SCHRODINGER-TYPE EQUATION WITH DAMPING FOR A
DYNAMICAL SYSTEM IN A THERMAL BATH

K, Valyasek, D, N, Zubarev,
and A, L, Kuzemskii

A study is made of a dynamical system that interacts weakly with a thermal bath, The non-
equilibrium statistical operator method is used to establish a Schrédinger~-type equation with
damping for this system. In the case of Bose statistics, a system of coupled nonlinear equa~-
tions of Schrédinger and kinetic types is obtained.

1. Introduction

In the present paper we consider the behavior of a small dynamical system interacting with a thermal
bath, i.e., with a system that has effectively an infinite number of degrees of freedom. Examples of such
systems are an atomic (or molecular) system interacting with the electromagnetic field it generates and
with a thermal bath; a system of nuclear spins interacting with the lattice; an exciton or electron system
interacting with the phonon field, etc. A similar problem has been considered in quantum field theory 1],
the Dirac equation with radiative corrections being obtained for the nonquantized wave function from the
second-quantized theory.

The aim of the present paper is to obtain a Schrdinger-type equation with damping for the mean
values of the amplitudes of a second-quantized field of Bose or Fermi particles weakly coupled fo a thermal
bath, We shall assume that the system of particles is a long way from equilibrium with the thermal bath
and cannot, in general, be characterized by a temperature. As a result of the interaction with the thermal
bath, such a system will acquire some statistical characteristics but will remain essentially a mechanical
system, The basic idea behind the solution is to eliminate the thermal bath, this influence then being mani-
fested as an effect of friction of the particles in a medjum. The presence of friction leads to dissipation
and, thus, to irreversible processes. We shall therefore use the general method of description of irrever-
sible processes by constructing a nonequilibrium statistical operator [2-4].

The basic idea behind this method is as follows. If a set of mean values of certain operators Py, or
their conjugate parameters Fy,(t) is sufficient to describe the nonequilibrium state of the system, then one
can find a special solution of the Liouville equation

dp

1
-+ ——[0(1,0), H] =0,

which depends on the time only through Fy,(t). The first argument of the nonequilibrium statistical operator.
p(t, 0) indicates its implicit dependence on the time and the second its dependence through the Heisenberg
representation,

The boundary conditions for the Liouville equation for p(t, 0) can be formulated by the introduction of
an infinitesimally small source that violates the symmetry under time reflection. Similar boundary condi-
tions based on the introduction of infinitesimally small sources that violate the symmetry under time reflec-
tion are used in the formal theory of scattering in the Gell-Mann— Goldberger form [5]. We introduce an
infinitesimally small source into the Liouville equation for Inp(t, 0) as follows [4];

alnp(t,0)

+ [l p(2,0), B] = —e(ln p(t,0)— In pa(t,0)), W
ot ih
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where

pult,0) = exp{ —® — Y Fa(9P(0)} = exp (=5, 0)) (2)

is the quasiequilibrium statistical operator and
) =1nSpexp{ —Z PmFm(t)}. (3)

Now S¢t, 0) can be called the entropy operator since S = (8(t, 0)> q is the entropy. Here (. ..)q =Sp
{pq- - . ). In the calculation of the mean values the passage to the limit ¢ — +0 is made after the thermo-
dynamic limiting process,

It is readily seen that the source on the right~hand side of Eq. (1) indeed violates the symmetry of the
Liouville equation under time reflection and tends to zero as £— +0, Integrating Eq. (1) from — to 0, we
obtain the nonequilibrium statistical operator in the form

(6,0)= exp s [ de In py(t 4+ 1.t = exp (— SOV}, @

The wavy bar denotes the operation of taking the quasi-invariant part with respect to evolution with the total
Hamiltonian H, The average value of any dynamical variable A is

(4> = lim Sp(4p(t,0)), (5)

e->+0

i.e., it is in fact a quasiaverage in the sense of N. N, Bogolyubov [6, 7].

2, Averaged Equations for the Amplitudes of the

Second-Quantized Field

Let us consider the behavior of a small sybsystem with Hamiltonian H, interacting with a thermal
bath with Hamiltonian H,. The Hamiltonian of the complete system has the form

where V is the interaction Hamiltonian,

For simplicity we shall consider a system of noninteracting Bose or Fermi particles with Hamil-
tonian

Hi = Z Eaa: (2% (7)

We take the interaction Hamiltonian in the form

14 =2 (Papa:aﬁ, (P;l;v = Qus, (8)
B

where Pop 2T operators that act only on the variables of the medium, i.e., of the thermal bath, whose
Hamiltonian we shall not write down explicitly.

