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Abstract

The thermodynamic limit in statistical thermodynamics of many-particle systems is an
important but often overlooked issue in the various applied studies of condensed matter physics.
To settle this issue, we review tersely the past and present disposition of thermodynamic
limiting procedure in the structure of the contemporary statistical mechanics and our current
understanding of this problem. We pick out the ingenious approach by N. N. Bogoliubov, who
developed a general formalism for establishing of the limiting distribution functions in the form
of formal series in powers of the density. In that study he outlined the method of justification
of the thermodynamic limit when he derived the generalized Boltzmann equations. To enrich
and to weave our discussion, we take this opportunity to give a brief survey of the closely
related problems, such as the equipartition of energy and the equivalence and nonequivalence
of statistical ensembles. The validity of the equipartition of energy permits one to decide what
are the boundaries of applicability of statistical mechanics. The major aim of this work is to
provide a better qualitative understanding of the physical significance of the thermodynamic
limit in modern statistical physics of the infinite and ”small” many-particle systems.
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1 Introduction

Equilibrium statistical mechanics1,2, 3, 4, 5, 6, 7, 8, 9 is a well explored and relatively well established
subject, in spite of some unsettled foundational issues. However, it was claimed about decade ago
in an authoritative scientific journal10 that

The fact that classical equilibrium statistical mechanics works is deeply puzzling.

The purpose of the present paper will be to elucidate certain aspects of the reconciliation between
the statistical mechanics and mechanics, i.e. dynamical systems,11,12 to emphasize and address a
few important reasons for such a workability. Our central interest here will be the thermodynamic
limit, equipartition of energy and equivalence and nonequivalence of ensembles.
In classical equilibrium statistical thermodynamics one deals with equilibrium states of a system.
It is assumed that each of those states corresponds to a set of indistinguishable microstates, be-
cause the temperature, the pressure, and all other the so-called thermodynamic variables have
the same value for each microstate of the set. Quantities, such as pressure and temperature are
termed the state variables, which characterize the system in the state of statistical equilibrium.
The thermodynamic limit is reached when the number of particles (atoms or molecules) in a sys-
tem tends to infinity.
Hence, in statistical physics, the thermodynamic limit denotes the limiting behaviour of a physical
system that consists of many particles (or components) as the volume V and the number N of
particles tends to infinity. Simultaneously, the density ratio N/V ∼ n approaches a constant
value. Many characteristic properties of macroscopic physical systems only appear in this limit,
namely phase transitions, universality classes and other critical phenomena.
It is worth noting that the problem of the thermodynamic limit at the earlier stage of statistical
mechanics was hid behind many technicalities of the new discipline.1, 2, 3, 4, 5 Some part of modern
textbooks do the same. Contrary to this, other modern textbooks (see, e.g., Refs.6, 7, 8) discuss the
thermodynamic limit carefully and with eminently suitable manner. For example, the textbook
by Widom7 mention the thermodynamic limit by nine times and book by Dorlas8 devotes to this
question the special chapter. It is remarkable, that the first time when the notion of the thermody-
namic limit appears in the Widom’s book,7 is that when he derives the celebrated Rayleigh-Jeans
law.2 These authors6,7, 8 demonstrated explicitly the essential role of the thermodynamic limit
(which has already been presented in an implicit form in Jeans book2) for the consistent derivation
of that law and other important issues of statistical mechanics.
A significant step in the rigorous treatment of the thermodynamic limit was made by N. N. Bo-
goliubov, who developed a general formalism for establishing of the limiting distribution functions
in the form of formal series in powers of the density. In his famous monograph,13, 14 Bogoli-
ubov outlined the method of justification of the thermodynamic limit and derived the generalized
Boltzmaun equations from his formalism (see also Refs.9,15, 16). For this purpose, he introduced
the concept of stages of the evolution-chaotic, kinetic, and hydrodynamic and the notion of the
time scales, namely, interaction time, free path time, and time of macroscopic relaxation, which
characterize these stages, respectively. At the chaotic stage, the particles synchronize, and the
system passes to local equilibrium. He showed then, that at the kinetic stage, all distribution func-
tions begin to depend on time via the one-particle function. Finally, at the hydrodynamic stage,
the distribution functions depend on time via macroscopic variables, and the system approaches
equilibrium. Bogoliubov also introduced the important clustering principle. Furthermore, these
distribution functions, which are equal to the product of functions, one of which depends only on
momenta being indeed the Maxwell distribution, and the second one depends only on coordinates.
Bogoliubov conjectured that it is often convenient to separate the dependence on momenta and
consider distribution functions, which will depend only on coordinates passing then to the ther-
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modynamic limit. Thus, on the basis of his equations for distribution functions and the cluster
property, the Boltzmann equation was first obtained without employing the molecular chaos hy-
pothesis.
Indeed, let us consider9, 15 the state of a finite system, which consists of N particles distributed
with density 1/V in a region Λ with volume V , |Λ| = V . The system is described by a proba-
bility distribution function FN,Λ(t, x1, x2 . . . xN ) given on the phase space x = (p, q), where p is a
momentum, and q is a coordinate. This function is defined as the solution of the corresponding
Liouville equation, which satisfies certain initial conditions, described in Refs.13, 14 The interaction
potential Φ(qi − qj) was supposed to be the pairwise.
The average value of an observable AN (t, x1, x2 . . . xN ), where AN is a real symmetric function,
is given by the formula

〈AN (t)〉 =
∫

AN (t, x1, x2 . . . xN )FN,Λ(t, x1, x2 . . . xN )dx1dx2 . . . dxN . (1)

The state of an infinite system is obtained as a result of the thermodynamic limit procedure
under which the number of particles N and the volume V of the region Λ tend to infinity while
the density remains constant:

N → ∞, V → ∞, N/V = n.

A rigorous proof of the existence of the thermodynamic limit appeared to be a very difficult prob-
lem.9, 15 To clarify the nature of the difficulties, it is worth noting that the distribution functions
FN,Λ are equal to the ratio of the variables which diverge as NN in the thermodynamic limit. Thus
it was necessarily to prove that these divergences compensate each other and that the limiting
distribution functions will be really well defined as a mathematical object. The main formulas
obtained for equilibrium distribution functions correspond to Gibbs results, however the prob-
lem of justification of the thermodynamic limit procedure remained unsolved for about 50 years
because of the difficulties described above. Only in 1949 did Bogoliubov propose the solution
of this problem.17 He reduced it to the functional-analysis problem of proving the existence of
solutions to certain operator equations and investigating their limiting properties. This program
was realized on the basis of equations for distribution functions.18, 19, 20

In the present topical review a brief survey of some important questions concerning the thermo-
dynamic limit and related problems will be carried out. Our main intention is to sketch here the
physical results rather than a mathematical formalism. Hence, we will stay away from technicali-
ties and will concentrate on the essence of the problems from the physical viewpoint.

