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A study is made of a dynamical sys tem that interacts  weakly with a thermal  bath. The non- 
equilibrium stat is t ical  operator  method is used to establish a Schr~dinger-type equation with 
damping for  this system.  In the case of Bose stat is t ics ,  a sys tem of coupled nonlinear equa- 
tions of Schr~dinger and kinetic types is obtained. 

1. I n t r o d u c t i o n  

In the present  paper  we consider  the behavior of a small  dynamical sys tem interacting with a thermal  
bath, i.e., with a sys tem that has effectively an infinite number of degrees of freedom. Examples of such 
sys tems  are  an atomic (or molecular) sys tem interacting with the electromagnet ic  field it generates  and 
with a thermal  bath; a sys tem of nuclear  spins interacting with the lattice; an exciton or  e lectron sys tem 
interacting with the phonon field, etc. A s imi lar  problem has been considered in quantum field theory [1], 
the Dirac equation with radiative correc t ions  being obtained for the nonquantized wave function f rom the 
second-quantized theory.  

The aim of the present  paper  is to obtain a Schr~dinger-type equation with damping for the mean 
values of the amplitudes of a second-quantized field of Bose or Fermi par t ic les  weakly coupled to a thermal  
bath. We shall assume that the sys tem of par t ic les  is a long way f rom equilibrium with the thermal  bath 
and cannot, in general ,  be charac te r ized  by a temperature .  As a resul t  of the interaction with the thermal  
bath, such a sys tem will acquire some stat ist ical  charac te r i s t i cs  but will remain  essential ly a mechanical 
system.  The basic idea behind the solution is to eliminate the thermal  bath, this influence then being mani-  
fested as an effect of fr ict ion of the part icles  in a medium, The presence  of fr ict ion leads to dissipation 
and, thus, to i r revers ib le  p rocesses .  We shall therefore  use the general  method of descript ion of i r r e v e r -  
sible p rocesses  by construct ing a nonequilibrium stat ist ical  opera tor  [2-4]. 

The basic idea behind this method is as follows. If a set of mean values of cer tain opera tors  Pm or 
their  conjugate pa ramete r s  Fm(t) is sufficient to descr ibe the nonequilibrium state of the system,  then one 
can find a special solution of the Liouville equation 

:~-.- + [p(t, 0), H]-~- O, 

which depends on the time only through Fm(t ). The f i rs t  argument of the nonequHibrium statist ical  opera tor  
p(t, 0) indicates its implicit dependence on the time and the second its dependence through the Heisenberg 
representat ion.  

The boundary conditions for  the Liouville equation for p(t, 0) can be formulated by the introduction of 
an infinitesimally small  source that violates the symmet ry  under t ime reflection. Similar boundary condi- 
tions based on the introduction of infinitesimally small sources  that violate the symmet ry  under t ime ref lec-  
tion are  used in the formal  theory of scat ter ing in the Gel l -Mann-Goldberger  form [5]. We introduce an 
infinitesimally small  source into the Lionville equation for In p(t, 0) as follows [4]: 

0lnp(t,0) 
Ot ~- [ln p (t, 0), H] = --e(ln p (t, O) -- In p~(t, O) ), (1) 
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where 

pq(t, 0)-~ e x p { - - @ - - 2  F,~(t)P,~(O)} == exp {--S(t, 0)} 
m 

(2) 

is the quasiequilibrium statistical operator and 

(I) = inSp exp{ --~ P~F~( t ) } .  (3) 
m 

Now S(t, O) can be called the entropy operator since S = <S(t, 0)> q is the entropy. Here <... > q = Sp 

(pq...). In the calculation of the mean values the passage to the limit ~--+0 is made after the thermo- 

dynamic limiting process. 

