## The Abelian sandpile model:

 towards a lattice realization of a logarithmic CFTPhilippe Ruelle
Dubna, June 2007

## Forword

Historically, sandpile models have been proposed by Bak, Tang \& Wiesenfeld ('87) as prototypes of self-organized critical models (SOC). Idea was: many critical behaviours (power laws) in nature, but unlikely to result from fine-tuning $\longrightarrow$ it is the dynamics that drives the system to a critical state, even if the system is prepared in a non-critical state. Example (BTW) $=$ sandpile, with slow addition of sand (pile builds up, then avalanches of all sizes).
[Deepak Dhar, Theoretical studies of self-organized criticality, Physica A 369 (2006) 29-70]

## Important for us:

1. interesting non-equilibrium system, with stationary measure
2. lattice realization of logarithmic CFT (light on subtleties)

## Plan

1. The Abelian sandpile model (following Dhar) definition of $2+1$ - invariant measure - Abelian property - recurrent configurations - spanning trees $-c=-2$ - boundary conditions
2. Logarithmic CFT non-diagonalizable $L_{0}$ - Jordan blocks - typical example of $c=-2$
3. Lattice observables in $\mathrm{ASM} \leftrightarrow$ LCFT dissipation - change of boundary conditions - height variables
4. Conclusions

## - Part I The Abelian sandpile model

Take a grid $\Lambda$ with $N$ sites
Attach a random variable $h_{i}=1,2,3,4$ to every site ( $h_{i}$ is \# grains)

| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | 1 | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | 2 | 4 | 3 | 2 | 1 | 2 | 3 |
| 2 | 3 | 3 | 4 | 4 | 3 | 1 | 1 | 2 | 3 |
| 2 | 3 | 2 | 4 | 3 | 3 | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | 2 | 4 | 2 | 1 | 4 | 4 | 3 |
| 4 | 3 | 2 | 4 | 3 | 1 | 2 | 3 | 4 | 1 |

## Dynamics

The sandpile model is a stochastic dynamical system in discrete $2+1$.
Dynamics takes $\mathcal{C}_{t}$ into $\mathcal{C}_{t+1}$ in two steps:

1. on random site $i$, drop one grain: $h_{i} \rightarrow h_{i}+1$
2. relaxation: all unstable sites topple (avalanche)

If $h_{i} \geq 5$, then $\left\{\begin{array}{l}h_{i} \rightarrow h_{i}-4 \\ h_{j} \rightarrow h_{j}+1, \quad j=\text { nearest neighbour of } i\end{array}\right.$
Until all sites are stable again $\longleftarrow$ OK BECAUSE DISSIPATION !! Resulting configuration is $\mathcal{C}_{t+1}$.

Potential chain reaction: one grain dropped can trigger a large avalanche. System spanning avalanches will happen, and induce correlations of heights over long distances $\longrightarrow$ critical state

## Typical avalanche

| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | 1 | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | 2 | 4 | 3 | 2 | 1 | 2 | 3 |
| 2 | 3 | 3 | 4 | 4 | 3 | 1 | 1 | 2 | 3 |
| 2 | 3 | 2 | 4 | 3 | 3 | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | 2 | 4 | 2 | 1 | 4 | 4 | 3 |
| 4 | 3 | 4 | 4 | 4 | 1 | 2 | 3 | 4 | 1 |

## Typical avalanche

$\left.\begin{array}{|llllllllll}\hline 2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\ 2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\ 2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & 1 & 1 & 3 & 4 & 3 & 4 \\ 4 & 4 & 3 & 2 & 5 & 3 & 2 & 1 & 2 & 3 \\ 2 & 3 & 3 & 4 & 4 & 3 & 1 & 1 & 2 & 3 \\ 2 & 3 & 2 & 4 & 3 & 3 & 4 & 2 & 4 & 3 \\ 3 & 1 & 3 & 2 & 4 & 2 & 1 & 4 & 4 & 3 \\ 4 & 3 & 4 & 4 & 4 & 1 & 2 & 3 & 4 & 1\end{array}\right]=\left[\begin{array}{llllllllll|}2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\ 2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\ 2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & \mathbf{2} & 1 & 3 & 4 & 3 & 4 \\ 4 & 4 & 3 & 3 & 1 & 4 & 2 & 1 & 2 & 3 \\ 2 & 3 & 3 & 4 & 5 & 3 & 1 & 1 & 2 & 3 \\ 2 & 3 & 2 & 4 & 3 & 3 & 4 & 2 & 4 & 3 \\ 3 & 1 & 3 & 2 & 4 & 2 & 1 & 4 & 4 & 3 \\ 4 & 3 & 4 & 4 & 4 & 1 & 2 & 3 & 4 & 1\end{array}\right]$

## Typical avalanche

$\left.$| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | 2 | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | 3 | 2 | 4 | 2 | 1 | 2 | 3 |
| 2 | 3 | 3 | 5 | 1 | 4 | 1 | 1 | 2 | 3 |
| 2 | 3 | 2 | 4 | 4 | 3 | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | 2 | 4 | 2 | 1 | 4 | 4 | 3 |
| 4 | 3 | 4 | 4 | 4 | 1 | 2 | 3 | 4 | 1 |$\square=$| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | 2 | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | 3 | 1 | 4 | 2 | 1 | 2 | 3 |
| 2 | 3 | 3 | 4 | 4 | 3 | 1 | 1 | 2 | 3 |
| 2 | 3 | 2 | 4 | 3 | 3 | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | 2 | 4 | 2 | 1 | 4 | 4 | 3 |
| 4 | 3 | 4 | 4 | 4 | 1 | 2 | 3 | 4 | 1 | \right\rvert\,

## Typical avalanche

$\left.\begin{array}{llllllllll}2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\ 2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\ 2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & \mathbf{2} & 1 & 3 & 4 & 3 & 4 \\ 4 & 4 & 3 & \mathbf{3} & \mathbf{2} & \mathbf{4} & 2 & 1 & 2 & 3 \\ 2 & 3 & 3 & 5 & \mathbf{1} & \mathbf{4} & 1 & 1 & 2 & 3 \\ 2 & 3 & 2 & 4 & 4 & 3 & 4 & 2 & 4 & 3 \\ 3 & 1 & 3 & 2 & 4 & 2 & 1 & 4 & 4 & 3 \\ 4 & 3 & 4 & 4 & 4 & 1 & 2 & 3 & 4 & 1\end{array}\right\}=\left[\begin{array}{llllllllll|}2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\ 2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\ 2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & \mathbf{2} & 1 & 3 & 4 & 3 & 4 \\ 4 & 4 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{4} & 2 & 1 & 2 & 3 \\ 2 & 3 & \mathbf{4} & \mathbf{1} & \mathbf{2} & \mathbf{4} & 1 & 1 & 2 & 3 \\ 2 & 3 & 2 & \mathbf{5} & 4 & 3 & 4 & 2 & 4 & 3 \\ 3 & 1 & 3 & 2 & 4 & 2 & 1 & 4 & 4 & 3 \\ 4 & 3 & 4 & 4 & 4 & 1 & 2 & 3 & 4 & 1\end{array}\right]$

## Typical avalanche



## Typical avalanche

\(\left.\begin{array}{llllllllll}2 \& 3 \& 1 \& 3 \& 4 \& 2 \& 1 \& 4 \& 2 \& 3 <br>
4 \& 2 \& 3 \& 1 \& 3 \& 2 \& 4 \& 1 \& 2 \& 1 <br>
2 \& 2 \& 1 \& 1 \& 4 \& 3 \& 4 \& 2 \& 3 \& 2 <br>
2 \& 2 \& 1 \& 2 \& 4 \& 2 \& 1 \& 3 \& 2 \& 3 <br>
3 \& 4 \& 3 \& 2 \& \mathbf{2} \& 1 \& 3 \& 4 \& 3 \& 4 <br>
4 \& 4 \& 3 \& \mathbf{4} \& \mathbf{2} \& \mathbf{4} \& 2 \& 1 \& 2 \& 3 <br>
2 \& 3 \& \mathbf{4} \& \mathbf{2} \& \mathbf{2} \& \mathbf{4} \& 1 \& 1 \& 2 \& 3 <br>
2 \& 3 \& \mathbf{3} \& \mathbf{1} \& \mathbf{5} \& 3 \& 4 \& 2 \& 4 \& 3 <br>
3 \& 1 \& 3 \& \mathbf{3} \& 4 \& 2 \& 1 \& 4 \& 4 \& 3 <br>

4 \& 3 \& 4 \& 4 \& 4 \& 1 \& 2 \& 3 \& 4 \& 1\end{array}\right] \not\)\begin{tabular}{l}
1 <br>
4