2 Interrelation of Statistical Mechanics and Thermodynamics

Before considering of special questions a very brief summary of the interrelation of statistical
mechanics and thermodynamics will be instructive.
The aim of statistical mechanics is to give a consistent formalism for a microscopic description of
macroscopic behavior of matter in bulk.1, 21, 22, 23, 24, 25, 26, 27 The central problem in the statistical
physics of matter is that of accounting for the observed equilibrium and nonequilibrium properties
of fluids and solids from a specification of the component molecular species, knowledge of how
the constituent molecules interact, and the nature of their surrounding. The methods of equilib-
rium and nonequilibrium statistical mechanics have been fruitfully applied to a large variety of
phenomena and materials. From the other side, during the last decades there was a substantial
progress in mathematical foundations of statistical mechanics8, 9, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 and
in studies of ergodic theory and theory of dynamical systems.37, 38
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It is known that thermodynamic properties of many-particle systems are the physical character-
istics that are selected for a description of systems on a macroscopic scale.4, 24, 21, 22, 39 Classical
thermodynamics39 considers the systems (i.e. a region of the space set apart from the remainder
part for special study) which are in an equilibrium state. Thermodynamic equilibrium is a state
of the system where, as a necessary condition, none of its properties changes measurably over a
period of time exceedingly long compared to any possibly observations on the system. Classical
equilibrium thermodynamics deals with thermal equilibrium states of a system, which are com-
pletely specified by the small set of variables, e.g., by the volume V , internal energy E and the
mole numbers Ni of its chemical components.
In classical statistical mechanics one considers the number of particles N which is very large
(typically of order 1023), enclosed in a finite but macroscopically large volume V . A reduced
description requires much smaller number of variable to operate with. Thus, construction of sta-
tistical ensembles1, 4, 21, 22 in the case of statistical equilibrium is based on the appropriate choice
of relevant integrals of motion on which the distribution function can depend.
The statistical ensemble is specified by the distribution function f(p, q, t), which has the meaning
of the probability density of the distribution of systems in phase space (p, q). More precisely, the
distribution function should be defined in such a way that a quantity

dw = f(p, q, t)dpdq

can be considered as the probability of finding the system at time t in the element of phase space
dpdq close to the point (p, q).
The thermodynamic variables with a mechanical origin such as the internal energy E, the volume
V, and the number of particles N, are given well-defined values or averages of the mechani-
cal quantities over the ensemble under consideration.1, 4, 21, 22 On the contrary, thermodynamic
variables such as the entropy S, the temperature T, and the chemical potential µ do not have a
mechanical nature. Those values are usually introduced by identifying terms in the fundamental
differential relation4,24, 21, 22, 39 for the energy E

dE = TdS − PdV + µdN. (2)

Here P is the pressure, one of the thermodynamic intensive variables, T is the temperature and µ is
the chemical potential. Intensive (extensive) variables are the variables whose value is independent
of (depends on) the size and the quantity of matter within the region which is being studied.39

Contrary to this, the subject of statistical mechanics aims to base the statistical approach on the
microscopic models of matter; it deals with those properties of many-particle systems which are
describable in average.1, 4, 21, 22

There are mainly three methods used in equilibrium statistical mechanics, namely, the Boltzmann
method25, 40, 41 of identifying the equilibrium state with the most probable one; the Gibbs ensemble
method1, 4 of postulating a canonical distribution, and the Darwin-Fowler method42 of identifying
the equilibrium state with the average state. Schrödinger23 termed the last approach by themethod
of mean values. It should be noted that the Darwin-Fowler method in statistical mechanics is a
powerful method which allows in a straightforward way the evaluation of statistical parameters
and distributions in terms of relatively simple contour integrals of certain generating functions in
the complex plane.
As a result of the Gibbs ensemble method, the entropy S can be expressed4, 21, 22, 23, 42, 43, 44 in the
form of an average for all the ensembles, namely,

S(N,V,E) = −kB
∑

i

pi ln pi = −kBΩ
( 1

Ω
ln

1

Ω

)

= kB ln Ω(N,V,E), (3)
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where the summation over i denotes a general summation over all states of the system and pi is
the probability of observing state i in the given ensemble and kB is the Boltzmann constant. This
relation links entropy S and probability pi. For thorough mathematical discussion and precise
definition of Gibbs entropy see Ref.45

Boltzmann has used21, 22, 23, 24, 25 a logarithmic relation in the following form

S = kB ln Ω. (4)

Here Ω is the probability of a macroscopic state E and kB = R/NA = 1.3806 · 10−23 JK−1 is
the ratio of the molar gas constant R to the Avogadro constant NA and has the dimension of
entropy. It was termed the Boltzmann constant; in essence this constant relates macroscopic and
microscopic physics. Indeed, the ideal gas equations are PV = NkBT and U = xNkBT , where
x = 3/2 for a monoatomic gas, x = 5/2 for a diatomic gas, and x = 6/2 for a polyatomic gas.
Here U is the internal energy of the gas.
Note that original Boltzmann expression S = k lnW defines the entropy S, a macroscopic quantity,
in terms of the multiplicity W of the microscopic degrees of freedom of a system. Since entropy is
an additive quantity and probability is a multiplicative one, this relationship looks very natural (see
Refs.43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 for detailed discussion). It is easy to see that any monotonic
function of W will have a maximum where W has a maximum. In particular, states that maximize
W also maximize the entropy, S = k lnW .
The assumption of complete statistics49 implies that all states regarding the system is countable
and known completely by us so that we have full knowledge of the interactions taking place in
the system of interest, thereby implying the ordinary normalization condition

∑

i pi = 1. An
alternative procedure for the development of the statistical mechanical ensemble theory is to
introduce the Gibbs entropy postulate which states that for a general ensemble the entropy is
given by Eq.(3). Thus the postulate of equal probabilities in the microcanonical ensemble and the
Gibbs entropy postulate can be considered as a convenient starting point for the development of
the statistical mechanical ensemble theory in a standard approach. It is should be said that this
course of development is workable when the Boltzmann H-theorem was first established.25, 40, 41, 55

After postulating the entropy by means of Eq.(3), the thermodynamic equilibrium ensembles are
determined by the following criterion for equilibrium:

(δS)E,V,N = 0. (5)

This variational scheme is used for each ensemble (microcanonical, canonical and grand canoni-
cal) with different constraints for each ensemble.4, 21, 22, 23, 24 In addition, this procedure introduces
Lagrange multipliers which, in turn, must be identified with thermodynamic intensive variables
(T, P ) using by Eq.(5). From the other hand, the procedure of introducing Lagrange multipliers
and the task of identifying them with the thermodynamic intensive properties can be clarified by
invoking a more general criterion for thermodynamic equilibrium.39,54

It is worth noting that a close relationship exists between the concepts of entropy and prob-
ability,43, 44, 46, 47, 48, 49, 50, 51, 52 the most famous of which is associated with the name of Boltz-
mann.25, 40, 41 Thus entropy and probability are intrinsically related.49 It can showed that the
concavity property of the entropy56, 57, 58, 59, 60 is directly related to a given probability distribu-
tion function for an ideal gas in which binary collisions dominate. Concavity is directly related to
the logarithm of a probability distribution. It is interesting that by relating the entropy directly
to a probability distribution function, one can show that a non-equilibrium version of the entropy
function may be deduced.
The very important statement of the Gibbsian statistical mechanics is the so-called Gibbs’ theorem
on canonical distribution. The theorem states that a small part of a microcanonical ensemble of
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systems with many degrees of freedom is distributed canonically, i.e. according to the law

f(p, q) = Q−1(θ, V,N) exp
(

−H(p, q)

θ

)

. (6)

