\alpha}}^{\alpha+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime},}^{\alpha},} & p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .\end{cases}
$$

1 This algebra is generated by two elements $X_{1,2}^{+}$and $X_{2,1}^{+}$;
2 its radical is generated by the algebra action on $X_{p, p^{\prime}}^{+}$; the quotient over the radical coincides with the fusion of the $\left(p, p^{\prime}\right)$ Virasoro minimal models;

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $\mathcal{X}_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha} X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \sum_{u^{\prime}=\left|r^{\prime}-s^{\prime}\right|+1}^{r_{s t e p}=2} \\
& \tilde{X}_{r, r^{\prime}}^{\alpha+s^{\prime}-1} \tilde{X}_{u, u^{\prime}}^{\alpha \beta},
\end{aligned} \begin{cases}X_{r, r^{\prime}}^{\alpha}, & 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, & 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{\alpha}}^{\alpha+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{\alpha-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime},}^{\alpha},} & p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .\end{cases}
$$

1 This algebra is generated by two elements $X_{1,2}^{+}$and $X_{2,1}^{+}$;
2 its radical is generated by the algebra action on $X_{p, p^{\prime}}^{+}$; the quotient over the radical coincides with the fusion of the (p, p^{\prime}) Virasoro minimal models;
$3 X_{1,1}^{+}$is the identity;

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $\mathcal{X}_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha} X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \sum_{u^{\prime}=\left|r^{\prime}-s^{\prime}\right|+1}^{r_{s t e p}=2} \\
& \tilde{X}_{r, r^{\prime}}^{\alpha+s^{\prime}-1} \tilde{X}_{u, u^{\prime}}^{\alpha \beta},
\end{aligned} \begin{cases}X_{r, r^{\prime}}^{\alpha}, & 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, & 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{\alpha}}^{\alpha+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime},}^{\alpha},} & p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .\end{cases}
$$

1 This algebra is generated by two elements $X_{1,2}^{+}$and $X_{2,1}^{+}$;
2 its radical is generated by the algebra action on $X_{p, p^{\prime}}^{+}$; the quotient over the radical coincides with the fusion of the (p, p^{\prime}) Virasoro minimal models;
$3 X_{1,1}^{+}$is the identity;
$4 x_{1,1}^{-}$acts as a simple current, $X_{1,1}^{-} x_{r, r^{\prime}}^{\alpha}=X_{r, r^{\prime}}^{-\alpha}$.

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $X_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha} X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \sum_{\substack{u^{\prime}\left|r^{\prime}-s^{\prime}\right|+1 \\
\text { step }=2}}^{r^{\prime}+s^{\prime}-1} \tilde{X}_{u, u^{\prime}}^{\alpha \beta}, \\
& \widetilde{X}_{r, r^{\prime}}^{\alpha}= \begin{cases}X_{r, r^{\prime}}^{\alpha}, & 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, & 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{\alpha} & \\
+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{\alpha-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime},}^{\alpha}, & p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .\end{cases}
\end{aligned}
$$

Related to fusion in (p, p^{\prime}) LCFT models?!

More on KL: Grothendieck rings/Fusion

The " $\left(p, p^{\prime}\right)$ " quantum group has $2 p p^{\prime}$ irreps $\mathcal{X}_{r, r^{\prime}}^{ \pm}, 1 \leqslant r \leqslant p, 1 \leqslant r^{\prime} \leqslant p^{\prime}$. Grothendieck ring:

$$
\begin{aligned}
& X_{r, r^{\prime}}^{\alpha}, X_{s, s^{\prime}}^{\beta}=\sum_{\substack{u=|r-s|+1 \\
\text { step }=2}}^{r+s-1} \sum_{\substack{u^{\prime}\left|r^{\prime}-s^{\prime}\right|+1 \\
\text { step }=2}}^{r^{\prime}+s^{\prime}-1} \widetilde{X}_{u, u^{\prime}}^{\alpha \beta}, \\
& \begin{array}{l}
\text { CORROBORATED BY computer } \\
\text { calculations [EF (2006)] }
\end{array} \\
& 1 \leqslant r \leqslant p, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
& \widetilde{X}_{r, r^{\prime}}^{\alpha}=\left\{\begin{array}{l}
X_{r, r^{\prime}}^{\alpha}, \\
X_{2 p-r, r^{\prime}}^{\alpha}+2 X_{r-p, r^{\prime}}^{-\alpha} \\
X_{r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{r, r^{\prime}-p^{\prime}}^{-\alpha}, \\
X_{2 p-r, 2 p^{\prime}-r^{\prime}}^{\alpha}+2 X_{2 p-r, r^{\prime}-p^{\prime}}^{-\alpha} \\
+2 X_{r-p, 2 p^{\prime}-r^{\prime}}^{-\alpha}+4 X_{r-p, r^{\prime}-p^{\prime}}^{\alpha},
\end{array}\right. \\
& p+1 \leqslant r \leqslant 2 p-1, \quad 1 \leqslant r^{\prime} \leqslant p^{\prime}, \\
& 1 \leqslant r \leqslant p, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1, \\
& p+1 \leqslant r \leqslant 2 p-1, \quad p^{\prime}+1 \leqslant r^{\prime} \leqslant 2 p^{\prime}-1 .
\end{aligned}
$$

Related to fusion in (p, p^{\prime}) LCFT models?!

Example: $(2,3)$ model

The $2 p p^{\prime}=12$ representations:

$$
\begin{array}{llllll}
X_{1,1}^{+}(2), & X_{1,1}^{-}(7) & X_{2,1}^{+}(1), & X_{2,1}^{-}(5) & X_{3,1}^{+}\left(\frac{1}{3}\right), & X_{3,1}^{-}\left(\frac{10}{3}\right) \\
X_{1,2}^{+}\left(\frac{5}{8}\right), & X_{1,2}^{-}\left(\frac{33}{8}\right) & X_{2,2}^{+}\left(\frac{1}{8}\right), & X_{2,2}^{-}\left(\frac{21}{8}\right) & X_{3,2}^{+}\left(-\frac{1}{24}\right), & X_{3,2}^{-}\left(\frac{35}{24}\right)
\end{array}
$$

Example: $(2,3)$ model

The $2 p p^{\prime}=12$ representations:

$$
\begin{array}{llllll}
X_{1,1}^{+}(2), & X_{1,1}^{-}(7) & X_{2,1}^{+}(1), & X_{2,1}^{-}(5) & X_{3,1}^{+}\left(\frac{1}{3}\right), & X_{3,1}^{-}\left(\frac{10}{3}\right) \\
X_{1,2}^{+}\left(\frac{5}{8}\right), & X_{1,2}^{-}\left(\frac{33}{8}\right) & X_{2,2}^{+}\left(\frac{1}{8}\right), & X_{2,2}^{-}\left(\frac{21}{8}\right) & X_{3,2}^{+}\left(-\frac{1}{24}\right), & X_{3,2}^{-}\left(\frac{35}{24}\right)
\end{array}
$$