$|$

2 \& 3 \& 1 \& 3 \& 4 \& 2 \& 1 \& 4 \& 2 \& 3 <br>
4 \& 2 \& 3 \& 1 \& 3 \& 2 \& 4 \& 1 \& 2 \& 1 <br>
2 \& 2 \& 1 \& 1 \& 4 \& 3 \& 4 \& 2 \& 3 \& 2 <br>
2 \& 2 \& 1 \& 2 \& 4 \& 2 \& 1 \& 3 \& 2 \& 3 <br>
3 \& 4 \& 3 \& 2 \& $\mathbf{2}$ \& 1 \& 3 \& 4 \& 3 \& 4 <br>
4 \& 4 \& 3 \& $\mathbf{4}$ \& $\mathbf{2}$ \& $\mathbf{4}$ \& 2 \& 1 \& 2 \& 3 <br>
2 \& 3 \& $\mathbf{4}$ \& $\mathbf{2}$ \& $\mathbf{3}$ \& $\mathbf{4}$ \& 1 \& 1 \& 2 \& 3 <br>
2 \& 3 \& $\mathbf{3}$ \& $\mathbf{2}$ \& $\mathbf{1}$ \& $\mathbf{4}$ \& 4 \& 2 \& 4 \& 3 <br>
3 \& 1 \& 3 \& $\mathbf{3}$ \& $\mathbf{5}$ \& 2 \& 1 \& 4 \& 4 \& 3 <br>
4 \& 3 \& 4 \& 4 \& 4 \& 1 \& 2 \& 3 \& 4 \& 1
\end{tabular}

## Typical avalanche

\(\left.\left.$$
\begin{array}{llllllllll}2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\
4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\
2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\
2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\
3 & 4 & 3 & 2 & \mathbf{2} & \mathbf{1} & 3 & 4 & 3 & 4 \\
4 & 4 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{4} & 2 & 1 & 2 & 3 \\
2 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{4} & 1 & 1 & 2 & 3 \\
2 & 3 & \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{4} & 4 & 2 & 4 & 3 \\
3 & 1 & 3 & \mathbf{4} & \mathbf{1} & \mathbf{3} & \mathbf{1} & 4 & 4 & 3 \\
4 & 3 & 4 & 4 & \mathbf{5} & \mathbf{1} & 2 & 3 & 4 & 1\end{array}
$$\right] \not \begin{array}{l}2 <br>

4\end{array}\right]\)| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | $\mathbf{2}$ | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{4}$ | 2 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 1 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{4}$ | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | $\mathbf{3}$ | $\mathbf{5}$ | 2 | 1 | 4 | 4 | 3 |
| 4 | 3 | 4 | 4 | 4 | 1 | 2 | 3 | 4 | 1 |

## Typical avalanche



## Typical avalanche

| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | $\mathbf{2}$ | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{4}$ | 2 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 1 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | $\mathbf{5}$ | $\mathbf{2}$ | $\mathbf{3}$ | 1 | 4 | 4 | 3 |
| 4 | 3 | $\mathbf{5}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | 2 | 3 | 4 | 1 |


| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | $\mathbf{2}$ | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{4}$ | 2 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 1 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ | 4 | 2 | 4 | 3 |
| 3 | 1 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{3}$ | 1 | 4 | 4 | 3 |
| 4 | 3 | 4 | $\mathbf{5}$ | $\mathbf{1}$ | $\mathbf{2}$ | 2 | 3 | 4 | 1 |

## Typical avalanche

$\left.\begin{array}{lccccccccc}2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\ 2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\ 2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & \mathbf{2} & 1 & 3 & 4 & 3 & 4 \\ 4 & 4 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{4} & 2 & 1 & 2 & 3 \\ 2 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{4} & 1 & 1 & 2 & 3 \\ 2 & 3 & \mathbf{3} & \mathbf{2} & \mathbf{2} & \mathbf{4} & 4 & 2 & 4 & 3 \\ 3 & 1 & 3 & \mathbf{5} & \mathbf{2} & \mathbf{3} & \mathbf{1} & 4 & 4 & 3 \\ 4 & 3 & \mathbf{5} & \mathbf{1} & \mathbf{2} & \mathbf{2} & 2 & 3 & 4 & 1\end{array}\right]\left[\begin{array}{llllllllll}2 & 3 & 1 & 3 & 4 & 2 & 1 & 4 & 2 & 3 \\ 4 & 2 & 3 & 1 & 3 & 2 & 4 & 1 & 2 & 1 \\ 2 & 2 & 1 & 1 & 4 & 3 & 4 & 2 & 3 & 2 \\ 2 & 2 & 1 & 2 & 4 & 2 & 1 & 3 & 2 & 3 \\ 3 & 4 & 3 & 2 & \mathbf{2} & 1 & 3 & 4 & 3 & 4 \\ 4 & 4 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{4} & 2 & 1 & 2 & 3 \\ 2 & 3 & \mathbf{4} & \mathbf{2} & \mathbf{3} & \mathbf{4} & 1 & 1 & 2 & 3 \\ 2 & 3 & \mathbf{3} & \mathbf{3} & \mathbf{2} & \mathbf{4} & 4 & 2 & 4 & 3 \\ 3 & 1 & \mathbf{5} & \mathbf{1} & \mathbf{3} & \mathbf{3} & 1 & 4 & 4 & 3 \\ 4 & \mathbf{4} & \mathbf{1} & \mathbf{3} & \mathbf{2} & \mathbf{2} & 2 & 3 & 4 & 1 \\ \hline\end{array}\right.$

## Typical avalanche



## Typical avalanche

\(\left.\begin{array}{|llllllllll}2 \& 3 \& 1 \& 3 \& 4 \& 2 \& 1 \& 4 \& 2 \& 3 <br>
4 \& 2 \& 3 \& 1 \& 3 \& 2 \& 4 \& 1 \& 2 \& 1 <br>
2 \& 2 \& 1 \& 1 \& 4 \& 3 \& 4 \& 2 \& 3 \& 2 <br>
2 \& 2 \& 1 \& 2 \& 4 \& 2 \& 1 \& 3 \& 2 \& 3 <br>
3 \& 4 \& 3 \& 2 \& 1 \& 1 \& 3 \& 4 \& 3 \& 4 <br>
4 \& 4 \& 3 \& 2 \& 4 \& 3 \& 2 \& 1 \& 2 \& 3 <br>
2 \& 3 \& 3 \& 4 \& 4 \& 3 \& 1 \& 1 \& 2 \& 3 <br>
2 \& 3 \& 2 \& 4 \& 3 \& 3 \& 4 \& 2 \& 4 \& 3 <br>
3 \& 1 \& 3 \& 2 \& 4 \& 2 \& 1 \& 4 \& 4 \& 3 <br>

4 \& 3 \& 4 \& 4 \& 4 \& 1 \& 2 \& 3 \& 4 \& 1\end{array}\right]=\)| 2 | 3 | 1 | 3 | 4 | 2 | 1 | 4 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 3 | 1 | 3 | 2 | 4 | 1 | 2 | 1 |
| 2 | 2 | 1 | 1 | 4 | 3 | 4 | 2 | 3 | 2 |
| 2 | 2 | 1 | 2 | 4 | 2 | 1 | 3 | 2 | 3 |
| 3 | 4 | 3 | 2 | $\mathbf{2}$ | 1 | 3 | 4 | 3 | 4 |
| 4 | 4 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{4}$ | 2 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | 1 | 1 | 2 | 3 |
| 2 | 3 | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{4}$ | 4 | 2 | 4 | 3 |
| 3 | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{3}$ | 1 | 4 | 4 | 3 |
| 4 | $\mathbf{4}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{2}$ | 2 | 3 | 4 | 1 |

11 topplings, 22 sites affected, 3 grains fell off, into the sink.
The order of topplings does not matter.

## Seeding operators

Seeding operators $a_{i}$ : act on stable configurations by dropping one grain on site $i$ and by letting the configuration relax.

Sandpile dynamics $=$ each unit of time, $a_{i}$ is applied with (uniform) probability $p_{i}=\frac{1}{N}$.

Because order of topplings does not matter, one can show

$$
\left[a_{i}, a_{j}\right]=0 \quad \forall i, j
$$

(Essentially, because toppling condition is ultra-local.)
They form an Abelian algebra, soon to be promoted to an Abelian group.

## Laplacian

Redistribution of sand to neighbour sites:


If $h_{i} \geq 5$, then $\left\{\begin{array}{l}h_{i} \rightarrow h_{i}-4 \\ h_{\text {n.n. }} \rightarrow h_{\text {n.n. }}+1\end{array} \Longleftrightarrow h_{j} \rightarrow h_{j}-\Delta_{i j}\right.$
Toppling matrix $\Delta$ is simply the Laplacian with open (Dirichlet) boundary conditions,

$$
\Delta_{i j}= \begin{cases}4 & \text { for } i=j \\ -1 & \text { for }\langle i, j\rangle\end{cases}
$$

Bulk sites are conservative, open boundary sites are dissipative: when $i$ topples, $\sum_{j} \Delta_{i j}$ grains leave the system, or "transferred to the sink".