Here Q(θ, V,N) is the partition function and θ is the modulus of the canonical distribution which
corresponds to the temperature in the phenomenological thermodynamics.39 Thus the partition
functionQ(θ, V,N) is an essential characteristic of the canonical Gibbs ensemble, which determines
the thermodynamic properties of the system. The partition function satisfies to the normalization
condition

Q(θ, V,N) =

∫

exp
(

−H(p, q)

θ

)

dΓ; dΓ =
dpdq

N !~3N
. (7)

As it was mentioned earlier, a statistical ensemble of systems with a specified number of degrees
of freedom N and volume V in contact with a thermal bath (which is a non-trivial notion12, 61)
is called a canonical Gibbs ensemble. Note, that the Gibbs’ postulate1, 4, 24, 21, 9 states that the
canonical equilibrium distribution, of all the normalized distributions having the same mean en-
ergy, is the one with maximum entropy .43, 44, 46, 47, 48, 49, 50, 51, 52, 54 In addition, the Gibbs’ postulate
rests on two assumptions. First, the stationary equilibrium distribution, being canonical, is of ex-
ponential form. Second, Gibbs assumed that all the compared distributions have the same mean
energy values. Thus the use of a more general condition Eq.(7) instead of Eq.(5) as a criterion
for thermodynamic equilibrium permitted us treat the thermodynamic temperature T directly in
the framework of the statistical mechanical formulation.
Before closing this section, it will be informative to remind the important remark by Hugenholtz62

that ”in the many body problem and in statistical mechanics one studies systems with infinitely
many degrees of freedom. Since actual systems are finite but large, it means that one studies a
model which not only is mathematically simpler than the actual system, but also allows a more
precise formulation of phenomena such as phase transitions, transport processes, which are typ-
ical for macroscopic systems. How does one deal with infinitely large systems. The traditional
approach has been to consider large but finite systems and to take the thermodynamic limit at
the end.”

3 The Thermodynamic Limit in Statistical Thermodynamics

The macroscopic equilibrium thermodynamics39 can be considered as a limiting case of sta-
tistical mechanics. This limit was termed by the thermodynamic limit. The thermodynamic
limit6, 7, 8, 9, 26, 27, 63, 64 or infinite-volume limit gives the results which are independent of which
ensemble was employed and independent of size of the box and the boundary conditions at its
edge. Hence the thermodynamic limit is a mathematical technique for modeling macroscopic
systems by considering them as infinite composition of particles (molecules). The question of
existence of these thermodynamical limits is rather complicated and poses lots of mathematical
problems.8, 29, 30, 35, 65 The mathematical theory of thermodynamic limit is too involved to go into
here, but it was discussed thoroughly in Refs.8, 29, 30, 35, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79

To simplify the problem, sometimes it is convenient to replace the thermodynamic limit by work-
ing directly with systems defined on classical configuration spaces of infinite volume. In this case,
one may expects that since these systems tend to show continuous spectra the relevant functions
become relatively well behaved functions. In a certain case the thermodynamic limit is equivalent
to a properly defined continuum limit.64

The essence of the continuum limit is that all microscopic fluctuations are suppressed. The
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thermodynamic limit excludes the influence of surface effects. It is defined by64

lim
V→∞























V → ∞,

V/N,E/N constant (microcanonical ensemble),

V/N, T constant (canonical ensemble),

µ, T constant (grand canonical ensemble).

(8)

Thus, in the thermodynamic limit, surface (boundary) effects becomes negligibly small in com-
parison with the bulk properties.6, 7, 8, 9, 26, 27, 63, 64

It is of importance to recall that N and V are extensive parameters. They are proportional to
V when V/N = const. Contrary to this, the parameter θ = kBT is intensive. It has a finite value
as V → ∞ when V/N = const. In order to describe infinite systems one normalizes extensive
variables, i.e. those that are homogeneous of degree one in the volume, by the volume, keeps
fixed the density, i.e. the number of particles per volume, and takes the limit for N,V tending to
infinity. It is at the thermodynamic limit that the additivity property of macroscopic extensive
variables is obeyed.
The core of the problem lies in establishing the very existence of a thermodynamic limit13,14, 18, 19, 20

(such as N/V = const, V → ∞) and its evaluation for the quantities of interest. Of course,
the problem of existence of these thermodynamical limits is extremely complicated mathematical
problem8,29, 30, 35, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 (sometime it could be convenient to replace
the thermodynamic limit by working directly with systems defined on classical configuration spaces
of infinite volume, etc.).
It was established66 that the free energy is the thermodynamic potential of a system subjected
to the constraints constant T, V,Ni. To clarify the problem of the thermodynamic limit, let us
consider the logarithm of the partition function Q(θ, V,N)

F (θ, V,N) = −θ lnQ(θ, V,N). (9)

This expression determines the free energy F of the system on the basis of canonical distribu-
tion. The standard way of reasoning in the equilibrium statistical mechanics do not requires the
knowledge of the exact value of the function F (θ, V,N). For real system it is sufficient to know
the thermodynamic (infinite volume) limit13, 14, 17, 18, 19, 21, 22, 30, 35, 66, 29

lim
N→∞

F (θ, V,N)

N
|V/N=const = f(θ, V/N). (10)

Here f(θ, V/N) is the free energy per particle. It is clear that this function determines all the
thermodynamic properties of the system.9, 26, 27, 29 Thus, the thermodynamic behavior of a system
is asymptotically approximated by the results of statistical mechanics as N tends to infinity, and
calculations using the various ensembles used in statistical mechanics converge.9, 21, 22, 26, 27, 77, 79

The importance of thermodynamic limit or infinite-volume limit was first mentioned by N.N.
Bogoliubov in his seminal monograph.13,14 That monograph describes methods which gave a
rigorous mathematical foundation for the limiting transition in statistical mechanics, using the
formalism of the Gibbs’ canonical ensemble. A general formalism was developed for establishing
of the limiting distribution functions in the form of formal series in powers of the density.
Later on, in 1949, N.N. Bogoliubov published (with B. I. Khatset) a short article on this subject17

where they formulated briefly their results. Here the foundations were developed for a rigorous
mathematical description of infinite systems in statistical mechanics. These works13,14, 17, 18, 19

gave, in principle, a full solution to the mathematical problem arising during consideration of the
limiting transition N → ∞ in systems described by a canonical ensemble, for the case of positive
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binary particle interaction potential and sufficiently small density. In this approach the system of
equations for the distribution functions was treated in essence as an operator equation in Banach
space. Unfortunately, the methods developed in these papers were not known at that time to
other investigators in mathematical statistical mechanics.
Independently L. Van Hove80, 81, 82 studied the behaviour of the statistical system in the limit in
which the volume of the system becomes infinitely large. He analyzed the problem and found
that in the grand ensemble it is only in this limit that phase transitions, in the form of mathe-
matically sharp discontinuities, can appear. Thus the thermodynamic limit has reformulated as
a pure mathematical problem from which certain complications should be removed. The proof of
Van Hove contained some mathematical shortcomings and was improved by Ruelle67, 68, 71, 29 and
Fisher.66, 69, 70