$$
\begin{aligned}
& X_{1,2}^{+} X_{1,2}^{+}=2 X_{1,1}^{-}+2 X_{1,1}^{+}, \quad X_{1,2}^{+} X_{2,1}^{+}=X_{2,2}^{+}, \\
& X_{1,2}^{+} x_{3,1}^{+}=X_{3,2}^{+}, \quad X_{1,2}^{+} x_{3,2}^{+}=2 x_{3,1}^{-}+2 X_{3,1}^{+}, \\
& x_{2,1}^{+} x_{2,1}^{+}=X_{1,1}^{+}+X_{3,1}^{+}, \quad X_{2,1}^{+} x_{2,2}^{+}=X_{1,2}^{+}+X_{3,2}^{+}, \quad x_{2,1}^{+} x_{3,1}^{+}=2 x_{1,1}^{-}+2 x_{2,1}^{+}, \\
& X_{2,1}^{+} X_{3,2}^{+}=2 X_{1,2}^{-}+2 X_{2,2}^{+}, \\
& X_{2,2}^{+} X_{2,2}^{+}=2 X_{1,1}^{-}+2 X_{3,1}^{-}+2 X_{1,1}^{+}+2 X_{3,1}^{+}, \quad X_{2,2}^{+} X_{3,1}^{+}=2 X_{1,2}^{-}+2 X_{2,2}^{+} \text {, } \\
& X_{2,2}^{+} X_{3,2}^{+}=4 X_{1,1}^{-}+4 X_{2,1}^{-}+4 X_{1,1}^{+}+4 X_{2,1}^{+} \text {, } \\
& X_{3,1}^{+} X_{3,1}^{+}=2 X_{2,1}^{-}+2 X_{1,1}^{+}+X_{3,1}^{+}, \quad X_{3,1}^{+} X_{3,2}^{+}=2 X_{2,2}^{-}+2 X_{1,2}^{+}+X_{3,2}^{+}, \\
& X_{3,2}^{+} X_{3,2}^{+}=4 X_{1,1}^{-}+4 X_{2,1}^{-}+2 X_{3,1}^{-}+4 X_{1,1}^{+}+4 X_{2,1}^{+}+2 X_{3,1}^{+} \text {. }
\end{aligned}
$$

$X_{1,1}^{-}$acts as a simple current, $X_{1,1}^{-} X^{ \pm}{ }_{r, r^{\prime}}=X_{r, r^{\prime}}{ }$.

Beyond the Grothendieck ring

- The TRUE tensor algebra of $\overline{\mathcal{U}}_{\mathfrak{q}} s \ell(2)$-representations [K Erdmann et al]:

Beyond the Grothendieck ring

- The TRUE tensor algebra of $\overline{\mathcal{U}}_{\mathfrak{q}} s \ell(2)$-representations [K Erdmann et al]: $r+s-p \leqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}} X_{t}^{\alpha \beta} \quad(\min (r, s) \text { terms in the sum }) .
$$

Beyond the Grothendieck ring

- The TRUE tensor algebra of $\overline{\mathcal{U}}_{\mathfrak{q}} s \ell(2)$-representations [K Erdmann et al]: $r+s-p \leqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{r+s-1} X_{t}^{\alpha \beta} \quad(\min (r, s) \text { terms in the sum })
$$

$r+s-p \geqslant 2$, even: $r+s-p=2 n$ with $n \geqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{t=|r-s|+1}^{2 p-r-s-1} x_{t}^{\alpha \beta} \oplus \bigoplus_{a=1}^{n} \mathcal{P}_{p+1-2 a}^{\alpha \beta}
$$

Beyond the Grothendieck ring

- The TRUE tensor algebra of $\overline{\mathcal{U}}_{\mathfrak{q}} s \ell(2)$-representations [K Erdmann et al]: $r+s-p \leqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{r+s-1} x_{t}^{\alpha \beta} \quad(\min (r, s) \text { terms in the sum }) .
$$

$r+s-p \geqslant 2$, even: $r+s-p=2 n$ with $n \geqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{2 p-r-s-1} X_{t}^{\alpha \beta} \oplus \bigoplus_{a=1}^{n} \mathcal{P}_{p+1-2 a}^{\alpha \beta}
$$

$r+s-p \geqslant 3$, odd: $r+s-p=2 n+1$ with $n \geqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{2 p-r-s-1} X_{t}^{\alpha \beta} \oplus \bigoplus_{a=0}^{n} \mathcal{P}_{p-2 a}^{\alpha \beta}
$$