It is readily seen that the source on the right-hand side of Eq. (i) indeed violates the symmetry of the 

Liouville equation under time reflection and tends to zero as a--+0. Integrating Eq. (I) from -~ to 0, we 

obtain the nonequilibrium statistical operator in the form 
0 

o) = J dti  ot, po( + }--- oxp ( -  s o)}. (4) 
f 

The wavy ba r  denotes the operat ion of taking the quasi- invar iant  part  with respec t  to evolution with the total 
Hamiltonian H. The average value of any dynamical variable A is 

<A> = lira Sp (Ap (t, 0) ),. (5) 
~--)-+ 0 

i.e., it is in fact a quasiaverage in the sense of N. N. Bogolyubov [6, 7]. 

2.  A v e r a g e d  E q u a t i o n s  f o r  t h e  A m p l i t u d e s  o f  t h e  

S e c o n d - Q u a n t i z e d  F i e l d  

Let us consider  the behavior  of a small  sybsys tem with Hamiltonian H 1 interacting with a thermal  
bath with Hamiltonian H 2. The Hamiltonian of the complete sys tem has the form 

H = Hi +H~ + V, (6) 

where V is the interaction Hamiltonian. 

For simplicity we shall consider a system of noninteraeting Bose or Fermi particles with Hamil- 

tonian 

E + Hi = E~a~ as. (7) 
c~ 

We take the interaction Hamiltonian in the form 

E + - + 
V =, q0~a~ as, %~ ~ (P~, (8) 

aS 

where (zs/9 are  opera tors  that act only on the var iables  of the medium, i.e., of the thermal  bath, whose 
Hamiltonian we shall not write down explicitly. 

As opera tors  Pm determining the nonequilibrium state of the small  subsystem,  we take as, as  +, and 
n s = as+as. We shall descr ibe  the thermal  bath by its Hamiltonian H 2. The choice of only the opera tors  n s 
and H 2 would lead to kinetic equations for  the sys tem in the thermal  bath [8]. The inclusion of the opera tors  
a s and as + in the set of opera tors  Pm corresponds  to our intention to give a dynamical descript ion of the 
sys tem.  

The quasiequil ibrium stat is t ical  opera tor  (2) is determined f rom the ext remum of the information 
entropy: 

S = --Sp (p In p), (9) 

subject to the additional conditions that the quantities 
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Sp (pa~) = <as>; Sp (pat, +) = <a~,+>; Sp (pns) = <no,> 

r ema in  constant  during the var ia t ion  and the normal iza t ion  Sp p = i is p r e s e r v e d .  
f o r m  

(10) 

The operator has the 

~, = ~p  { - o  - y', (io(t)~s + 1s'(t),s + + Fs ( t ) ,o ) -  ~ ,  } _-- ~,p { -  s(t, o)}, (1t) 

where 

In Sp exp {- -  Z (]~(t)as + l~ it) a+ + F~(t)n~)--~H~}. q9 

Here ,  f a ,  fG*, and F a a re  Lagrangian mul t ip l ie rs  de te rmined  by the conditions (t0). 
m e t e r s  conjugate to ( a a ) q ,  ( a a + ) q ,  and (na>q"  

8@ 5@ 
<as>q : - ,  <ns>~ : 

6 I s ( t )  ; 6F~(t) ' 

They are the para- 

6S 6S 
M t )  = 8 ( a D ~ ;  Fs(t)  - -  ~ <~s>~'" (12} 

For  what follows, it is convenient to wri te  the quas iequi t ibr ium s ta t i s t i ca l  ope ra to r  (11) in the f o r m  

p~ : p,p2, (13) 

where  

o' = Q:' Z + ;: (t) ~ + },  
c~ 

= - -  (t)as+Fs(t)n~) 
o, 

(13a) 

and 

9~ ~ Q2, exp {--~H~}; Q~ =- Spexp {--~H~}. 