In his paper67 Ruelle suggested a similar to the Bogoliubov-Khatset approach17 to the study of
the systems of equations for distribution functions. He used the formal method of a large canon-
ical ensemble, which simplified his task in formulating a basis for the limit transition. At the
same time Ruelle was able to consider a more wide class of potential functions by using the very
ingenious idea of making the original equations for the distribution functions symmetrical. Ruelle
has considered the well-known Kirkwood-Salsburg equations,9, 83, 84, 85, 86, 87 i.e. the set of inte-
gral equations which form a linear inhomogeneous system for the (generic) distribution functions
fA(x). In his paper, Ruelle has taken advantage of the linear structure of the Kirkwood-Salsburg
equations and has shown how these equations may be transformed into a single equation for fA(x)
in the Banach space. This work has stimulated a series of articles devoted to studies of the ther-
modynamic limit in various systems. For example, G. Gallavotti and S. Miracle-Sole72 studied
the thermodynamic limit for a classical system of particles on a lattice and proved the existence
of infinite volume correlation functions for a ”large” set of potentials and temperatures.
The complete mathematical treatment of the thermodynamic limit problem was given by N.N.
Bogoliubov and collaborators in 1969 in their fundamental paper.18 That paper formulated a rig-
orous mathematical description of the equilibrium state of the infinite system of particles on the
basis of canonical ensemble theory. A proof is given of the existence and uniqueness of the limiting
distribution functions and their analytical dependence on density. Results have been achieved by
using the methods which were based on the application of the theory of Banach spaces to the
study of the equation for the distribution functions.
Bogoliubov and co-authors showed that in order to obtain thermodynamic relations on the basis of
statistical mechanics one requires to study systems with an infinite number of degrees of freedom.
Such systems are derived from finite systems when there is an infinite increase in the number
of particles N accompanied by a proportional increase in the volume V . Here difficult problems
arose, associated with the rigorous mathematical basis for the limiting transition as N → ∞. To
solve these problems, as authors showed,18 the formalism of the canonical ensemble supplied with
the mechanism of distribution functions is appropriate for the case.
They gave a rigorous mathematical description, based on the theory of the canonical ensemble,
of the equilibrium state (at low density) of infinite systems of particles, whose interaction po-
tential is free from the restriction of positiveness, and satisfies the Ruelle condition.67 Both the
methods, i.e., the method of Bogoliubov-Khatset, and the Ruelle method of symmetrization were
used. For this aim the relations between the distribution functions in a finite volume, which for
the limit transition become the Kirkwood-Salsburg equations were derived. In contrast with the
case of a large canonical ensemble, for a Gibbsian ensemble in a finite volume there are gener-
ally no equations for the distribution functions: the appropriate equations appear only after the
limit transition to infinite volume. This led to new problems, in comparison with the case of a
large canonical ensemble. Then a theorem for the existence and uniqueness of a solution of the
Kirkwood-Salsburg equations for the potentials satisfying the Ruelle condition was proved. In
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addition, a clear estimate was given for the densities for which the solution is a series of inter-
actions. As result of their analysis, a theorem was established concerning the analytical nature
of the dependence of the limit distribution functions on the density. A proof of the existence of
limit distribution functions when the number of particles in the system tends to infinity was given
as well. The uniqueness of these limit functions was established and proved rigorously. Thus
the paper by Bogoliubov, Petrina and Khatset18 and also the classical paper of Bogoliubov and
Khatset17 have established the existence of limiting distribution functions for the microcanonical
ensemble in the case of low densities.
In the paper by Simyatitskii,88 some of the arguments and proofs in the paper by Bogoliubov,
Petrina and Khatset18 were simplified. He obtained the same results using essentially the same
methods but by a somewhat shorter path. The simplifications were achieved by the use of the
apparatus of correlation functions rather than distribution functions. In addition, a more detailed
investigation was made of the question of the equality of the limiting correlation functions of the
microcanonical and grand canonical ensembles in the case of low densities. In addition, Simy-
atitskii88 have been able to avoid many tedious estimates by referring simply to the results by
Dobrushin and Minios,89, 90 who proved an important theorem about the existence of a limit of the
ratios of the microcanonical partition functions. On the basis of these results, Simyatitskii also
investigated in detail the question of the equality of the limiting correlation functions of the grand
canonical and microcanonical ensembles for the usual thermodynamic relationship between the
density n and the activity z in agreement with the result by Bogoliubov, Petrina and Khatset.18, 19

Kalmykov91 analyzed the problem further. The main aim of his paper was to derive an expression
for the thermodynamic potential in terms of the limit correlation functions for classical systems of
identical monatomic molecules. For single-component systems of hard spheres with binary inter-
action, the free energy was expressed in terms of the limit correlation functions of the canonical
ensemble. Some properties of the configuration integral were investigated and estimates obtained
for the correlation functions. His work was based also on the classical results by Bogoliubov,
Petrina and Khatset18, 19 and Dobrushin and Minlos.89, 90

It is known that in specific physical applications it is important to have approximate equations for
some quantities from which correlation functions and the equation of state may easily be obtained.
Gonchar and Rudyk92 used this idea to made a further progress. A new set of strict equations
for correlation functions of equilibrium classical statistical mechanics was proposed. The solution
was constructed for the pair repulsive interaction potential at arbitrary values of activity z and
temperature with the help of some nonlinear monotonically increasing map L. In addition, Gon-
char and Rudyk proved that the radial distribution function oscillates at low density in a system
with a short-range nonnegative potential and investigated the branching of the solutions of an
approximate equation of state.
The existence of thermodynamics for real matter with Coulomb forces was proved by Lieb and
Lebowitz.93, 94 They established the existence of the infinite volume (thermodynamic) limit for
the free energy density of a system of charged particles, e.g., electrons and nuclei. These particles,
which are the elementary constituents of macroscopic matter, interact via Coulomb forces. The
long range nature of this interaction necessitates the use of specific methods for proving the exis-
tence of the limit. It was shown that the limit function has all the convexity (stability) properties
required by macroscopic thermodynamics. They found that for electrically neutral systems, the
limit functions was domain-shape independent, while for systems having a net charge the thermo-
dynamic free energy density was shape dependent in conformity with the well-known formula of
classical electrostatics. The analysis was based on the statistical mechanics ensemble formalism of
Gibbs and may be either classical or quantum mechanical. The equivalence of the microcanonical,
canonical and grand canonical ensembles was demonstrated also.
H. Moraal95 shown, that the configurational partition function for a classical system of molecules
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interacting with nonspherical pair potential is proportional to the configurational partition func-
tion for a system of particles interacting with temperature-dependent spherical k-body potentials.
Therefore, the thermodynamic limit for nonspherical molecules exists if the effective k-body inter-
action is stable and tempered. A number of criteria for the nonspherical potential were developed
which ensure these properties. In case the nonsphericity is small in a certain sense, stability and
temperedness of the angle-averaged nonspherical potential are sufficient to ensure thermodynamic
behaviour.
Heyes and Rickayzen96 have investigated in detail a role of the interaction potential Φ(r) between
molecules (where r is the pair separation). This quantity is the key input function of statistical
mechanical theories of the liquid state. They applied the pair interaction stability criteria of Fisher
and Ruelle70 to establish the range of thermodynamic stability for a number of simple analytic
potential forms used for condensed matter theory and modelling in the literature. In this way
they identified the ranges of potential parameters where, for a given potential, the system is ther-
modynamically stable, unstable and of uncertain stability. This was further explored by carrying
out molecular dynamics simulations on the double Gaussian potential in the stable and unstable
regimes. It was shown that, for example, the widely used exponential-6 and Born-Mayer-Huggins
alkali halide potentials produce many-particle systems that are thermodynamically unstable. Thus
they have been able to decide the stability or instability of potentials which are the difference of
two Gaussians or of two exponentials for all real positive values of their parameters. The parame-
ter ranges of instability of the generalized separation-shifted Lennard-Jones and so-called SHRAT
potential systems were established in this work.
Additional discussion of the applications of the thermodynamic limit in concrete situations were
considered by Styer.97, 98 In particular, it was demonstrated that the widely used microcanonical
”thin phase space limit” must be taken after taking the thermodynamic limit.
Some important aspects of the nonequilibrium, thermostats, and thermodynamic limits were stud-
ied thoroughly by Gallavotti and Presutti.99 They studied many important aspects of the problem,
but left open the main problem, namely what can be said about the limit t → ∞, i.e., the study
of the stationary states reached at infinite time. Instead, a conjecture has been proposed: the
limit will be an equilibrium Gibbs distribution at some intermediate temperature.