## Master equation

Dynamics is stochastic because seeding of sand is random.
If $P_{t}(\mathcal{C})$ is probability distribution at time $t$, then (Markov chain)

$$
P_{t+1}(\mathcal{C})=\sum_{i \in \Lambda} p_{i} \sum_{\mathcal{C}^{\prime}} \delta\left(\mathcal{C}-a_{i} \mathcal{C}^{\prime}\right) P_{t}\left(\mathcal{C}^{\prime}\right)
$$

The $a_{i}$ are not invertible on the stable configurations: $\mathcal{C}_{\text {min }}=\left\{h_{i}=1\right\}_{i}$ is not in the image of the seeding operators $\Longrightarrow P_{t}\left(\mathcal{C}_{\text {min }}\right)=0$.

This is general. Configurations are either

- transient: they are not in the repeated image of the dynamics, and occur only a finite number of times $\Rightarrow P_{t}(\mathcal{C})=0$ for large enough $t$
- recurrent: they are in the repeated image of the dynamics and asymptotically occur with non-zero probability; $\exists m_{i}: a_{i}^{m_{i}} \mathcal{C}=\mathcal{C}$.


## Invariant measure

$\rightarrow$ time evolution flow towards recurrent configurations
$\rightarrow$ set $\mathcal{R}$ of recurrent configurations is closed under the dynamics
$\rightarrow$ seeding operators $a_{i}$ are invertible on $\mathcal{R} \rightarrow$ generate Abelian group
Behaviour of sandpile controlled by invariant measure(s) $\lim _{t \rightarrow \infty} P_{t}$.
We have the first important result:
The invariant measure $P_{\Lambda}^{*}$ is unique and is uniform on the recurrent set $\mathcal{R}$

$$
P_{\Lambda}^{*}(\mathcal{C})= \begin{cases}\frac{1}{|\mathcal{R}|} & \text { if } \mathcal{C} \text { is recurrent } \\ 0 & \text { if } \mathcal{C} \text { is transient }\end{cases}
$$

$P_{\Lambda}^{*}$ depends on type of lattice, size of lattice, boundary conditions, number of dissipative sites, dissipation rates, ...

## Recurrent set

Number of recurrent configurations?
The group $G$ generated by the $a_{i}$ 's acts irreducibly on $\mathcal{R}$ : any $\mathcal{C}$ is obtained from any $\mathcal{C}^{\prime}$ by a $g$, equivalently $\mathcal{R}=G \mathcal{C}^{*}$, for a fixed $\mathcal{C}^{*}$. Therefore $|\mathcal{R}|$ is the order of $G$.
$G$ is not freely generated by the $a_{i}^{\prime} s$, because $\prod_{j} a_{j}^{\Delta_{i j}}=1, \forall i$.
Since $G$ is finite Abelian, we can represent $a_{j}=\mathrm{e}^{2 i \pi \phi_{j}}$, such that $\sum_{j} \Delta_{i j} \phi_{j}=m_{i}$ are integers $\Longrightarrow \phi_{j}=\sum_{i} \Delta_{j k}^{-1} m_{k}$.
However $\left\{m_{k}\right\}$ and $\left\{m_{k}+\sum_{l} \Delta_{k l} n_{l}\right\}$ yield identical phases.
Thus distinct representations of $G$ are labelled by integer vectors $\left\{m_{k}\right\}$ modulo the lattice generated by the columns $\left\{\Delta_{k l}\right\}_{l}$ :

$$
|\mathcal{R}|=|G|=\operatorname{det} \Delta \quad\left(\sim 3.21^{N} \ll 4^{N}\right)
$$

## Characterization

The minimal configuration $\mathcal{C}_{\text {min }}=\left\{h_{i}=1\right\}$ is clearly not recurrent. Likewise, configurations containing the following clusters cannot be recurrent:



Forbidden Sub-Configuration: cluster $F$ of sites s.t. every $i$ in $F$ has height $h_{i} \leq$ number of nearest neighbours in $F$.

A configuration is recurrent iff it has no FSCs

- Non-local characterization: requires to scan the whole configuration, and induces long range correlations of the height variables
- Makes the sandpile model a complex system: difficult to separate different length scales.


## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

|  | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 2 | 3 |
| 1 | 3 | 2 |  |
| 2 | 3 |  | 2 |

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

|  | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 2 | 3 |
| 1 | 3 | 2 |  |
| 2 | 3 |  | 2 |

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

|  |  | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 2 |  |
| 1 | 3 | 2 |  |
| 2 |  |  |  |

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

|  |  | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 2 |  |
| 1 | 3 | 2 |  |
| 2 |  |  |  |

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

|  |  | 1 |
| :--- | :--- | :--- |
| 2 | 3 | 2 |
| 1 | 3 | 2 |
|  |  |  |

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.

$$
\text { the configuration } \left.\left\lvert\, \begin{array}{llll}
4 & 3 & 1 & 2 \\
2 & 3 & 2 & 3 \\
1 & 3 & 2 & 4 \\
2 & 3 & 4 & 2
\end{array}\right.\right] \text { is not recurrent! }
$$

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.
the configuration $\left[\left.\begin{array}{llll}4 & 3 & 1 & 2 \\ 2 & 3 & 2 & 3 \\ 1 & 3 & 2 & 4 \\ 2 & 3 & 4 & 2\end{array} \right\rvert\,\right.$ is not recurrent !
but the configuration $\left[\left.\begin{array}{llll}4 & 3 & 1 & 2 \\ 3 & 3 & 2 & 3 \\ 1 & 3 & 2 & 4 \\ 2 & 3 & 4 & 2\end{array} \right\rvert\,\right.$ is recurrent !

## Burning algorithm

To make sure a configuration contains no FSC, we apply the burning algorithm: we successively burn all sites with heights strictly larger than the number of unburnt neighbours; the sites which cannot be burnt form an FSC.


The burning algorithm does more: keeping track of the way fire spreads in the lattice leads to spanning trees ...

## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.

This fire line defines a spanning tree.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |

## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |



## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |



## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |



## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.


Use a prescription to select a blue arrow:
2 (height) $-0(\#$ unburnt neigh. $)=2 \longrightarrow$ second in $\{N, E, S, W\}$

## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |



## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.

This fire line defines a spanning tree.


Use same prescription to select a blue arrow:
3 (height) -2 (\# unburnt neigh.) $=1 \longrightarrow$ first in $\{N, E, S, W\}$

## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.

|  | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 |  |
| 2 | 3 |  | 2 |



## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.


## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.


## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.

|  | 1 |
| :--- | :--- |
|  | 2 |
| 1 | 2 |



## Spanning trees

That a site is burnable at a certain instant implies that at least one of its neighbours was burnt the instant before: at initial time, fire is located in the sink and ignites boundary sites $\longrightarrow$ the fire propagates from neighbours to neighbours.
This fire line defines a spanning tree.


## Spanning trees

This fire line defines a (disconnected) spanning tree.

| 4 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 3 | 3 | 2 | 3 |
| 1 | 3 | 2 | 4 |
| 2 | 3 | 4 | 2 |



Spanning tree grows from roots (red dots), which are always dissipative sites (connected to the sink).

With the prescription used, we have

$$
\text { recurrent configurations } \stackrel{1: 1}{\longleftrightarrow} \text { spanning trees }
$$

(Kirchhoff's theorem)

## ASM: so far

1. defined on a finite grid $\Lambda$, with heights $h_{i}=1,2,3,4$
2. necessity of dissipation (sites connected to sink)
3. configurations are either recurrent or transient
4. recurrent are in 1-to-1 correspondence with spanning trees growing from dissipative sites
5. dynamics has a unique invariant measure $P_{\Lambda}^{*}$, uniform on recurrent configurations or on spanning trees
6. non-local:
heights are local microscopic variables but globally constrained

spanning trees are unconstrained but global variables

## Boundary conditions

- open boundary site (dissipative)

Under toppling, loses 4, gives 1 to three neighbours

$$
\Delta_{i i}=4, \quad \Delta_{\langle i j\rangle}=-1, \quad \sum_{j \in \Lambda} \Delta_{i j}>0
$$

Height variable $1 \leq h_{\text {open }} \leq 4$.