As operators Py, determining the nonequilibrium state of the small subsystem, we take a,, ap*, and
ny = ag'dy. We shall describe the thermal bath by its Hamiltonian Hy. The choice of only the operators ny
and H, would lead to kinetic equations for the system in the thermal bath [8]. The inclusion of the operators
ag and a,* in the set of operators Py, corresponds to our intention to give a dynamical description of the
system,

The quasiequilibrium statistical operator (2) is determined from the extremum of the information
entropy:

S= —Sp (plnp), (9)

subject to the additional conditions that the quantities
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Sp (pae) = <@ad; Sp (pas™) = (@.">; Sp (pna.) = (Kw) {10

remain constant during the variation and the normalization Spp = 1 is preserved, The operator has the
form

00 = exp {-—(D - 2 (Fa(£) Ga = fa® (£) Ga® + Fu(t) na) — ﬁﬂ,} = exp {— S(t,0)}, (11)

where

@ =InSpexp {— Z (fa(t) 8a + fa (8)@a + Falt)na) — ﬁHz}‘.

Here, £y, fo*, and Fy are Lagrangian multipliers determined by the conditions (10). They are the para-
meters conjugate to {aq? q» (aa+)q, and {ng) gt

o 60 . 6D
{8ayq == ﬁfu(t) : <na>q == mﬁFa(t) s
588 88
M=o Rl =5 (12)

For what follows, it is convenient to write the quasiequilibrium statistical operator {11) in the form

Pe = pipiv {13)
where
po= 0 exp{— Y (fa(t)a + £ (Dal+ Fu(t)ma) |
0 =Spexp{— Y\ (ru(t)ou + 12 (Dal+ Fo(t)mo) } (132)
and )
0= Qi exp {—pH:}; Qs = Spexp {—BH:). (13h)

We now write the nonequilibrium statistical operator (4) in the explicit form

p ==exp {—S5(%,0)}, (14)

where

S(t, 0) =:D + ejl dtie”l{ Z (fu(t + &) aa(ts) + fa (t+ t,)a: (t) F na () Fo(t 4t} ) + B (20} }1

0

b=t f &(t +t)esttdt, and exp {-—5} is a normalizing factor. The normalization is preserved after the
quasi:invariant part is taken if the following conditions are satisfied [2-4]:
<au>q = <aa>, <au+>q == <am+>7 <na>q = <na>- (153

We shall take as our starting point the equations of motion for the operators averaged with the non-
equilibrium statistical operator (14):

d{a
i ;‘t‘>_—=([aa,H]>=([aa,H1])+([au,V]>, 16
ik d<;L:> - <[na1 H]> = <[na»H1]>+<[na, V}) (17)

The equation for (ag*) can be obtained by taking the conjugate of (16), We shall use the nonequilibrium
statistical operator (14) to calculate the right-hand side of Eq#. (16) and (17). Restricting ourselves to the
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second order in the interaction V, we obtain, as in [8], the following equations:

d(‘la)

= Ealos) +— j ([ae VIV (8:) 1 oe™ dbs, (18)

5 5K
dt

if

=-H [ [1ay VIV () ]Dae™ dts. (19)

Here, V(t;) denotes the interaction representation of the operator V,

Expanding the double commutator in Eq. (18), we obtain

d(aa>

== Eoc< o) + j‘dtieﬂ' { Z <(PaB(Pa.|B| (tl) >q<a5am,am>q - <(Pmbl(t )(Pa5> <aa1a§1aiﬁ>q }v (2 0)

a,pLb

where

(Paﬁ (£) = Pap (£) e (Ea EB)‘

We transform Egq. (20) to the form
4 d<da)
dt

i

L] 1 0
== Em<a<l> + Liﬁ,z j‘ dtie“’(@““lfpalﬂ(tl) >Q<a§'> + '—iﬁ Z j’ dtleﬁtl< [(PGML (’palﬁl(ti) ] >q<a':|apxa’$>‘1'

@ p —» 8,8 —

We shall assume that the terms of higher order than linear can be ignored in (202) (below, we shall formu-
late conditions when this is possible). Then

d {aay
dt

= Euaa) +— Z j dtse Qua e (1) Dola- (21)

1 B —o0

The form of the linear equation (21) is the same for Bose and Fermi statistics. We now introduce the spec-
tral intensities of the correlation functions of the medium:

Lt (o g).
<q)ua£$ (1) Paedg = S Jap, an: (@) € r do,

~ 1 7 —a(m+ Eﬂ_f“’)t,
{Poa, Pap (t1)dg = ) S Joa, ap (@) € do (22)
and transform Eq. (21), using (22), to
d{a.)
ih = F.{a, Kaeag), (23)
th— {aa) + ; 2,
where
1 h o(0)
= 1 o4 (13 ~a 1 ‘1“1 = 24:
Ko mzjd” (PuaFap () 20 = 2ZI Ao + Ep — E,, + ie 24)

Thus, we have obtained the Eq. (23) of Schridinger type for {ay); this equation describes the energy
shift and the damping due to the interaction of the particles with the medium.

To conclude this section we shall show how, in the case of Bose statistics, we can take into account
the nonlinear terms which lead to a coupled system of equations for {a,) and (ny>. Consider the quantity
(aa1+a31aﬁ> q- After the canonical transformation

G == b, + (au>; am+ = ba+ + <at7-+>

the operator p, in (13a) can be written in the form
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po=0 o] — Y Rbl0), @y =—1i/Fe (25)
Note thatQ; in (25) is not, in general, equal to Q in (13a). Using Wick's theorem for the operators e and
bo ™ and returning to the original operators gy and a4,T, we obtain
2, t 0800 = ({Ny) — l(au;> |2) {ap28ap + ({Na) — i(am:) i“) {ap)Bap. {26}
Using (26), we can rewrite Eq. (20a) in the form

d{aa)
¢

i
"

1 0
= Eua) o 3 | Gt Pan B (1) Deas)

@b =

0
+ i Z j‘ dt&“‘{( [(Ptmn- @mfﬂ(tl) ] Yt <[(Paa.¢mnmn(ti)]>q} X ((nm) + i<aa,> i )<as>-
@p -
Now consider Eq. (19). Expand the double commutator and, in the same way as the threefold terms were
neglected in the derivation of Eq, (21), ignore the fourfold terms in (19) (see also [8]). Then

d{n, : ,
<dr; 4 = ; Wﬁ»m((”'i’) - l<aﬂ>|2)—; Wﬁ-*ﬁ((na) - E(aa>%2)
1 1 . C
+ ‘:-EZp. Kop(ai Yap) + ’{Fz; Kaaad(dsy + Z; R, usiGe)<as), @

where

1 E,—E,

are the transition probabilities expressed in terms of the spectral intensities of the correlation functions
of the operators of the medium, and

15 -
Ruojun = =5 | (€t (1) Do F B (1) P € e

Note that
1 .
Rcm, 8 — Wa—nz " ‘E{(Kaa f'*‘_ Kacc) == ; Wa—>§-

Thus, in the general case Egs. (18) and (19) form a coupled system of nonlinear equations of Schré-
dinger and kinetic types. The nonlinear equation (20a) of Schridinger type is an auxiliary equation and, in
conjunction with the equation of kinetic type (27), determines the parameters of the nonequilibrium statis-
tical operator since in the case of Bose statistics

_fa())
Fo(t)’

a1

(@) = F. (t) 2

(rey = (70 — 1)~

Therefore, the linear Schridinger equation is a fairly good approximation if

(> — [<aad P = (50 — 1)t << 1,

a condition that, essentially, corresponds to (bytb,> « 1. This corresponds to allowance for only the
weakly excited states in the system of quasiparticles corresponding to the operators b, and b&.‘L.

In the case of Fermi statistics, one cannot eliminate the linear terms by a shift of the operators by.a
c-number since this is not a canonical transformation. In quantum field theory [9] the sources linear in the
Fermi operators are introduced by means of classical spinor fields that anticommute with one another and
with the original fields. We shall not consider this more complicated case.
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3. Schrddinger-Type Equation with Damping

In the foregoing section we obtained an equation for the mean values of the amplitudes in the form (23).
It is now expedient to go over to the coordinate representation

P =Y, %a(r)<ae), (28)

where { xa(r)} is a complete orthonormalized system of single-particle functions of the operator {— (i%/2m)
v2 + v(r)}, where v(r) is the potential energy, and

h? - -
{——Z—n-;vz +v(r)}xa(r) = Eoya(r).