We now wri te  the nonequi l ibr ium s ta t i s t ica l  ope ra to r  (4) in the explicit  f o r m  

(i3b) 

where 

p = exp {--S(t, 0)}, (14) 

0 

S(t ,O)=-q)+e~ dt~e~q{ Z(/~(t- l- t i)a~(h)-t-]2(t-]-t , )as(h,-~ F~(t t,) n~t ,) + ) 

= ~ ~(t + t0e~t l  dt 1 and exp { - ~ }  is a normal iz ing  fac tor .  The normal iza t ion  is p r e s e r v e d  a f t e r  the 

quas i - invar ian t  par t  is taken if the following conditions a re  sa t i s f ied  [2-41: 

<aD~ = <a&, <aJ>~ = <as+>, <n~>~ = <ns>. (15) 

We shall  take as our s ta r t ing  point the equations of motion for  the opera to r s  ave raged  with the non- 
equi l ibr ium s ta t i s t ica l  ope ra to r  (14): 

d <aD 
in ~ ~- < [as, H] > ~ < [a~, H,] } -~- < [as, 1) 7] } (16) 

dt 

i~ d<ns> __ <ins, H]> -~ <[n~,.H~]} + ([n~, V]>. (17) 
dt 

The equation fo r  <as  +> can be obtained by taking the conjugate of (16). We shall  use  the nonequfl ibr ium 
s ta t i s t ica l  ope ra to r  (14) to calcula te  the r ight-hand side of Eq~. (16) and (17). Rest r ic t ing ourse lves  to the 
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second order  in the interact ion V, we obtain, as in [8], the following equations: 

i h - -  d<a~> 
dt 

i e a~ 
- E,<ao> <[[  , V] V(t , ) ]> , ," ,  

i h - -  d(n.> t i dt -- ih <[[n~,, V]V(t,)]>qe't, dt,. 

(18) 

(19) 

Here, V(tl) denotes the interact ion representa t ion  of the opera tor  V. 

Expanding the double commuta tor  in Eq. (18), we obtain 

where 

ih d<a~>dt = E=<a~).-}--[-~ y dtie~',{ Z (r ' 

~a~ (t) ---- ~a~ (t) e "~ (Ea--E~) t. 

(20) 

We transform Eq. (20) to the form 

ih--d<a~>dt = E~(a.) + - ~ Z  j dt,e <r >q<a,) -{----~ Z ~ dt'e~4([%~" EP"~(t~) ]}~(~'a~'a'}'" 

We shall assume that the t e rms  of higher  o rder  than l inear can be ignored in (20a) (below, we shall fo rmu-  
late conditions when this is possible).  Then 

ih d(d;> -- E,(aa> -}-Th Z ~ dt,e <q)~,~,~(t,)>q<a,> (21) 

The form of the l inear  equation (21) is the same for Bose and Fermi  s tat is t ics .  We now introduce the spec-  
t ra l  intensities of the cor re la t ion  functions of the medium: 

- - o o  

- - c o  

(22) 

and t r ans fo rm Eq. (21), using (22), to 

where 

dt " 

i ] ...... ~((o) (24) 

Thus, we have obtained the Eq. (23) of Schr~dinger type for <aa>; this equation describes the energy 
shift and the damping due to the interaction of the particles with the medium. 

To conclude this section we shall show how, in the case of Bose statistics, we can take into account 
the nonlinear terms which lead to a coupled system of equations for <a~> and (,n~>. Consider the quantity 
( a~l+aflla~} q. After the canonical transformation 

a,~ = b= -{2 (a,~>; a~ + = b~ + + (a,~ +> 

the opera tor  Pl in (13a) can be writ ten in the fo rm 
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Note tha tQl  in (25) is not, in genera l ,  equal to Q~ in (13a). Using Wick 's  t heo rem for  the o p e r a t o r s  bo~ and 
b a  + and re turning to the original  ope ra to r s  a~ and ao~ +, we obtain 

<~= +a~,a~>~ ~ (<n~,> - I <a=,> I ~) (a~,>~o,, + ((n~,> - -  I (a~,) I:) (a~>6~,a. (26) 

Using (26), we can r ewr i t e  Eq. (20a) in the f o r m  

ih d<a~) ~E~(a~)-~- t V ,  i 
dt -i-h-'.--' 

o 

+ #t 2 ~ dt~ea'{([cP .... Cp~(t,)] >~ + ([(p~,,~ .... (t,)])~} X ((n~,) ~- !(a~,)[2)<a.~>~ 