- closed boundary site (conservative)

Under toppling, loses 3, gives 1 to three neighbours

$$
\Delta_{i i}=3, \quad \Delta_{\langle i j\rangle}=-1, \quad \sum_{j \in \Lambda} \Delta_{i j}=0
$$

Height variable $1 \leq h_{\text {closed }} \leq 3$.
Note: all sites closed implies $\sum_{j} \Delta_{i j}=0 \forall i \Rightarrow \operatorname{det} \Delta=|\mathcal{R}|=0$.

## B.c. (cont'd)

- boundary arrows (in spanning tree variables)

Trees are constrained to contain certain boundary bonds, with an arrow indicating the direction to the root


- periodic boundary condition

Cylindrical geometry can be imposed provided there remain dissipation on the boundaries (torus not allowed)

- others ???


## ASM: summary

1. defined on a finite grid $\Lambda$, with heights $h_{i}=1,2,3,4$ with prescribed boundary conditions (open, closed, arrows, $\ldots$ ) $\longrightarrow$ specific $\Delta$
2. necessity of dissipation (sites connected to sink)
3. configurations are either recurrent or transient
4. recurrent are in 1-to-1 correspondence with spanning trees growing from dissipative sites
5. dynamics has a unique invariant measure $P_{\Lambda}^{*}$, uniform on recurrent configurations or on spanning trees
6. non-local:
heights are local microscopic variables but globally constrained

spanning trees are unconstrained but global variables

## Want to show

> | The thermodynamic limit |
| :---: |
| $\lim _{\|\Lambda\| \rightarrow \infty} P_{\Lambda}^{*}$ of the invariant |
| measure is a quantum field theoretic |
| measure of a (logarithmic) |
| conformal field theory |

## First hint at $c=-2$

Partition function measures the effective degrees of freedom

$$
Z_{\Lambda}=|\mathcal{R}|=\operatorname{det} \Delta
$$

Finite-size correction: rectangle $L \times M$ with open b.c.

$$
\lim _{M \rightarrow \infty} \frac{1}{M} \log Z_{\Lambda}=\frac{4 G}{\pi} L+\left(\frac{4 G}{\pi}-\log (1+\sqrt{2})\right)-\frac{\pi}{12 L}+\cdots
$$

First term is bulk entropy per site: $f_{\text {bulk }}=\exp \frac{4 G}{\pi} \simeq 3.21$
Second term: $f_{\text {open }}=\exp \left[\frac{6 G}{\pi}-\frac{1}{2} \log (1+\sqrt{2})\right] \simeq 3.70$
Blue term identified with $\frac{\pi c}{24 L} \Longrightarrow c=-2$

## Questions

To confirm the relevance of conformal description, ask questions that have an answer in CFT:

1. Correlations of height variables
2. Effect of changing the boundary conditions
3. Effect of introducing additional dissipation

Part I-
The Abelian sandpile model

- Part II

Logarithmic
conformal field theory
(at $c=-2$ )

- Part III LogCFT at work the ASM on the lattice

Conclusions

## - Part II -

## Logarithmic conformal field theory

 (at $c=-2$ )
## Rational models

Usual features of rational models:

1. finite number of Virasoro representations
2. Vir representations are highest weight, completely reducible
3. Vir representations mainly identified by a conformal weight ( $L_{0}$ diagonalizable)
4. conformal weights are bounded below
5. full, non-chiral theory basically reduces to chiral parts
6. correlation functions only have algebraic singularities
7. finite fusion (or quasi-rational)
8. chiral characters transform linearly under modular group of torus

## Log CFTs

Typical features of logarithmic models:

1. finite number of Virasoro representations YES/NO
2. Vir representations are highest weight, completely reducible NO
3. Vir representations mainly identified by a conformal weight NO ( $L_{0}$ diagonalizable)
4. conformal weights are bounded below
5. full, non-chiral theory basically reduces to chiral parts NO
6. correlation functions only have algebraic singularities NO, Log ${ }^{k}$
7. finite fusion (or quasi-rational) YES
8. chiral characters transform linearly under modular group NO

## Minimal models

Minimal models are parametrized by $\left(p, p^{\prime}\right)$ :

$$
c=1-\frac{6\left(p-p^{\prime}\right)^{2}}{p p^{\prime}}
$$

Kac table of conformal weights

$$
h_{r, s}=\frac{\left(p^{\prime} r-p s\right)^{2}-\left(p-p^{\prime}\right)^{2}}{4 p p^{\prime}}, \quad \text { (usually truncated) }
$$

non-empty for $p, p^{\prime} \geq 2$.
However the value of the central charge relevant here is

$$
c=-2 \quad \longleftrightarrow \quad p=1, p^{\prime}=2
$$

## Full Kac table

We take KT as a guiding principle : $h_{1, s}=\frac{(s-2)^{2}-1}{8}, \quad s=1,2,3, \cdots$

| $\frac{15}{8}$ | $\frac{3}{8}$ | $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 3 | 6 | 10 |
| $\frac{3}{8}$ | $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ | $\frac{99}{8}$ |
| 0 | 0 | 1 | 3 | 6 | 10 | 15 |
| $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ | $\frac{99}{8}$ | $\frac{143}{8}$ |
| 0 | 1 | 3 | 6 | 10 | 15 | 21 |

We observe: $-\frac{1}{8}$ is smallest, the only negative
$\Delta h$ is an integer for many pairs. Required for LogCFT!

## Highest weight reps

Built on highest weight state $|h\rangle=\phi_{h}|0\rangle$ satisfying

$$
L_{0}|h\rangle=h|h\rangle, \quad L_{p}|h\rangle=0 \quad \forall p>0 .
$$

$L_{0}-h$


Verma module $\mathcal{M}_{h}$ is freely spanned by the action of the negative modes on $|h\rangle$
$L_{0}\left(L_{-p_{1}} \cdots|h\rangle\right)=\left(h+p_{1}+\cdots\right)\left(L_{-p_{1}} \cdots|h\rangle\right)$.
At finite level $N=L_{0}-h$, finite number $p(N)$ of states, some of them singular (h.w.), i.e. satisfying
$L_{0}|s\rangle=(h+N)|s\rangle, \quad L_{p}|s\rangle=0 \quad \forall p>0$.
Singular states generate submodules:
$\longrightarrow$ allows quotients: Vir representations $\sim \mathcal{M}_{h} / \bullet$

## Reducible vs irreducible

Precise nature of quotients can be tricky: need to know whether higher level singular states are descendants of lower level singular states ... Complete answer by Feigin \& Fuchs.

Situation simple for $c=-2$ : all singular states are descendants of the lowest one ; all modules $\mathcal{M}_{r, s}$ have one singular state at level $N=r s$; corresponding quotient $\mathcal{V}_{r, s}$ is irreducible for yellow cells only.

| $\frac{15}{8}$ | $\frac{3}{8}$ | $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 3 | 6 | 10 |
| $\frac{3}{8}$ | $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ | $\frac{99}{8}$ |
| 0 | 0 | 1 | 3 | 6 | 10 | 15 |
| $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ | $\frac{99}{8}$ | $\frac{143}{8}$ |
| 0 | 1 | 3 | 6 | 10 | 15 | 21 |

## Reducible vs irreducible

Precise nature of quotients can be tricky: need to know whether higher level singular states are descendants of lower level singular states ... Complete answer by Feigin \& Fuchs.

Situation simple for $c=-2$ : all singular states are descendants of the lowest one ; all modules $\mathcal{M}_{r, s}$ have one singular state at level $N=r s$; corresponding quotient $\mathcal{V}_{r, s}$ is irreducible for yellow cells only.

| $\frac{15}{8}$ | $\frac{3}{8}$ | $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 3 | 6 | 10 |
| $\frac{3}{8}$ | $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ | $\frac{99}{8}$ |
| 0 | 0 | 1 | 3 | 6 | 10 | 15 |
| $-\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{15}{8}$ | $\frac{35}{8}$ | $\frac{63}{8}$ | $\frac{99}{8}$ | $\frac{143}{8}$ |
| 0 | 1 | 3 | 6 | 10 | 15 | 21 |

## Examples

Verma module $\mathcal{M}_{0}$ for weight 0

$h_{1,1}=0$
Irreducible quotient $\mathcal{V}_{1,1}=\mathcal{M}_{0} / L_{-1}|h\rangle$ by first singular state.
Corresponding primary field satisfies $L_{-1} \phi_{0}(z)=\partial_{z} \phi_{0}(z)=0$
$\longrightarrow \quad \phi_{0}$ is the identity field $\mathbb{I}$.
$h_{1,3}=0$
Reducible quotient $\mathcal{V}_{1,3}=\mathcal{M}_{0} /\left(L_{-1}^{2}-L_{-2}\right) L_{-1}|h\rangle$ by second singular state.

Corresponding primary field has zero weight, and is non-trivial (see later).

## Fusion/OPE

Unlike in rational minimal models, h.w. $\mathcal{V}_{r, s}$ do not close under fusion!