In a certain sense, the quantity ¢(r) plays the role of the wave function of a classical Schrodinger field.
Using (28), we transform Eq. (23) to the form

IO N S | o (o e |
e R O TIOR B CER ST 2 (29)
The kernel K(r, r') of the integral equation (29) has the form
: L. 1\ ¢ .
K(r,r')= ; Rosxa (r)3e (¢) = s Z_‘:‘ ! dt:6*'<Qaa,Ban (1) Daxa (r) %5 (1) (30)

Equation (29) can be called a Schridinger-type equation with damping for a dynamical system in a
thermal bath. It is interesting to note that similar Schrédinger equations with a nonlocal interaction are
used in scattering theory [10] to describe interaction with many scattering centers.

For the remainder of the investigation of Eq. (29), it is convenient to introduce the shift operator

eir@/ﬁ’ where v, = ¥' —r; p = —iliVy. We rewrite Eq. (29) in the form
2 e ‘
w0 L v tow e+ D). (3D
at 2m
Here
D(r.p) = S ProK (r, 1) et (32)
We shall assume that §(r) varies little over the correlation length characteristic for the kernel K(r, r').
Then, expanding exp {ir;p/h} in a series, we obtain the following equation inthe zeroth order:
a hZ .
iﬁ—q% ={ o Vi+v(r)+ Re U(r) }mp(r) 4+ iIm U(r)¥(r), (33)
m

where
U(r)=ReU(r)+iIm U(r) =j' FroK(rr+r).

The expression (33) has the form of a Schrodinger equation with a complex potential, Equations of this
form are well known in collision theory [10], in which one introduces an interaction describing absorption
(ImU(r) < 0). Further, expanding exp {ir;p/f} in a series up to second order inclusively, we can represent
Eq. (29) in the form (see also [10])

L op(r) B, Lt
it _{("%V +v(r))+U(r)—~i—,;jdriK(r,r+n)r,p (34)

—]—71 jd3r1K(1‘,I‘ +r) 23‘ T:thin} w(r)

i, h—t
Introducing the function

A(r) ="Li;.e_j' FriK(r,r 1), (35)
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which, in a certain sense, is the analog of the complex vector potential of an electromagnetic field, and the
tensor of the reciprocal effective masses

1 i 3 i i, 8
{W} -._—n;éih—jdriReK(r,r—rr,)nri, (36}

we can express Eq. (34) in the form

L ogp(r) R 1 ieh , P
w2 _{ - (W) Vo) + U+ A ()Y +LT(r)}\p(r), (37)

where
1 i
I(r)=— jclzar, Im K(r,r +1,) ;nr’Ivivk.
In an isotropic medium the tensor { 1/M(r)}ik is diagonal and A(r) = 0.

Finally, note that the introduction of ¥(r) does not mean that the state of the small dynamical subsys-
tem is pure. It remains mixed since it is described by the statistical operator (14), the evolution of the
parameters f (), f,*(t), and Fq(t) of the latter being governed by a coupled system of equations of Selirt-
dinger and kinetic types.

4. Examples. Interaction of Excitons (or Electrons)

with a Phonon Field

In the present section we shall consider examples that illustrate the general method, We ghall take
a system of excitons (or electrons) interacting with lattice phonons and show how the damping and energy
shift for such systems are obtained.,

First, consider a system of excitons in a lattice described by the Hamiltonian [11]:
H= ZE(k)b b +Z’ﬁmcqa”au+~——2 Golk, k) Qosbr D, (28)
0,9 k, k0

where hwg, q is the phonon energy; bi*, bk, aq, q , and a, ,q are the Bose operators of creation and an-
nihilation of excitons and phonons, respect1ve1y The functlon Gy, ky) determines the coupling of the ex-
citons to the phonon medium [11], G,* k, ky) = Gk, k)

Qoa = ( )‘/’ (@oa+ a:—q)

2W0,q
is the operator of the normal coordinates of the phonon system. Here, N is the number of molecules in the
crystal, In accordance with (8), we write the interaction Hamiltonian in the form
=Y o(kk)bib, (39)
k&

where

ok k) = V—%;Ga(k, k) ( )" (o ek (40)

2(1)6, k—k,

We write the Schridinger-type equation (23) for (by ) with allowance for (38)-(40) in the form

it d<;"‘> = E(k){b) + V K (k, k) <{bx,, (41)
where
1 2
Kk k) =—- Z j_dt‘e”‘ﬁp(k,. k2) @ (ka, Ky, £4) Dq (42)