Now cons ider  Eq. (19). Expand the double commuta to r  and, in the same  way as the threefold  t e r m s  were  
neglected in the der ivat ion of Eq. (21), ignore the fourfold t e r m s  in (19) (see also [8]). Then 

d(n~> 
= E W~..~, ((n,> - -  [ (aa> 12).- ~ W;.~ ((na> --  t (a~> [ z) 

dt 

I l l  . § v'~ + 

P g {z~i~t 

where  

(27) 

are  the t rans i t ion  probabi l i t ies  e x p r e s s e d  in t e r m s  of the spec t r a l  intensi t ies  of the co r re la t ion  functions 
of the ope ra to r s  of the medium,  and 

R ..... ~, = "~7 {(r >q -~- (r (t,) q)~,>q} e '~, dt~. 
t~ 

Note that 

i 
K~) 

W " 3  
W~_~. 

Thus, in the genera l  case  Eqs.  (18) and (19) f o r m  a coupled s y s t e m  of nonl inear  equations of Schr~i- 
dinger and kinetic types .  The nonlinear  equation (20a) of SchrSdinger type is an auxi l iary  equation and, in 
conjunction with the equation of kinetic type (27), de te rmines  the p a r a m e t e r s  of the nonequfl ibr ium s t a t i s .  
t ical  ope ra to r  s ince in the case  of Bose s ta t i s t i c s  

F.(t) ' F~(t) ~ 

There fo re ,  the l inear  SchrSdinger equation is a fa i r ly  good approximat ion  if 

<n~> - i<a~> I ~ = (e~C') ~) -~ ~ ~, 

a condition that,  essent ia l ly ,  co r re sponds  to < boz+bot) << 1. This co r responds  to allowance for  only the 
weakly exci ted s ta tes  in the s y s t e m  of quas ipar t ie les  cor responding  to the ope ra to r s  bv~ and bc~ +. 

In the case  of F e r m i  s ta t i s t i cs ,  one cannot e l iminate  the l inear  t e r m s  by a shift  of the ope ra to r s  b y a  
c - n u m b e r  since this is not a canonical t r ans format ion .  In quantum field theory  [9] the sources  l inear  in the 
Fe rmi  ope ra to r s  a re  introduced by means of c lass ica l  sp inor  f ields that ant icommute  wi~h one another  and 
with the or iginal  f ields.  We shall  not cons ider  this more  compl ica ted  case .  
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3. S c h r S d i n g e r - T y p e  E q u a t i o n  w i t h  D a m p i n g  

In the foregoing sect ion we obtained an equation for  the mean values of the amplitudes in the fo rm (23). 
It is now expedient to go over  to the coordinate  represen ta t ion  

r ~'-~2 ~(a(r) (a~), (28) 

where { ~ ( r ) }  is a complete or thonormal ized  sys t em of s ingle-par t ic le  functions of the opera tor  ~-(Ii2/2m) 
V 2 + v(r)}, where v(r) is the potential  energy,  and 

In a cer ta in  sense,  the quantity r plays the ro le  of the wave function of a c lass ica l  SchrSdinger field. 
Using (28), we t r a n s f o r m  Eq. (23) to the fo rm 

ihO*(r)ot --{--2mtP V 2 + v ( i ) } * ( r ) + ~ K ( r , r ' ) * ( r ' ) d r ' .  (29) 

The kernel  K(r, r v) of the integral  equation (29) has the fo rm 
0 i 

= F ,  = F ,  (30) 

Equation (29) can be cal led a SchrSdinger- type equation with damping for  a dynamical sys tem in a 
thermal  bath. It is interest ing to note that s imi la r  Schr~idinger equations with a nonlocal interact ion are  
used in sca t te r ing  theory  [10] to descr ibe  interact ion with many sca t te r ing  centers .  