Call $\mu$ the irreducible primary field of weight $h_{1,2}=-\frac{1}{8}$.
The singular field $\left[2 L_{-1}^{2}-L_{-2}\right] \mu=0$ is null in quotient $\mathcal{V}_{1,2}$ and implies

$$
\langle\mu(1) \mu(2) \mu(3) \mu(4)\rangle=\left(z_{12} z_{34}\right)^{1 / 4}(1-x)^{1 / 4}[\alpha K(x)+\beta K(1-x)]
$$

where $K(x)=\int_{0}^{\pi / 2} \frac{d t}{\sqrt{1-x \sin ^{2} t}}$ has a log singularity at $x=1 \ldots$
The $\log$ is unavoidable, either at $x=0\left(z_{12}=0\right)$ or at $x=1\left(z_{23}=1\right)$.
OPE reads

$$
\mu(z) \mu(0)=\alpha z^{1 / 4}[\mathbb{I}+\cdots]+\beta z^{1 / 4}[\omega(0)+\mathbb{I} \log z+\cdots]
$$

## Jordan block

Second channel contains 2 fields, of weight 0

$$
\mu(z) \mu(0)=z^{1 / 4}[\omega(0)+\mathbb{I} \log z+\cdots]
$$

Peculiar under dilations $z \rightarrow w=\lambda z$,

$$
\mu(w) \mu(0)=w^{1 / 4}[\omega(0)-\mathbb{I} \log \lambda+\mathbb{I} \log z+\cdots],
$$

the field $\omega$ picks inhomogeneous piece proportional to II!
Particular case of general transformation of $\omega$

$$
\omega(w)=\omega(z)-\mathbb{I} \log \left(\frac{\mathrm{d} w}{\mathrm{~d} z}\right)
$$

Implies

$$
L_{0} \mathbb{I}=0, \quad L_{0} \omega=\mathbb{I} \quad \longleftrightarrow \quad L_{0}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

## Indecomposable representation



Defining relations of $\mathcal{R}_{1,1}$ are:

$$
\begin{aligned}
& L_{0} \omega=\mathbb{I}, \quad L_{0} \mathbb{I}=0, \\
& L_{p} \mathbb{I}=L_{p} \omega=0, \quad \forall p>0 \\
& \phi^{\prime}=L_{-1} \mathbb{I} \equiv 0, \\
& \rho^{\prime}=\left[L_{-1}^{2}-L_{-2}\right] L_{-1} \omega \equiv 0 .
\end{aligned}
$$

Left $\mathcal{V}_{1,1}$ is a h.w. subrepres. of $\mathcal{R}_{1,1}$.

Consequences on correlators:

$$
\langle\mathbb{I}\rangle=0, \quad\langle\omega(z)\rangle=a, \quad\langle\omega(z) \omega(w)\rangle=-2 a \log (z-w)+b .
$$

## More indecomposable reps

Other indecomposable representations $\mathcal{R}_{r, 1}$, for $r=2,3,4, \ldots$

$$
\begin{array}{ll}
L_{0} \psi=h_{r, 1} \psi+\phi, & L_{0}-h_{r, 1} \\
L_{p} \psi=0, & \forall p>1 \\
L_{1}^{r-1} \psi=\beta \xi, & \mathcal{V}_{1,2 r-1} \\
\phi^{\prime}=\left[L_{-1}^{2 r-1}+\ldots\right] \xi \equiv 0, & 2 r-1 \\
\rho^{\prime}=\left[L_{-1}^{2 r+1}+\ldots\right] \psi \equiv 0 . & \mathcal{V}_{r, 1} \\
\text { V } 1,2 r-1 \\
\text { and } \mathcal{V}_{r, 1} \text { are h.w. } \\
\text { subrepresentations of } \mathcal{R}_{r, 1} & 0
\end{array}
$$

## Fusion closure

The set of irreducible h.w. $\mathcal{V}_{r, s}(s=1,2)$ and $\mathcal{R}_{r, 1}(r=1,2, \ldots)$ is closed under fusion :

$$
\begin{array}{cl}
\mathcal{V}_{r_{1}, 1} \star \mathcal{V}_{r_{2}, 1}=\oplus \mathcal{V}_{r, 1}, \quad \mathcal{V}_{r_{1}, 1} \star \mathcal{V}_{r_{2}, 2}=\oplus \mathcal{V}_{r, 2}, \quad \mathcal{V}_{r_{1}, 2} \star \mathcal{V}_{r_{2}, 2}=\oplus \mathcal{R}_{r, 1} \\
\mathcal{V}_{r_{1}, 1} \star \mathcal{R}_{r_{2,1}}=\oplus \mathcal{R}_{r, 1}, \quad \mathcal{V}_{r_{1}, 2} \star \mathcal{R}_{r_{2}, 1}=\oplus \mathcal{V}_{r, 2}, \quad \mathcal{R}_{r_{1}, 1} \star \mathcal{R}_{r_{2}, 1}=\oplus \mathcal{R}_{r, 1}
\end{array}
$$

Remains closed if one adds all reducible $\mathcal{V}_{r, s}$ for all $r, s=1,2, \ldots$
For instance

$$
\begin{gathered}
\mu \star \mu=\mathcal{V}_{1,2} \star \mathcal{V}_{1,2}=[-1 / 8] \star[-1 / 8]=\mathcal{R}_{1,1} \\
\mu \star \nu=\mathcal{V}_{1,2} \star \mathcal{V}_{2,2}=[-1 / 8] \star[3 / 8]=\mathcal{R}_{2,1} \\
\mu \star \mathcal{R}_{2,1}=\mathcal{V}_{1,2}+2 \mathcal{V}_{2,2}+\mathcal{V}_{3,2}
\end{gathered}
$$

## Warning ...

The set of representations $\mathcal{V}_{r, s}$ and $\mathcal{R}_{r, 1}$ is not the complete set of $V_{i r}$ representations for $c=-2$ !

Note in particular : fractional weight states remain in irreducible representations, only integral weight states may belong to indecomposables.

However closed under fusion and forms a first natural supply of representations to consider.

For ASM applications, so far, seems enough to account for all known features

## A lagrangian realization

Simplest and most studied LogCFT.
Precious guide but not realized in ASM

$$
S=\frac{1}{\pi} \int \partial \theta \bar{\partial} \tilde{\theta}
$$

(symplectic fermions)

- $\theta$ and $\tilde{\theta}$ are scalar, anticomm. fields, with canonical dimension 0 $\longrightarrow$ four fields $\mathbb{I}, \theta, \tilde{\theta}, \omega=: \tilde{\theta} \theta$ : of dimension 0 , two are bosonic
- Wick contraction $\theta(z, \bar{z}) \tilde{\theta}(w, \bar{w})=-\log |z-w|$
- stress-energy tensor $T(z)=-2: \partial \theta \partial \tilde{\theta}: \quad \longrightarrow \quad c=-2$
- identity $\mathbb{I}$ and $\omega=: \theta \tilde{\theta}$ : form a Jordan cell ( $\omega$ is $\log$ partner of $\mathbb{I}$ )

$$
T(z) \omega(w)=\frac{\mathbb{I}}{(z-w)^{2}}+\frac{\partial \omega}{z-w}+\ldots
$$

## Indecomposable $\mathcal{R}_{1,1}$

Because of zero modes of $\theta, \tilde{\theta}$ (remember $\left.\int \mathrm{d} \theta_{0}=0\right)$

$$
\langle\mathbb{I}\rangle=0 .
$$

However since $\int \mathrm{d} \theta_{0} \theta_{0}=1$, one has

$$
\langle\omega(z)\rangle=\langle\tilde{\theta} \theta\rangle=1, \quad\langle\omega(z) \omega(w)\rangle=-2 \log |z-w| .
$$

The fields $\omega=\tilde{\theta} \theta$ generates an indecomposable (non-chiral) representation $\mathcal{R}_{1,1}$


## Indecomposable $\mathcal{R}_{2.1}$

Likewise, the weight 1 field $\psi=\omega \partial \bar{\partial} \omega=\tilde{\theta} \theta \partial \bar{\partial}(\tilde{\theta} \theta)$ generates an indecomposable $\mathcal{R}_{2,1}$


Two-point functions read

$$
\begin{aligned}
\langle\phi(z) \phi(w)\rangle & =0, \quad\langle\phi(z) \psi(w)\rangle=\frac{a}{(z-w)^{2}} \\
\langle\psi(z) \psi(w)\rangle & =\frac{1}{(z-w)^{2}}[-2 a \log |z-w|+b]
\end{aligned}
$$

## Rational LogCFT

The symplectic fermion field theory has an extended symmetry, generated by three weight 3 conserved currents satisfying a $W$-algebra w.r.t. to which finite number of representations

$$
\text { boson: } \mathcal{V}_{-1 / 8}, \mathcal{R}_{0}, \quad \text { fermion: } \mathcal{V}_{3 / 8}, \mathcal{R}_{1}
$$

So is rational w.r.t. this extended symmetry.
This Lagrangian theory describes many aspects of ASM, but ... not all !!