4 Equipartition of Energy

In spite of that the problem of equipartition of energy2 in classical statistical mechanics is an old
issue, it is still of interest because it can be used to understand better some of the background
of statistical mechanics. The essential problem in statistical thermodynamics is to calculate the
distribution of a given amount of energy E over N identical systems. The basic statement in
statistical mechanics, which also known as the equal a priori probability conjecture, is the one of
the main postulates of the equilibrium statistical mechanics.2,4, 21, 22 The equipartition conjecture
rests essentially upon the hypothesis that for any given isolated system in equilibrium, it is valid
that the system is found with equal probability in each of its accessible microstates. The equipar-
tition hypothesis (or theorem) originated in the molecular theory of gases.2 The equipartition
theorem states that each degree of freedom contributes 1/2RT to the molar internal energy, E, of
a gas. It will be of interest to give here the original Jeans2 formulation:

The energy to be expected for any part of the total energy which can be expressed as
a sum of squares is at the rate of 1/2RT for every squared term in this part of the
energy.

A gas that consists of individual atoms (like He, Ne, Ar) has a low heat capacity because it
has few degrees of freedom. The atoms can move freely in space in the x−, y−, or z-directions.
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This translational motion corresponds to n = 3 degrees of freedom. However, atoms have no
other types of internal motions such as vibrations or rotations, so the total number of degrees of
freedom for a monatomic system is equal to 3. Once the degrees of freedom are determined, the
internal energy is calculated from the equipartition theorem,

E = n(1/2RT ). (11)

For example, the monatomic gas exhibits only 3 degrees of freedom. Therefore, the prediction
from the equipartition theorem for the molar internal energy is E = (3/2RT ).
For diatomic molecules along with linear and nonlinear polyatomic molecules in the gas phase,
the number of degrees of freedom can be determined and therefore the theoretical internal energy
and heat capacity can be predicted. In addition to the 3 translational degrees of freedom, contri-
butions from rotational and vibrational degrees of freedom must be considered.
For diatomic and linear polyatomic molecules, rotational motion contributes 2 degrees of freedom
to the total, while for nonlinear polyatomic molecules, rotational motion contributes 3 degrees of
freedom. For diatomic and linear polyatomic molecules, vibrational motion contributes 2(3N −5)
degrees of freedom to the total, while for nonlinear polyatomic molecules, vibrational motion con-
tributes 2(3N − 6) degrees of freedom, where N is the number of atoms in the molecule. Using
these rules, the total number of degrees of freedom can be determined and the equipartition theo-
rem can then be used to determine a theoretical prediction for the molar internal energy and the
heat capacities.
Thus the classical energy equipartition theorem constitutes an important point in equilibrium
statistical physics, which has been widely discussed and used.
In its simplest version the equipartition principle deals with the contribution to the average energy
of a system in thermal equilibrium at temperature T due to quadratic terms in the Hamiltonian.
More precisely, it attests that any canonical variable x entering the Hamiltonian through an ad-
ditive term proportional to x2 has a thermal mean energy equal to kBT/2 , where kB is the
Boltzmann constant. The most familiar example is provided by a three dimensional classical ideal
gas.
Thus, it should be emphasized that the equipartition principle is a consequence of the quadratic
form of terms in the Hamiltonian, rather than a general consequence of classical statistical me-
chanics. Note, however, that the principle of equipartition is a strictly classical concept, that is,
the degree of freedom contributed much should be such that ∆ε/kBT is small in passing from one
level to another.
The generalized equipartition principle4,21, 22, 24 formulates its essence in the following form. Let us
consider a classical many-particle system of N interacting particles with the Hamiltonian H(p, q).
Let xj be one of the 3N momentum components or one of the 3N spatial coordinates. Then the
following equality will be hold

〈

xi
∂H

∂xj

〉

= kBTδij . (12)

Here 〈. . .〉 is the relevant ensemble average. It is clear that this equality can only hold asymptot-
ically in the thermodynamic limit.
There are more general and advanced formulations100,101, 102 of the generalized equipartition prin-
ciple. Nevertheless, the equipartition, in principle, should be valid in the thermodynamic limit
only. In addition, the equipartition principle yields a direct and intrinsic method for the definition
of the absolute temperature,4,21, 22, 24, 103 irrespective of the interaction or the phase state. The
problem of the consistent definition of the temperature for small systems, such as clusters, etc.,
is under current intensive investigation.103, 104, 105, 106 There are many various applications of the
generalized equipartition principle, for example, application to the phenomenon of laser cooling
and the equipartition of energy in the case of radiation-atom interaction.107
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These are the conclusions arrived at from a study of the equipartition of energy in many-particle
systems based on the classical dynamics of systems studied. Moreover, the presence of the
quadratic form of terms in the Hamiltonian was established as decisive. Since the mid fifties
the intensive studies of the equipartition of energy for nonlinear systems began.108, 109 Nonlinear
effects are of the greatest importance in various fields of science. In the last decades a remark-
able and fundamental development has occurred in the theory of nonlinear systems, leading to
a deeper understanding of the interrelation of classical and quantum mechanics and statistical
mechanics.110, 111, 112, 113

The general importance of the nonlinearity for many-particle systems was demonstrated clearly by
Ulam, Fermi and Pasta in their seminal study.108, 109 It was shown that the lack of equipartition of
energy observed by Ulam, Fermi and Pasta for certain nonlinear systems has serious and deep rea-
sons. Numerous authors have investigated and explored this fascinating field,110,111, 112, 113, 114, 115, 116, 117, 118, 119