For  the r ema inde r  of the investigation of Eq. (29), it is convenient to introduce the shift opera to r  
eiru~/~i , where  r t = r '  - r ;  p = -ih~Tr. We rewr i t e  Eq. (29) in the fo rm  

Here  

it/0~(r) - - - -  V2 21- y(r) ~p(r) + D(r, p)~p (r). (31) 
Ot 2m 

i 
, ~- r~p 

D (r, p) = i darIK (r, r 4- h) e . (32) 

We shall assume that r var ies  li t t le over  the cor re la t ion  length cha rac te r i s t i c  for  the kernel  K(r, r ' ) .  
Then, expanding exp (irtp/l~} in a se r i es ,  we obtain the following equation inthe zeroth order :  

where  

{ } ihO*(r) - - O t  --'2-~m + v ( r ) + R e U ( r )  ~p(r)+iImU(r)~p(r), 

U(r) = Re U(r) + ~ Im U(r) --~ d~r~ K(r, r + r,). 

(33) 

The express ion  (33) has the fo rm of a SchrSdinger equation with a complex potential.  Equations of this 
fo rm are  well known in coll is ion theory  [10], in which one introduces an interact ion describing absorpt ion 
(ImU(r) < 0). ~ r t h e r ,  expanding exp{irlp/~i } in a se r i e s  up to second o rde r  inclusively,  we can r ep re sen t  
Eq. (29) in the fo rm (see also [10]) 

Introducing the function 

~ 2  2 
ih 0~p(r)0t - - { ( - - ~ - m  V q - v ( r ) ) + U ( r ) - - / ~  d3r,K(r,r-]-rt)r,p (34) 

$ 

+ y  
4 h ~ l  

mc ~ d~riK(r,r -]- r,)r,, A ( r ) - -  7~7~ (35) 
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which, in a certain sense, is the analog of the complex vector potential of an electromagnetic field, and the 
tensor  of the reciprocal  effective masses  

we can express Eq. (34) in the f o rm  

(36) 

where 

ihOr - - ( - - - ~  .~k ( M ' ~ ) ,  ,V,Vk. -1- v (r) -4- U (r) q-/me~hc A (r) V + iT( r )}  ~(r), (37) 

I .idar, lmK(r,r_~_r, ) Zr:r~V~Vk. T(r) = --~ - ,  

In an isotropie medium the tensor  {1/M(r)}ik is diagonal and A(r) = 0. 

Finally, note that the introduction of r does not mean that the state of the small  dynamical subsys-  
tem is pure. It remains  mixed since it is described by the stat is t ical  operator  (14), the evolution of the 
parameters  fa(t), f~*(t), and Fa(t) of the la t ter  being governed by a coupled sys tem of equations of SchriS- 
dinger and kinetic types. 

4.  E x a m p l e s .  I n t e r a c t i o n  of  E x c i t o n s  ( o r  E l e c t r o n s )  

w i t h  a P h o n o n  F i e l d  

In the present  section we shall consider examples that i l lustrate the general  method. We shall take 
a sys tem of excitons (or electrons) interacting with lattice phonons and show how the damping and energy 
shift for such sys tems are obtained. 

Firs t ,  consider a sys tem of excitons in a lattice described by the Hamiltonian [11]: 

r y.  + " S-~- E(k)b+~ b.q - ho}o,qa.,.a.,q2f-,_ . Gr bk, (38) 
k cf, q l/g kl ,kfff  

where liWcr, q is the phonon energy; bk +, bk, an, q+ , and a~,q are the Bose operators  of creat ion and an-: 
nihilation of excitons and phonons, respectively.  The function Ga(k, kl) determines the coupling of the ex- 
citons to the phonon medium [11], Gcr* (k, kl) = Gcr(kl, k), and 

O"'q \ 2co,,,,~., (a,~,q -+- a~. _~) 

is the operator  of the normal coordinates of the phonon system.  Here, N is the number of molecules in the 
crystal .  In accordance with (8), we write the interaction Hamiltonian in the form 