Part I -
The Abelian sandpile model

- Part II Logarithmic conformal field theory (at $c=-2$ )


# - Part III - <br> LogCFT at work : the ASM on the lattice 

## Testable issues

Following questions involve local lattice observables and should be described by local fields in scaling limit:

1. Correlations of height variables ( ${ }^{* * *)}$
2. Effect of changing the boundary conditions (**)
3. Effect of introducing additional dissipation (*)

Need correlators in infinite volume.
Here : we take the infinite volume limit of finite volume formulae.
Alternative : first formulate ASM in infinite volume and study stationary measures.
[see review by Frank Redig, Les Houches lectures 05]

## Dissipation

So far, all sites away from boundaries are conservative. We decide to introduce dissipation at $z$, in the bulk of UHP:


So far: $\Delta_{i i}=4, \quad \Delta_{\langle i j\rangle}=-1$ (loses 4, gives 1 to n.n.)

## Dissipation

So far, all sites away from boundaries are conservative. We decide to introduce dissipation at $z$, in the bulk of UHP:


So far: $\Delta_{i i}=4, \quad \Delta_{\langle i j\rangle}=-1$ (loses 4, gives 1 to n.n.)
Minimal dissipation: $\Delta_{z z}^{\prime}=5, \quad \Delta_{\langle z j\rangle}^{\prime}=-1$ (loses 5, gives 1 to n.n.)
New toppling matrix: $\quad \Delta_{i j}^{\prime}=\Delta_{i j}+B, \quad B=\delta_{i, z} \delta_{j, z}$.

The effect of introducing dissipation can be measured by the fraction by which the number of recurrent configurations increases:

$$
\frac{\operatorname{det} \Delta^{\prime}}{\operatorname{det} \Delta}=\frac{\# \text { recurrent configs in new model }}{\# \text { recurrent configs in original model }}
$$

As $B=\Delta^{\prime}-\Delta$ is a rank 1 perturbation,

$$
\begin{aligned}
\frac{\operatorname{det} \Delta^{\prime}}{\operatorname{det} \Delta} & =\frac{\operatorname{det} \Delta+B}{\operatorname{det} \Delta}=\operatorname{det}\left[(\Delta+B) \Delta^{-1}\right]=\operatorname{det}\left[\mathbb{I}+B \Delta^{-1}\right] \\
& =1+G_{z, z}^{\mathrm{uhp}}=1+G_{z, z}^{\text {plane }}-G_{z, \bar{z}}^{\text {plane }} \\
& =\frac{1}{2 \pi} \log |z-\bar{z}|-\gamma_{0}+\ldots=\langle\omega(z, \bar{z})\rangle_{\text {uhp }} \quad \text { where lattice meets CFT }
\end{aligned}
$$

with $\omega(z, \bar{z})$ implementing the insertion of dissipation at $z$, in SL.

## Remember :



Defining relations of $\mathcal{R}_{1,1}$ are:

$$
\begin{aligned}
& L_{0} \omega=\mathbb{I}, \quad L_{0} \mathbb{I}=0, \\
& L_{p} \mathbb{I}=L_{p} \omega=0, \quad \forall p>0 \\
& \phi^{\prime}=L_{-1} \mathbb{I} \equiv 0, \\
& \rho^{\prime}=\left[L_{-1}^{2}-L_{-2}\right] L_{-1} \omega \equiv 0 .
\end{aligned}
$$

Left $\mathcal{V}_{1,1}$ is a h.w. subrepres. of $\mathcal{R}_{1,1}$.

Consequences on correlators:

$$
\langle\mathbb{I}\rangle=0, \quad\langle\omega(z)\rangle=a, \quad\langle\omega(z) \omega(w)\rangle=-2 a \log (z-w)+b .
$$

Since

$$
\langle\omega(z, \bar{z})\rangle_{\mathrm{uhp}}=\langle\omega(z) \omega(\bar{z})\rangle, \quad \text { (Cardy) }
$$

the following identification makes sense :

$$
\text { insertion of isolated dissipation } \longleftrightarrow \text { insertion of field } \omega(z, \bar{z}) \in \mathcal{R}_{1,1}
$$

Checked :
$\checkmark$ insertion of dissipation at different points
$\checkmark$ isolated dissipation on a closed boundary $\longrightarrow$ chiral field $\omega(x) \in \mathcal{R}_{1,1}$
$\checkmark$ dissipation at all sites : system no longer critical (expon. decays)
Pertubation of CFT by $m^{2} \int \omega(z, \bar{z}) \sim m^{2} \int \tilde{\theta} \theta$ (mass term)

## (Realized by fermions)

Turns out that the $\omega$ 's have a realization in terms of symplectic fermions.
All calculations are exactly compatible with following identifications

$$
\begin{aligned}
& \omega_{\text {bulk }}(z, \bar{z}) \equiv(\text { insertion of dissipation at bulk } z)=\frac{1}{2 \pi} \theta \tilde{\theta}+\gamma_{0} \mathbb{I} \\
& \omega_{\mathrm{cl}}(x) \equiv(\text { insertion of dissipation at closed } x)=\frac{1}{2 \pi} \theta \tilde{\theta}+\left(2 \gamma_{0}-\frac{5}{4}\right) \mathbb{I}
\end{aligned}
$$

so that

$$
\frac{\operatorname{det}\left[\Delta+B_{1}+\cdots B_{n}\right]}{\operatorname{det} \Delta}=\langle\omega(1) \ldots \omega(n)\rangle
$$

computed from Wick contractions.
Note: on open boundary, already dissipative, dissipation is less relevant

$$
\begin{equation*}
\text { (insertion of dissipation at open } x)=\frac{2}{\pi} \partial \theta \partial \tilde{\theta} \tag{dim.2}
\end{equation*}
$$

## Dissipation: summary

The insertion of isolated dissipation at a conservative site (creation of a bond to sink/root)
corresponds, in the scaling limit, to the insertion of a field $\omega$ of weight 0 , the logarithmic partner of the identity.

The field $\omega$ and the identity are the lowest fields in an indecomposable representation $\mathcal{R}_{1,1}$.

## Boundary conditions

- open boundary site (dissipative)

$$
\Delta_{i i}=4, \quad \Delta_{\langle i j\rangle}=-1,
$$

- closed boundary site (conservative)

$$
\Delta_{i i}=3, \quad \Delta_{\langle i j\rangle}=-1,
$$

- left or right boundary arrows

Trees are constrained to contain certain boundary bonds


## B.c. changing fields

- set $\mathcal{B}=\{\alpha\}$ of conformally invariant b.c.'s
- $\mathcal{B}$ can be finite or infinite (our case)
- a change of boundary condition at a point $x$, from $\alpha$ to $\beta$ is realized by the insertion of a (chiral) boundary field $\phi^{\alpha, \beta}$


Also : b.c.c.f. $\phi^{\alpha, \beta}$ are primary fields satisfying a boundary fusion algebra (composition law) with identity $\phi^{\alpha, \alpha}=\mathbb{I}$ :

$$
\lim _{x \rightarrow y} \phi^{\alpha, \beta}(x) \star \phi^{\beta, \gamma}(y) \simeq \phi^{\alpha, \gamma}(y)
$$



Assumption : all $\phi^{\alpha, \beta}$ belong to h.w. $\mathcal{V}_{r, s}$ or indecomp. $\mathcal{R}_{r, 1}$

## Open $\Leftrightarrow$ closed

First, well-known case : change from open to closed


The change of boundary condition from open to closed, and vice-versa, is effected, in the scaling limit, by the insertion of a chiral, boundary primary field $\phi^{\mathrm{op}, \mathrm{cl}}=\phi^{\mathrm{cl}, \mathrm{op}} \equiv \mu$ with conformal dimension $-\frac{1}{8}$.
This primary field belongs to an irreducible representation $\mathcal{V}_{1,2}$.

## Fixed arrows

Spanning trees are constrained to contain certain boundary bonds, with the arrow indicating the direction to the root


Same idea as before: insert in an open or in a closed boundary, a string of $n$ consecutive arrows pointing to the left or to the right.

Measure the effect by the ratio:

$$
\frac{\#\{\text { spanning trees with } n \text { prescribed arrows }\}}{\#\{\text { spanning trees }\}}
$$

Note : left and right arrows are not identical $\rightarrow$ oriented b.c.'s !