Beyond the Grothendieck ring

- The TRUE tensor algebra of $\overline{\mathcal{U}}_{\mathfrak{q}} s \ell(2)$-representations [K Erdmann et al]: $r+s-p \leqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{r+s-1} X_{t}^{\alpha \beta} \quad(\min (r, s) \text { terms in the sum }) .
$$

$r+s-p \geqslant 2$, even: $r+s-p=2 n$ with $n \geqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=|r-s|+1 \\ \text { step }=2}}^{2 p-r-s-1} X_{t}^{\alpha \beta} \oplus \bigoplus_{a=1}^{n} \mathcal{P}_{p+1-2 a}^{\alpha \beta}
$$

$r+s-p \geqslant 3$, odd: $r+s-p=2 n+1$ with $n \geqslant 1$, then

$$
X_{r}^{\alpha} \otimes X_{s}^{\beta}=\bigoplus_{\substack{t=r-s \mid+1 \\ \text { step }=2}}^{2 p-r-s-1} X_{t}^{\alpha \beta} \oplus \bigoplus_{a=0}^{n} \mathcal{P}_{p-2 a}^{\alpha \beta} .
$$

■ The same structure of "indecomposable-aware" fusion in $(p, 1)$ LCFT?

Indecomposable modules: $\mathcal{W}_{s}^{a}(n)$ and $\mathcal{M}_{s}^{a}(n)$

$1 \leqslant s \leqslant p-1, a= \pm$, and $n \geqslant 2$, module $\mathcal{W}_{s}^{a}(n):$

Indecomposable modules: $\mathcal{W}_{s}^{a}(n)$ and $\mathcal{M}_{s}^{a}(n)$

$1 \leqslant s \leqslant p-1, a= \pm$, and $n \geqslant 2$, module $\mathcal{W}_{s}^{a}(n):$

$1 \leqslant s \leqslant p-1, a= \pm$, and $n \geqslant 2$, module $\mathcal{M}_{s}^{a}(n)$:

Indecomposable modules: $\mathcal{O}_{s}^{a}(n, z)$

$1 \leqslant s \leqslant p-1, a= \pm, n \geqslant 1$, and $z \in \mathbb{C P}^{1}$, module $\mathcal{O}_{s}^{a}(n, z)$:

Indecomposable modules: $\mathcal{O}_{s}^{a}(n, z)$

$1 \leqslant s \leqslant p-1, a= \pm, n \geqslant 1$, and $z \in \mathbb{C P}^{1}$, module $\mathcal{O}_{s}^{a}(n, z)$:

Quantum groups

Summary

We know

- extended symmetry of the model:
W-algebra
- W-algebra irreps
- Quantum-group projective modules
- Quantum-group Grothendieck ring/"fusion"
- 3CFT: Characters and generalized characters.
- Modular transformations on duantum-groun center 7
- (some) modular invariants

Summary

We know

- extended symmetry of the model: W-algebra

We don't

■ structure of W-algebra singular vectors etc.

Summary

We know

- extended symmetry of the model: W-algebra
- W-algebra irreps

We don't

■ structure of W-algebra singular vectors etc.

Summary

We know

- extended symmetry of the model: W-algebra
- W-algebra irreps

We DON'T

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- ZCFT: Characters and generalized characters,

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on \mathfrak{Z} CFT

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on \mathfrak{Z} CFT

■ Modular transformations on quantum-group center \mathfrak{Z}

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT
- (some) modular invariants

We don't

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT
- (some) modular invariants

We DON'T

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

- full partition function

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- ZCFT: Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT
- (some) modular invariants

We DON'T

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

- full partition function
- correlation functions

Summary

We know

■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT
- (some) modular invariants

We DON'T

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules
- honest W-algebra fusion

■ honest W-algebra torus amplitudes

- full partition function
- correlation functions

More than fifty percent success:

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps

■ Quantum-group projective modules

- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT
■ (some) modular invariants

We DON'T

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules

■ honest W-algebra fusion
■ honest W-algebra torus amplitudes

- full partition function
- correlation functions

More than fifty percent success: PASSED!