covering much the same ground of the interrelation of classical and quantum mechanics and sta-
tistical mechanics.
Galgani112 has presented the point of view of L. Boltzmann on energy equipartition, which is not
so well known. Boltzmann was confronted with the essential qualitative difficulties of classical
statistical mechanics of his time.120 The main message is that, according to Boltzmann, the two
questions, equipartition and Poincare recurrence,121, 122, 123, 124, 125 ”should be treated on the same
foot”. Roughly speaking, in connection with the problem of equipartition of energy, which seemed
to demolish classical statistical mechanics, Boltzmann foresaw a solution of the same type he had
afforded for the Poincare recurrence paradox,121, 122, 123, 124, 125 in the sense that the problem does
not occur for finite, ”enormously long”, times.
An averaging theorem for Hamiltonian dynamical systems in the thermodynamic limit was de-
rived by A. Carati126 in connection with the the foundations of statistical mechanics. This theorem
helps to understand better some essential feature of the Fermi-Pasta-Ulam phenomenon: the en-
ergy remains confined to the low frequency modes, while the energies (i.e., up to a factor, the
actions) of the high frequency modes remain frozen up to very large times. It was shown how to
perform some steps of perturbation theory if one assumes a measure-theoretic point of view, i.e. if
one renounces to control the evolution of the single trajectories, and the attention is restricted to
controlling the evolution of the measure of some meaningful subsets of phase space. For a system
of coupled rotators, estimates uniform in N for finite specific energy were obtained in quite a
direct way. This was achieved by making reference not to the sup norm, but rather, following
Koopman and von Neumann, to the much weaker L2 norm.
Hence, it was established that there are various reasons for lack of the equipartition of en-
ergy.11, 12, 127, 128 In this context, it was said128 that ”one of the basic problem of statistical
mechanics is to decide its range of applicability, in particular, the validity of the equipartition of
energy. Deciding what are the boundaries of applicability of statistical mechanics has become one
of the fundamental problems not only for the foundations but, indeed, for the applications”.

5 Ensemble Equivalence and Nonequivalence

It is well known that the equilibrium thermodynamics21,22, 27, 24 of any type of normal large system
(e.g. a monoatomic gas) can be derived using any one of the statistical equilibrium Gibbs en-
sembles (microcanonical, canonical and grand canonical). However, there some subtleties, which
should be taken into account properly. To see this point clearly, it will be useful to remind that,
when considering a monoatomic ideal gas, each of the three ensembles will lead to the known
equation of state PV = NkBT . From the other hand, it is also well known that in canonical
ensemble the number of particles N is fixed, whereas in grand canonical ensemble N is not fixed
and can fluctuate. All the standard considerations21, 22, 27, 24 of the ensemble equivalence in Gibbs’
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statistical mechanics are based on the fact that the fractional fluctuations of N are very small,
∆N/N ∼ 1/

√
N .

The conceptual basis of statistical mechanics and thermodynamics is relatively well established129, 130

and it was shown in various ways131, 132, 133, 134, 135, 136 that normal systems with huge degrees of
freedom satisfy the laws of statistical mechanics.
The question of the ensembles equivalence was considered by various authors. Considerable lit-
erature has developed on this subject.77, 79, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146 A. M. Khalfina143

investigated the limiting equivalence of the canonical and grand canonical ensembles for the low
density case. In that paper it was shown that the limiting Gibbs distribution, whose existence
was established previously by starting from the grand canonical ensemble, can also be obtained
by starting from the canonical ensemble, and both distributions coincide when a certain relation
exists144 between the parameters β and µ (for fixed β). The proof was based on the local limit
theorem for the number of particles.
It was shown by Adler and Horwitz,146 that complex quantum field theory can emerged as a
statistical approximation to an underlying generalized quantum dynamics. Their approach was
based on the already established formalism of application of statistical mechanical methods to
determination of the canonical ensemble governing the equilibrium distribution of operator ini-
tial values. Their result was obtained by the arguments based on a Ward identity (analogous to
the equipartition theorem of classical statistical mechanics). Adler and Horwitz146 constructed
in their work a microcanonical ensemble which forms the basis of this canonical ensemble. That
construction enabled to them to define the microcanonical entropy and free energy of the field
configuration of the equilibrium distribution and to study the stability of the canonical ensemble.
They also studied the algebraic structure of the conserved generators from which the microcanon-
ical and canonical ensembles were constructed, and the flows they induce on the phase space.
Although the ensemble equivalence holds for normal large system, we will mention, mainly by
reference only, a few examples of systems where the nonequivalence of Gibbs ensembles oc-
cur147, 148, 149, 150 by various reasons.
Some objection to the standard arguments of the ensembles equivalence were put forward re-
cently.147,148, 149 According to this point of view some researchers have found examples of statis-
tical mechanical models characterized at equilibrium by microcanonical properties which have no
equivalent within the framework of the canonical ensemble. The nonequivalence of the two ensem-
bles has been observed for these special models both at the thermodynamic and the macrostate
levels of description of statistical mechanics of these systems. This is a contradiction with J.
W. Gibbs,1 who insisted that the canonical ensemble should be equivalent to the microcanonical
ensemble in the thermodynamic limit. In this limit, the thermodynamic limit, the system should

thus appear to observation as having a definite value of energy - the very conjecture which the
microcanonical ensemble is based on. The conclusion then apparently follows, namely: both the
microcanonical and the canonical ensembles should predict the same equilibrium properties of
many-body systems in the thermodynamic limit of these systems independently of their nature.
The fluctuations of the system’s energy should become negligible in comparison with its total
energy in the limit where the volume of the system tends to infinity.
H. Touchette and co-authors147, 148, 149 attempted to give relevant physical interpretation and an
accessible explanation of the phenomenon of nonequivalent ensembles.
In particular, H. Touchette and co-authors147,148, 149 investigated various aspects of generalized
canonical ensembles and corresponding ensemble equivalence. They introduced a generalized
canonical ensemble obtained by multiplying the usual Boltzmann weight factor exp(−βH) of the
canonical ensemble with an exponential factor involving a continuous function g of the Hamilto-
nianH. They focused on a number of physical rather than mathematical aspects of the generalized
canonical ensemble. The main result obtained is that, for suitable choices of g, the generalized
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canonical ensemble reproduces, in the thermodynamic limit, all the microcanonical equilibrium
properties of the many-body system represented by H even if this system has a nonconcave mi-
crocanonical entropy function. This is something that in general the standard (g = 0) canonical
ensemble cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can often
be made equivalent to the microcanonical ensemble in cases in which the canonical ensemble can-
not. The case of quadratic g functions was discussed in detail; it leads to the so-called Gaussian
ensemble.
Very recently it was pointed by G. De Ninno and D. Fanelli,150 that classical statistical mechanics
most commonly deals with large systems, in which the interaction range among components is
much smaller than the system size. In such ”short-range” systems, energy is normally additive and
statistical ensembles are equivalent. The situation may be radically different when the interaction
potential decays so slowly that the force experienced by any system element is dominated by the
interaction with far-away components. In these ”long-range” interacting systems energy is not
additive. Well-known examples of non-additive ”long-range” interacting systems are, for instance,
found in cosmology (self-gravitating systems) and plasma physics applications, where Coulomb
interactions are at play. The lack of additivity, together with a possible break of ergodicity, may
be at the origin of a number of peculiar thermodynamic behaviours: the specific heat can be
negative in the microcanonical ensemble, and temperature jumps may appear at microcanonical
first-order phase transitions. When this occurs, experiments realized on isolated systems give a
different result from similar experiments performed on systems in contact with a thermal bath.
As a consequence, the canonical and microcanonical statistical ensembles of long-range interacting
systems may be non-equivalent.
G. De Ninno and D. Fanelli,150 discussed out-of-equilibrium statistical ensemble nonequivalence.
They considered a paradigmatic model describing the one-dimensional motion of N rotators cou-
pled through a mean-field interaction, and subject to the perturbation of an external magnetic
field. The latter was shown to significantly alter the system behaviour, driving the emergence
of ensemble nonequivalence in the out-of-equilibrium phase, as signalled by a negative (micro-
canonical) magnetic susceptibility. The thermodynamic of the system was analytically discussed,
building on a maximum-entropy scheme justified from first principles. Simulations confirmed the
adequacy of the theoretical picture. Ensemble nonequivalence was shown to rely on a peculiar phe-
nomenon, different from the one observed in previous works. As a result, the existence of a convex
intruder in the entropy was found to be a necessary but not sufficient condition for nonequivalence
to be (macroscopically) observed. Negative-temperature states were also found to occur. These
intriguing phenomena reflect the non-Boltzmanian nature of the scrutinized problem and, as such,
bear traits of universality that embrace equilibrium as well as out-of-equilibrium regimes.
However, it should be emphasized that this field of researches is still under debates and the
thorough additional investigations in this direction should be carried out.151, 152, 153, 154