## Imposing arrows

Open boundary site

$\Delta_{z, \cdot}^{\mathrm{op}}=(\ldots,-1,4,-1,-1,0, \ldots) \quad \Delta_{z, \cdot}^{\prime}=(\ldots,-1,3+\delta,-1,-\delta, 0, \ldots)$
In spanning tree, only one of the four arrows is used: the red arrows bring a weight 1 , the blue arrow brings a weight $\delta$ :

$$
\lim _{\delta \rightarrow \infty} \frac{1}{\delta} \operatorname{det} \Delta^{\prime}=\#\{\text { spanning trees with blue arrow }\}
$$

$\frac{\#\{\text { spanning trees with blue arrow }\}}{\#\{\text { spanning trees }\}}=\lim _{\delta \rightarrow \infty} \frac{1}{\delta} \frac{\operatorname{det}\left[\Delta^{\mathrm{op}}+\left(\begin{array}{cc}\delta & -\delta \\ 0 & 0\end{array}\right)\right]}{\operatorname{det} \Delta^{\mathrm{op}}}$

## Imposing arrows

Same for closed boundary site

$\Delta_{z, \cdot}^{\mathrm{cl}}=(\ldots,-1,3,-1,-1,0, \ldots) \quad \Delta_{z, \cdot}^{\prime}=(\ldots,-1,2+\delta,-1,-\delta, 0, \ldots)$
In spanning tree, only one of the three arrows is used: the red arrows bring a weight 1 , the blue arrow brings a weight $\delta$ :

$$
\lim _{\delta \rightarrow \infty} \frac{1}{\delta} \operatorname{det} \Delta^{\prime}=\#\{\text { spanning trees with blue arrow }\}
$$

$\frac{\#\{\text { spanning trees with blue arrow }\}}{\#\{\text { spanning trees }\}}=\lim _{\delta \rightarrow \infty} \frac{1}{\delta} \frac{\operatorname{det}\left[\Delta^{\mathrm{cl}}+\left(\begin{array}{cc}\delta & -\delta \\ 0 & 0\end{array}\right)\right]}{\operatorname{det} \Delta^{\mathrm{cl}}}$

## Inserting arrows ...



For $n$ arrows inserted, must compute $(n+1) \times(n+1)$ determinant

$$
\lim _{\delta \rightarrow \infty} \frac{1}{\delta^{n}} \frac{\operatorname{det}[\Delta+B]}{\operatorname{det} \Delta}, \quad B=\left(\begin{array}{cccc}
\delta & -\delta & 0 & \cdots \\
0 & \delta & -\delta & 0 \\
0 & 0 & \delta & -\delta \\
& & \cdots &
\end{array}\right)
$$

Little calculation yields

$$
\ldots=\operatorname{det}\left[G_{i, j}-G_{i+1, j}\right]_{1 \leq i, j \leq n}=\operatorname{det}\left(\sigma_{i-j}\right), \quad G^{-1}=\Delta^{\text {op }} \text { or } \Delta^{\mathrm{cl}}
$$

Horizontal invariance $\longrightarrow$ has a Toeplitz form

## $\ldots$ in closed

Toeplitz determinants with Fisher-Hartwig singularity. Results are

## Closed



Can show

$$
\lim _{\delta \rightarrow \infty} \frac{1}{\delta^{n}} \operatorname{det}\left[\mathbb{I}+G^{\mathrm{cl}} B\right]=\text { const } \times n^{-1 / 4} \mathrm{e}^{-\frac{2 G}{\pi} n}+\ldots
$$

Involves insertion of two fields $\phi^{\mathrm{cl}, \rightarrow(0)}$ and $\phi^{\rightarrow, \mathrm{cl}}(n)$, and therefore sum of dimensions equal to $-\frac{1}{4}=-\frac{1}{8}+\frac{3}{8}$. In fact :

$$
\begin{aligned}
& \phi^{\mathrm{cl}, \rightarrow}(0) \equiv \mu^{\prime} \text { has weight }-\frac{1}{8} \text {, primary irreducible in } \mathcal{V}_{1,2} \\
& \phi^{\phi_{, \mathrm{cl}}}(n) \equiv \nu \text { has weight } \frac{3}{8}, \text { primary irreducible in } \mathcal{V}_{2,2}
\end{aligned}
$$

Important : does not correspond to $\left\langle\mu^{\prime}(0) \nu(n)\right\rangle=0$ (no dissipation), but to $\left\langle\mu^{\prime}(0) \nu(n) \omega(\infty)\right\rangle=n^{-1 / 4}$ with dissipation at $\infty$ !

Other checks on 3-points and 4-points confirm

| $\phi^{\alpha, \beta}$ | open | closed | $\rightarrow$ | $\leftarrow$ |
| :---: | :---: | :---: | :---: | :---: |
| open | id. | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ |  |  |
| closed | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | id. | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | $\left[\frac{3}{8}\right] \in \mathcal{V}_{2,2}$ |
| $\rightarrow$ |  | $\left[\frac{3}{8}\right] \in \mathcal{V}_{2,2}$ | id. |  |
| $\leftarrow$ |  | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ |  | id. |

## $\ldots$ in open

## Open



Can show

$$
\lim _{\delta \rightarrow \infty} \frac{1}{\delta^{n}} \operatorname{det}\left[\mathbb{I}+G^{\mathrm{op}} B\right]=\text { const } \times n^{0} \mathrm{e}^{-\frac{2 G}{\pi} n}+\ldots
$$

Involves insertion of two fields $\phi^{\mathrm{op}, \rightarrow(0)}$ and $\phi^{\rightarrow, \mathrm{op}}(n)$, and therefore sum of dimensions equal to $0=0+0 \longrightarrow$ both fields have dimension 0 .
$\phi^{\mathrm{op}, \rightarrow} \in \phi^{\mathrm{op}, \mathrm{cl}} \star \phi^{\mathrm{cl}, \rightarrow}=\mu \star \mu^{\prime}=\mathcal{V}_{1,2} \star \mathcal{V}_{1,2}=\mathcal{R}_{1,1}$ goes over to quotient $\mathcal{V}_{1,3}=\mathcal{R}_{1,1} / \mathbb{I}$

$\phi^{\rightarrow, \mathrm{op}} \in \phi^{\rightarrow, \mathrm{cl}} \star \phi^{\mathrm{cl}, \mathrm{op}}=\nu \star \mu=\mathcal{V}_{2,2} \star \mathcal{V}_{1,2}=\mathcal{R}_{2,1}$


Other checks on 3-points and 4-points confirm

| $\phi^{\alpha, \beta}$ | open | closed | $\rightarrow$ | $\leftarrow$ |
| :---: | :---: | :---: | :---: | :---: |
| open | id. | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | $[0] \in \mathcal{V}_{1,3}$ | $[0] \in \mathcal{R}_{2,1}$ |
| closed | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | id. | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | $\left[\frac{3}{8}\right] \in \mathcal{V}_{2,2}$ |
| $\rightarrow$ | $[0] \in \mathcal{R}_{2,1}$ | $\left[\frac{3}{8}\right] \in \mathcal{V}_{2,2}$ | id. |  |
| $\leftarrow$ | $[0] \in \mathcal{V}_{1,3}$ | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ |  | id. |

## Other changes

Further calculations of determinants (mainly numerical) yield
$\phi \leftrightarrows, \rightarrow$ has weight 0
must be in $\phi^{\leftarrow, \mathrm{cl}} \star \phi^{\mathrm{cl}, \rightarrow}=\mu^{\prime} \star \mu^{\prime}=\mathcal{V}_{1,2} \star \mathcal{V}_{1,2}=\mathcal{R}_{1,1}$
descends to quotient $\mathcal{V}_{1,3}$.
$\phi^{\text {all }}$ has weight 1
must be in $\phi^{\rightarrow, \mathrm{cl}} \star \phi^{\mathrm{cl}, \leftarrow}=\nu \star \nu=\mathcal{V}_{2,2} \star \mathcal{V}_{2,2}=\mathcal{R}_{1,1}+\mathcal{R}_{3,1}$
$\phi \xrightarrow{\circ p \leftarrow}$ has weight 0
in $\phi^{\rightarrow, \mathrm{op}} \star \phi^{\mathrm{op}, \leftarrow}=\mathcal{R}_{2,1} \star \mathcal{R}_{2,1}=2 \mathcal{R}_{1,1}+2 \mathcal{R}_{2,1}+2 \mathcal{R}_{3,1}+\mathcal{R}_{4,1}$
(most probably, deserves further checks)