2 7 Go(k, k) |* Mlaxrsd o k) + 1 )
=b(k—k) s ¢ Z el 17 ey e ol T R T
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The integration is extended over the first Brillouin zone; Q is the volume of the unit cell; and
(s, @ = (€90 1— 1)1,

Separating the real and the imaginary parts in (42), we obtain

if
n d<dbtk> — E(1) B> + AE(R) by — 5 T )b,

where

. RlGo(k, k) |* Mg, x-x,) . (<o, x-x, )+ 1) (43)
ME =1 )3P 8 Ty oy e o Ty =)

is the energy shift of an exciton, and
B|Go(k, ki) |2
F(k) ﬁ. (2 j' 2 2(0¢ -k,

X {{te, xon,) O[E (k) — E (k1) + fiove, wmr] + (<Bo, x>+ 1) 8 [E (k) — E (ki) — fiwoo, e-x ] } (44)

is the damping of the exciton. Equations (43) and (44) show we have obtained the well-known results [11] and
we shall therefore omit a discussion of these equations.
As the second example, let us consider briefly a system of electrons in a lattice described by the

Hamiltonian {12]
H= E T(K) G o + Z hogbytby +_- Z Ak, —k;)

k ky, o
X @kluakgcr(bkl—kz -4 bk,—-k,) )

where hw, is the phonon energy; e cr s Ok q+, and b, are the operators of creation and annihilation of
electrons and phonons, respectively; T(k) = (h%2/2m) —p; and A(q) determines the electron —phonon coupling:

a@=e@ (5)"

As in the exciton example, the Schridinger-type equation for (@, o> can be represented in the form

[ ' 'h
ih d<a;t, > - (T(k) + AE(k) ) <ak. u> - % P(k) <ak, a>y,

where

2 M)+ 4 (x—x)
AB(k)=P ; 4 (k—Ti) | {T(k)— (k) — hons, T TR = T (k) + ﬁmk_k,}

is the energy shift of an electron, and
2n . ,
I()="— ; |4 (k — k) [2{ (reigd+ 1) 8 (T (k) — T (ky) — oo,
e xS (T (k) — T (k) + Ao, } (46)

is the electron damping. The expressions (45) and (46) are the same as those obtained by the Green's func-
tions method [12] if one sets (ak0+ak0> ~ 0 in the latter. This is natural since the linear equation of
Schrddinger type was obtained in the approximation of small occupation numbers.

{45)

Note that the equation for the single-particle Green's functions is very similar to the Schridinger-
type equation but does not contain an inhomogeneity on the right-hand side [13-14].

We should like to express our gratitude to N. M, Plakida and Yu. A. Tserkovnikov for helpful discus-
sions.
LITERATURE CITED

1. N. N. Bogolyubovand D, V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New
York (1959), § 38.

1157



L

LA @

11.
12,

13.
14,

1158

D.N. Zubarev, Dokl. Akad. Nauk SSSR, 140, 92 (1961); 162, 532 (1965); 162, 1794 (1965); 164, 537 (1965);
Institute of Theoretical Physics [in Russian], Preprint ITF-69-6, Kiev (1969). o

D. N. Zubarev and V. P. Kalashnikov, Teor. Mat, Fiz., 1, 137 (1969).

D. N, Zubarev, Preprint R4-4886 [in Russian], JINR, Dubna (1970); P4-4920 [in Russian], JINR, Dubna
(1970); Teor. Mat. Fiz., 3, 126 (1970).

M. Gell-Mann and M. L. Goldberger, Phys. Rev., 91, 398 (1953).

N. N. Bogolyubov, Preprint D-788 [in Russian], JINR, Dubna (1961).

N. N. Bogolyubov, Physica, Suppl., 26, 1 (1960).

K. Walasek and A, L. Kuzemsky, Preprint E4-4862, JINR, Dubna (1970).

N. N. Bogolyubov and D, V, Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New
York (1959), §36.

N. F. Mott and H. S, W, Massey, The Theory of Atomic Collisons, Oxford (1965).

R.S. Noakes, Theory of Excitons, Supplement 5 to Solid State Physics, Academic Press, New York . -
(1963).

D. N, Zubarev, Uspekhi Fiz, Nauk, 71, 71 (1960).

J. Schwinger, Proc, Nat. Acad. Sei., 37, 452, 455 (1951).

V. L. Bonch-Bruevich and 8.V, Tyablikov, The Green Function Method in Statistical Mechanics, North~
Holland Publishing Co., Amsterdam (1962).