6 Phase Transitions

The aim of statistical mechanics is to derive the properties of macroscopic systems from the prop-
erties of the individual particles and their interactions. In particular it is the task of statistical
mechanics to give an explanation of phase transitions, transport phenomena and the approach
to equilibrium in the course of time for a non-equilibrium system. Physicist have been trying to
understand the occurrence of phase transitions by use of statistical mechanics since the famous
dissertation of van der Waals in 1873.
The problem of phase transitions in the interacting many-particle systems has been studied inten-
sively during the last decades from both the experimental and theoretical viewpoints.30,32, 155, 156, 157, 158, 159, 160

Phase transitions occur in both, equilibrium and nonequilibrium systems. Typical examples of the
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equilibrium phase transitions are the transitions between different states of matter (solid, liquid,
gaseous, etc.) or the transition from normal conductivity to superconductivity.
In the vicinity of a phase transition point,158, 159 a small change in some external control parame-
ter (like pressure or temperature) results in a dramatic change of certain physical properties (like
specific heat or electric resistance) of the system under consideration. Many aspects of the theory
of phase transitions are related in one way or another with the thermodynamic limit transition
procedure.30, 35 This is rather evident from the fact that an equilibrium phase transition is defined
as a nonanalyticity of the free-energy density F/N .
Phase transitions have been an important part of statistical mechanics for many years. During the
last decades the mathematical theory of the phase transitions30, 32, 33, 155, 156, 157 achieved a marked
progress, in particular in a systematic study of the (quantum) mechanics of systems with infinitely
many degrees of freedom. The theory of operator algebras, in particular C∗-algebras,62, 161 plays
an important part in these developments.
Although, in certain models, one can prove the existence of a phase transition, for instance in the
Ising model in two and more dimensions with zero external field,30, 32, 155, 156, 157, 158, 159, 160 theo-
retically the situation with respect to phase transitions in general still is not fully understood.
More recently phase transitions have become an object of intensive studies in computer science
(study of 3-satisfiability), combinatorics (birth of the giant component for various random graph
models) and probability theory (cutoff phenomena for Markov chains).
Here we touch briefly of some issues only from the physical viewpoint. Such a physical viewpoint
on the essence of the phase transitions was formulated recently by M. E. Fisher and C. Radin.162

We shall follow to that work reasonably close because of its remarkable transparency and clarity.
According to M. E. Fisher and C. Radin,162 there are various thermodynamic variables one can
use to describe matter in thermal equilibrium, some of the common ones being: mass or number
density N/V , energy density E/N , temperature T , pressure P , and chemical potential µ. By def-
inition the states of a ”simple” system can be parameterized by two such (independent) variables,
in which case the others can be regarded as functions of these. We will assume we are modelling
a simple material. Then a particularly good choice for independent variables is T and µ.
M. E. Fisher and C. Radin162 remarked that it is a fundamental fact of thermodynamics that
the pressure P is a convex function of these variables, and, in particular, this convexity embodies
certain mechanical and thermal stability properties of the system. Moreover, all thermodynamic
properties of the material can be obtained from P as a function of T and µ by differentiation.
It is worth reminding that the question of a convexity of thermodynamic variables was investi-
gated in detail by L. Galgani and A. Scotti.56, 57, 58 They considered the usual basic postulate of
increase of entropy for an isolated system. In addition, it was pointed out that that postulate
can be formalized mathematically as a superadditivity property of entropy. This fact has two
kinds of implications. It allows one to deduce in a very direct and mathematically clear way
stability properties such as cV ≥ 0 and KT ≥ 0. Here cV = (T∂S/∂T )V is a specific heat and
KT = −1/V (∂P/∂V )T ; the entropy S was defined through the functional relation S = S(E,V,N).
On this basis L. Galgani and A. Scotti56, 57, 58 were able to justify of the equivalence of various
thermodynamic schemes as expressed for example by the fact that the minimum property of the
free energy is a consequence of the maximum property of entropy.
The following definitions given below were straightforwardly adapted from Ref.162

A thermodynamic phase of a simple material is an open, connected region in the space of ther-
modynamic states parametrized by the variables T and the pressure P being analytic in T and µ.
Specifically, P is analytic in T and µ, at (T0, µ0) if it has a convergent power series expansion in
a ball about (T0, µ0) that gives its values. Phase transitions occur on crossing a phase boundary.
The graph of P = P (T, µ) is not only convex but (for all reasonable physical systems) also has no
(flat) facets. M. E. Fisher and C. Radin162 used this fact in their definition of phase; without this
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property there would typically be open regions of states representing the coexistence of distinct
phases. The essential point is the choice of independent variables, which can lead to the appear-
ance of domains representing two or more coexisting phases. They noted also that in particular
the isothermal (i.e., constant T ) ”tie lines” connecting the distinct phases that can coexist at the
range of overall intermediate densities spanned at a fixed temperature.
On their phase diagram158,159, 160, 162 an intrinsic difference between vapor and liquid ”phases”,
which can be analytically connected, and between these regions of the fluid phase and the solid
phase, which cannot be so connected may be clearly seen.
M. E. Fisher and C. Radin162 mentioned that in the modern literature an important distinc-
tion is made between ”field” variables and ”density” variables, which helps to explain various
consequences of the choice of independent and dependent variables. The foregoing constitutes a
”thermodynamic” description of phases and phase transitions. There is a deeper description, that
of statistical mechanics, deeper in that it allows natural (”molecular”) models from which one can
in principle compute the pressure as a function of T and µ.
In the statistical mechanical description the thermodynamic states are realized or represented as
probability measures on a certain space and the measures still parameterized by thermodynamic
variables, e.g. the two variables, specifically temperature T and chemical potential µ). M. E.
Fisher and C. Radin162 considered first a finite system of N particles contained in a reasonably
shaped domain, say Λ of volume V . In this case the probability densities in the phase space (x,p)
for particles, will be proportional to the weights fN (T, µ,x,p).
The structure of the energy EN is determined only when one settles on the type of ”interactions”
the constituent particles can undergo; that not only depends on the material being modelled but
also on what environment. Then they considered the grand canonical pressure of the finite-volume
system, which is given by PV (T, µ). For reasonable interaction potentials Φ the pressure PV as a
function of T and µ will be everywhere analytic. In order to model a sharp phase transition they
considered the thermodynamic limit

P (T, µ) = lim
V→∞

PV (T, µ). (13)