## Boundary conditions: summary

Leads to following table (in present understanding)

| $\phi^{\alpha, \beta}$ | open | closed | $\rightarrow$ | $\leftarrow$ |
| :---: | :---: | :---: | :---: | :---: |
| open | id. | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | $[0] \in \mathcal{V}_{1,3}$ | $[0] \in \mathcal{R}_{2,1}$ |
| closed | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | id. | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | $\left[\frac{3}{8}\right] \in \mathcal{V}_{2,2}$ |
| $\rightarrow$ | $[0] \in \mathcal{R}_{2,1}$ | $\left[\frac{3}{8}\right] \in \mathcal{V}_{2,2}$ | id. | $[0] \in \mathcal{R}_{2,1}($ op $)$ |
| $[1] \in \mathcal{R}_{3,1}(\mathrm{cl})$ |  |  |  |  |
| $\leftarrow$ | $[0] \in \mathcal{V}_{1,3}$ | $\left[-\frac{1}{8}\right] \in \mathcal{V}_{1,2}$ | $[0] \in \mathcal{V}_{1,3}$ | id. |

## Cross-checks



Corresponds to $\langle\sigma(1) \nu(2) \nu(3) \sigma(4)\rangle=\beta z_{23}^{-3 / 4} \frac{1-x}{\sqrt{x}}$


## Height variables

Most natural but hardest!
$\underline{\text { Purpose }}=$ compute joint probas $P^{*}\left[h_{z_{1}}=a, h_{z_{2}}=b, \ldots\right]$
Plane 1-point probas computed in '91 (height 1; Dhar \& Majumdar) and in '94 (heights 2,3,4; Priezzhev), but are ignored by the FT description:

$$
P^{*}(a)=P^{*}\left[h_{z}=a\right]=\left\langle\delta\left(h_{z}-a\right)\right\rangle_{P^{*}} \neq 0 \quad \longleftrightarrow \quad\left\langle h_{a}(z)\right\rangle=0
$$

As FT describes correlation functions, the proper correspondence reads

$$
\delta\left(h_{z}-a\right)-P^{*}(a) \quad \longleftrightarrow \text { field } h_{a}(z)
$$

under which

$$
\text { scalim }\left\{P^{*}\left[h_{z_{1}}=a, h_{z_{2}}=b\right]-P^{*}(a) P^{*}(b)\right\}=\left\langle h_{a}\left(z_{1}\right) h_{b}\left(z_{2}\right)\right\rangle
$$

## Height variables

The identification of scaling fields $h_{a}$ requires computing lattice correlation functions of height variables ...

Fine for heights 1 (boundary or bulk)
More difficult for heights 2,3,4 on boundary (open or closed)
Still harder for heights 2,3,4 in bulk !

Why ??

## Trees, branches, leaves

Need spanning tree description of recurrent configurations of ASM. Remember the burning algorithm, building the spanning tree:

height can only be equal to 4: $\quad P_{4}=P_{3}+\frac{N_{3}}{N}$
height can be equal to 3 or 4: $\quad P_{3}=P_{2}+\frac{N_{2}}{2 N}$
height can be equal to 2,3 or $4: \quad P_{2}=P_{1}+\frac{\mathcal{N}_{1}}{3 N}$

height can be equal to $1,2,3$ or $4: \quad P_{1}=\frac{\mathcal{N}_{0}}{4 N}$

## Predecessors

Previous formulae require computing the number of trees with fixed number of predecessors at given site $z$ :
$\mathcal{N}_{k}=$ number of configs such that $z$ has set fire to exactly $k$ n.n.

Huge difference between $k=0$ and $k>0$ :
$\mathcal{N}_{0}$ is local: reference site is a leaf; local constraint
$\mathcal{N}_{k>0}$ is non-local: must exclude big fire path in lattice which eventually comes back to a nearest neighbour; non-local constraint

Heights 1 are easier, while heights 2,3,4 are harder !!

## 1-site probabilities

Can see it on the answers:

$$
\begin{gathered}
P_{1}=\frac{2(\pi-2)}{\pi^{3}}=0.0736 \\
P_{2}=\frac{1}{2}-\frac{1}{\pi}-\frac{3}{\pi^{2}}+\frac{12}{\pi^{2}}-\frac{\pi-2}{2 \pi} J_{2}
\end{gathered}
$$

with

$$
\begin{aligned}
J_{2}= & \frac{4}{\pi^{2}}-\frac{14}{\pi}-8-\frac{4 \sqrt{2}}{\pi^{2}} \int_{0}^{\pi} \frac{\mathrm{d} \beta_{1}}{\sqrt{3-\cos \beta_{1}}} \int_{-\pi}^{\pi} \frac{\mathrm{d} \beta_{2}}{1-t_{1} t_{2} t_{3}} \sin \frac{\beta_{1}-\beta_{2}}{2} \\
& {\left[\cos \frac{\beta_{1}-\beta_{2}}{2}-2 \cos \frac{\beta_{1}+\beta_{2}}{2}\right] \times\left[\left(3-\cos \beta_{1}+\cos \beta_{2}\right) \cos \frac{\beta_{1}}{2}-2 \sin \beta_{2} \sin \frac{\beta_{1}}{2}\right], }
\end{aligned}
$$

where $t_{i}=y_{i}-\sqrt{y_{i}^{2}-1}, y_{i}=2-\cos \beta_{i}$ and $\beta_{3}=-\left(\beta_{1}+\beta_{2}\right)$.
Remarkably $J_{2}=0.5+o\left(10^{-12}\right)$, but no proof!

## 1-site probabilities

Can see it on the answers:

$$
\begin{gathered}
P_{1}=\frac{2(\pi-2)}{\pi^{3}}=0.0736 \\
P_{2}=\frac{1}{2}-\frac{1}{\pi}-\frac{3}{\pi^{2}}+\frac{12}{\pi^{2}}-\frac{\pi-2}{2 \pi} J_{2}=0.1739 \\
P_{3}=\frac{1}{4}+\frac{2}{\pi}-\frac{12}{\pi^{3}}-\frac{8-\pi}{4 \pi} J_{2}=0.3063 \\
P_{4}=1-P_{1}-P_{2}-P_{3}=0.4461
\end{gathered}
$$

Note $P_{1}<P_{2}<P_{3}<P_{4}$ in agreement with forbidden subconfigurations picture.

## Higher heights

On UHP, compute 1-site probability to have height 2,3,4 at a distance $m$ from boundary, open or closed.

Asymptotic analysis for $m$ large yields dominant contributions in SL:

$$
\begin{aligned}
P_{i}^{\mathrm{op}}(m) & =P_{i}+\frac{1}{m^{2}}\left(a_{i}+\frac{b_{i}}{2}+b_{i} \log m\right)+\ldots, \\
P_{i}^{\mathrm{cl}}(m) & =P_{i}-\frac{1}{m^{2}}\left(a_{i}+b_{i} \log m\right)+\ldots,
\end{aligned}
$$

with explicit coefficients,

$$
\begin{aligned}
& a_{1}=\frac{\pi-2}{2 \pi^{3}}, \quad b_{1}=0 \\
& a_{2}=\frac{\pi-2}{2 \pi^{3}}\left(\gamma+\frac{5}{2} \log 2\right)-\frac{11 \pi-34}{8 \pi^{3}}, \quad b_{2}=\frac{\pi-2}{2 \pi^{3}} \\
& a_{3}=\frac{8-\pi}{4 \pi^{3}}\left(\gamma+\frac{5}{2} \log 2\right)+\frac{2 \pi^{2}+5 \pi-88}{16 \pi^{3}}, \quad b_{3}=\frac{8-\pi}{4 \pi^{3}}
\end{aligned}
$$

## Bulk heights: summary

1-site probability on UHP is a disguised (chiral) 2-pt correlation (image), and allows the field identification.

All checks confirm that:

The height 1 field $h_{1}$ is a primary field with weights $(1,1)$.
The others three $h_{2}, h_{3}, h_{4}$ also have weights (1,1), and are equal, up to normalizations, to the same field, the logarithmic partner of $h_{1}$.

The four fields $h_{i}$ belongs to a non-chiral indecomposable $\mathcal{R}_{2,1}$.

```
Part I -
The Abelian
sandpile model
Part II
Logarithmic
conformal field
theory
(at c=-2)
```

- Part III LogCFT at work the ASM on the lattice

Conclusions

## Conclusions

Good number of features well understood:

- 4 boundary conditions identified, leading to b.c. changing fields with conformal weights $0,-\frac{1}{8}, \frac{3}{8}, 1$
- isolated dissipation, on boundary or in bulk, with and without change of b.c.; bulk, boundary and bulk-boundary fusions checked
- boundary height variables on closed and open boundaries (not log)
- bulk height variables properly identified (log fields), with and without change of b.c.
- fully dissipative model, no longer critical, described by massive perturbation of $c=-2$

Open issues:

- relevant LCFT likely to be non-rational: complete its identification
- look for other boundary conditions
- identify new bulk obervables
- establish relationships with other models

Perspective:
Avalanche observables, SLE ?