Summary

We know
■ extended symmetry of the model: W-algebra

- W-algebra irreps
- Quantum-group projective modules
- Quantum-group Grothendieck ring/"fusion"
- Z CFT : Characters and generalized characters, modular transformations on $\mathfrak{Z C F T}$
- Modular transformations on quantum-group center $\mathfrak{Z}=\mathfrak{Z}$ CFT
- (some) modular invariants

We DON'T

■ structure of W-algebra singular vectors etc.

- W-algebra projective modules
- honest W-algebra fusion

■ honest W-algebra torus amplitudes

- full partition function
- correlation functions

EVEN THOUGH I WAS CHEATING!!

Quantum groups

Thank You :)

4 More

4 More

From Free Fields to the Quantum Group

Consider the ($p, 1$) case.

From Free Fields to the Quantum Group

Consider the $(p, 1)$ case. Screening: $E=\oint e^{-\sqrt{\frac{2}{p}} \varphi}$.

From Free Fields to the Quantum Group

Consider the $(p, 1)$ case. Screening: $E=\oint e^{-\sqrt{\frac{2}{p}} \varphi}$.
The \mathcal{W}_{p} algebra:

$$
W^{-}(z)=e^{-\sqrt{2 p} \varphi(z)}, W^{0}(z)=\left[S_{+}, W^{-}(z)\right], W^{+}(z)=\left[S_{+}, W^{0}(z)\right]
$$

where $S_{+}=\oint e^{\sqrt{2 p} \varphi}$.

From Free Fields to the Quantum Group

Consider the $(p, 1)$ case. Screening: $E=\oint e^{-\sqrt{\frac{2}{p}} \varphi}$.
The \mathcal{W}_{p} algebra:

$$
W^{-}(z)=e^{-\sqrt{2 p} \varphi(z)}, W^{0}(z)=\left[S_{+}, W^{-}(z)\right], W^{+}(z)=\left[S_{+}, W^{0}(z)\right]
$$

where $S_{+}=\oint e^{\sqrt{2 p} \varphi}$. The $W^{ \pm, 0}(z)$ are primary fields of dimension $2 p-1$ with respect to the energy-momentum tensor

$$
T(z)=\frac{1}{2} \partial \varphi \partial \varphi(z)+\left(\sqrt{2 p}-\sqrt{\frac{2}{p}}\right) \partial^{2} \varphi(z)
$$

From Free Fields to the Quantum Group

Consider the $(p, 1)$ case. Screening: $E=\oint e^{-\sqrt{\frac{2}{p}} \varphi}$. The \mathcal{W}_{p} algebra:

$$
W^{-}(z)=e^{-\sqrt{2 p} \varphi(z)}, W^{0}(z)=\left[S_{+}, W^{-}(z)\right], W^{+}(z)=\left[S_{+}, W^{0}(z)\right]
$$

where $S_{+}=\oint e^{\sqrt{2 p} \varphi}$. The $W^{ \pm, 0}(z)$ are primary fields of dimension $2 p-1$ with respect to the energy-momentum tensor

$$
T(z)=\frac{1}{2} \partial \varphi \partial \varphi(z)+\left(\sqrt{2 p}-\sqrt{\frac{2}{p}}\right) \partial^{2} \varphi(z)
$$

On a suitably defined free-field space \mathcal{F},

$$
\left.\operatorname{Ker} E\right|_{\mathcal{F}}=\bigoplus_{r=1}^{p} \mathfrak{X}_{r}^{+} \oplus \mathfrak{X}_{r}^{-},
$$

a sum of $2 p \mathcal{W}_{p}$-representations.

[^0]: 4 \qquad

[^1]: A Gainutdinov, Semikhatov

[^2]: minimal model.