§ 
V----- ~(k, k,) bk bk,, (39) 

k t k  

where 

r k~) ---- G~(k, k~) 2(oo, k-k, 

We write the SchrSdinger-type equation (23) for <bk> with allowance for (38)-(40) in the form 

where 

ih d<bQ -~- E(k)<b~> -I- 2 K(k, kt) <bk,>, 
dt 

hi 

i o ~tl k - 

k~ - - ~  

~ , ,  t . ~  ~2 fd3k ~ hlG~(k, kz)[ z <no, k-k2> ' + " E  <no, k-k,> + i 

(41) 

(42) 
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The integrat ion is extended ove r  the f i r s t  Bri l louin zone; f~ is the volume of the unit cell;  and 

<ha, q> = (e ~'a' q - -  l)  -1. 

Separat ing the rea l  and the imag ina ry  p a r t s  in (42), we obtain 

ih 
ih d<bk> = E (k) <bk> -~ AE (k) <b~> -- ~- F (k) <bk>, 

dt 

where  

AE(k) = -  (~)3P I d ~ k ' ~  l~[G*(k'k')l~2oa". ~_~, 
~" <n,, ~_~,> (<no. ~-~,>+ ~.) 

X r E ( k )  - - ~  )io),,, k-k, ~- E(k,~--E~-~,,, k-k,I 
(43) 

is the energy  shift  of an exciton,  and 

r (k)  = 2n ~ I d3kls hl(7"(k'k~)[2 
h (2n) ~ 2oo, k-k, 

X {<n~, t-k,> 8 [E (k) - - E  (k,) -I-/Ro~ k-k,] q- (<no, k--k,> q-- ~) 5 [E (k) - -  E (k,) - -  h ~ .  t-k,] } (44) 

is the damping of the exciton.  Equations (43) and (44) show we have obtained the well-known resu l t s  [11] and 
we shall  t he re fo re  omit  a d i scuss ion  of these  equations. 

As the second example ,  let  us cons ider  b r ie f ly  a s y s t e m  of e lec t rons  in a la t t ice  descr ibed  by the 
Hamil tonian [12] l 

H--~ s T(k)ak~+ako-{-- 2 ho),bq+bq q-~-~- s A(k,--k~) 
k,  ff q kl ,  k2, ~y 

§ + 
X ak,~ak=~(bk,--k~ . --}- bk=-k,), 

where  ?io0 a is the phonon energy;  ak_+ , aka, bq +, and b .  a re  the ope ra to r s  of c rea t ion  and annihilation of 
e l ec t rons ' and  phonons, r e s pec t i ve l y ;  T(k) = (~2k2/2m)-~#; and A(q) de te rmines  the e l ee t ron -phononcoup l ing :  

As in the exciton example ,  the SchriJdinger-type equation for  <ak, a )  can be r ep re sen t ed  in the fo rm 

d<~, o> _ (T (k) ~a ~t~ dt --  -t- hE(k) ) <a~, ~> -- ~-  r(k) <ak, o>,. 

where 

<nk,--k,>+ t <nk-k,> 

ht 

is the energy shift of an electron, and 
2n 

F(k) ----- ~- s IA(k -- k,)[~{(<nk-k,>q- i) 5 (T(k)-- T(k,)-- hOOk--k,) 
k I 

q-<nk -k,>6 (T (k) - -  T(k~) -}- h(ok_k,) } (46) 

is the e lec t ron  damping. The expres s ions  (45) and (46) a re  the s ame  as those obtained by the Green ' s  func-  
t ions method [12] if one se t s  ( a k e + a k e  > ~ 0 in the la t ter .  This is na tura l  s ince the l inear  eqnation of 
SchriSdinger type was obtained in the approximat ion  of smal l  occupation numbers .  

Note that the equation for  the s ing l e -pa r t i c l e  Green ' s  functions is ve ry  s i m i l a r  to the Sehrt idinger-  
type equation but does not contain an inhomogeneity on the r ight -hand side [13-14]. 

We should like to e x p r e s s  our  grat i tude to N. M. Plakida and Yu. A. Tserkovnikov for  helpful d i s cus -  
s ions. 
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