Then P (T, µ) may be identified as the thermodynamic pressure to which the above definitions of
a phase and a phase transition applies. The proof of the existence of the thermodynamic limit
requires certain conditions on the interaction potential.
In the present context, this very clear but terse formulation of the role of the thermodynamic limit
requires an additional comment. First, a a few general remarks will be useful. It is known163 that
to discuss a certain phase transition of interest with the above definition, the free energy density
has to be considered as a function of the relevant control parameters, i. e. those which, upon
variation, give rise to the phase transition.
The number of independent intensive variables, r, which determine the state of a heterogeneous
system is given by the Gibbs phase rule,39

r = c− φ+ 2,

where c is the number of independent components and φ is the number of phases in the system.
For the phase transitions between the aggregate states of, say, water, the (Gibbs) free-energy
density as a function of temperature and pressure is a suitable choice. For spin systems there are
at most two such relevant control parameters, the temperature T and an external magnetic field
Hext, and therefore the free-energy density f(T,Hext) will be a function of the inverse temperature
β = 1/(kBT ) and the magnetic field Hext. Quantities like the specific heat or caloric curves which
are typically measured in an experiment are then given in terms of derivatives of the free-energy
density. Nonanalyticities of derivatives may hence lead to discontinuities or divergences in these
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quantities, which are experimental hallmarks of phase transitions.
Our special interest will be in the emphasizing of the main difficulty in the theory of phase
transition in the many-particle interacting systems. This is the task of the evaluation of partition
functions associated with particular physical systems of interest. In this context it will be of
instruction to discuss the concept of the isothermal-isobaric (or T − P ) ensemble,21, 22, 164, 165

which is used in the condensation theory.21,22, 166

A system (consisting of N molecules) in the isothermal-isobaric ensemble of temperature T and
pressure P is described by means of partition function21,22, 164, 165

RN (P, T ) =

∫

∞

0

dV
∑

i

ωi exp

(−PV − Ei

kBT

)

. (14)

The equation of state for the imperfect gas was deduced164, 165 in terms of the cluster concept.
Then the properties of imperfect gases and the condensation phenomena were investigated and
described in the limit N → ∞, employing the concepts of ”small”, ”large”, and ”huge” clusters.
What is remarkable, when authors in their theory164 have neglected the volume dependence of
the cluster integral the obtained an unrealistic result: the lower limit of the range of fluctuation
in v = V/N has become zero. When, however, they introduced165 the volume dependence of the
cluster integrals, this lower limit becomes a certain positive value, corresponding to the volume
of the pure liquid. As vas stressed above, phase transitions of a physical systems stem from the
singularities of a limiting functions related to the partition functions of the system. The limit
〈v〉∞ ( for N → ∞) of the ensemble average 〈v〉 of the specific volume v = V/N , which fluctuates
in the (T − P ) ensemble, was calculated in the form164, 165

〈v〉∞ = lim
N→∞

〈v〉 = − lim
N→∞

kBT

N

( ∂

∂P
lnRN (P, T )

)

T
= kBT

(∂ ln z

∂P

)

T
, (15)

where z is the activity.
This example shows clearly that the procedure of taking the thermodynamic limit requires very
careful performance.

7 Small and Non-Standard Systems

Statistical physics derives observable (or emergent) properties of macroscopic matter from the
atomic structure and the microscopic dynamics. Those characteristics are temperature, pressure,
mean flows, dielectric and magnetic constants, etc., which are essentially determined by the in-
teraction of many particles (atoms or molecules). The central point of statistical physics is the
introduction of probabilities into physics and connecting them with the fundamental physical
quantity entropy. A special task of this theory was to connect microscopic behavior with thermo-
dynamics.
From the brief sketch of the statistical thermodynamics, already given above, it should be clear
that the ”normal” thermodynamic systems must be large enough to avoid the influence of the
boundary effects. In statistical mechanics167 one studies large systems and the aim is to derive
the macroscopic, or thermodynamical properties of such systems from the equation of motion of
the individual particles. Due to their large size, such systems have features such as phase transi-
tions,30, 32, 155, 156, 157, 158, 159, 160, 168 transport phenomena,27, 38 which are absent in small systems.
To exhibit such features in full measure one has to consider the limiting case of infinitely large
systems, i.e., systems with infinitely many degrees of freedom. This means that one has to con-
sider large, but finite, systems and take the thermodynamic limit at the end.
However, small systems169, 170, 171, 172, 173, 174, 175, 176 are becoming increasingly interesting from both
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the scientific and applied viewpoints. Small systems are those in which the energy exchanged
with the environment is a few times kBT and energy fluctuations are observable. For example,
nanoscience177, 178, 179 demands a progressive reduction in the size of the systems, and the fabri-
cation of the new materials requires an accurate control over condensation and crystallization.172

Small systems found throughout physics, chemistry, and biology manifest striking properties as
a result of their tiny dimensions.173 Examples of such systems include magnetic domains in
ferromagnets, which are typically smaller than 300 nm, quantum dots and biological molecular
machines that range in size from 2 to 100 nm, and solid-like clusters that are important in the
relaxation of glassy systems and whose dimensions are a few nanometers. There are a big interest
in understanding the properties of such small systems.169, 170, 171, 172, 173, 174, 175, 176

There are a lot of specificities in describing such systems.104, 105, 106, 154, 174, 175, 176 For examples,
J. Naudts175 showed by slight modification of the Boltzmann’s entropy that it is possible to make
it suitable for discussing phase transitions in finite systems. As an example, it was shown that
the pendulum undergoes a second-order phase transition when passing from a vibrational to a
rotating state.
There is an interest in phase transitions in pores and in the so-called melting of small clusters.172

Although these clusters are equilibrated in a heat bath before being isolated, when they are
isolated each cluster corresponds to a microcanonical ensemble in which a ”microcanonical tem-
perature”(c.f. Ref.170) must be defined via reference to entropy.172 The act of ”melting” then
becomes a matter of definition, etc.
These topics form the new branch of thermodynamics,180 the so-called nanothermodynamics and
non-extensive thermodynamics. They are used to study of those physical systems that have not
the property of extensivity and are characterized by a small size.

8 Concluding Remarks

This review was limited to selected topics of the statistical mechanics. The emphasis was on the
thermodynamic limit, equipartition of energy and equivalence and nonequivalence of ensembles.
The analysis carried out in the previous sections shows that from the statistical mechanics point
of view, a thermodynamic system is one whose size is large enough so that fluctuations are negli-
gible. This was shown very clearly by many authors, e. g., by T. L. Hill21, 22 and D. N. Zubarev27

in their books on statistical mechanics and thermodynamics.21, 22 This is a conclusion arrived at
from the present study of the problem of the thermodynamic limit.
To sum up, the statistical mechanics is best applied to large systems. Formally, its results are
exact only for infinitely large systems in the thermodynamic limit. However, even at the thermo-
dynamic limit, there are still small detectable fluctuations in physical quantities, but this has a
negligible effect on most sensible properties of a system. The thermodynamic functions calculated
in statistical mechanics should be independent of the ensemble used in the calculation. But as
to the fluctuations, the situation is different. For each environment, i.e. for each ensemble the
problem is different. Moreover, the variable which fluctuate are different.27

It is the hope of the author that the present short review will serve, nevertheless, as a quick
introduction to the subject and will help reader to appreciate vividly a beauty and elegance of
statistical mechanics as an actual and developing branch of contemporary science.
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