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In order to account for competition and interplay of localized and itinerant magnetic
behaviour in correlated many body systems with complex spectra the various types
of spin-fermion models have been considered in the context of the Irreducible Green’s
Functions (IGF) approach. Examples are generalised d–f model and Kondo–Heisenberg
model. The calculations of the quasiparticle excitation spectra with damping for these
models has been performed in the framework of the equation-of-motion method for
two-time temperature Green’s Functions within a non-perturbative approach. A unified
scheme for the construction of Generalised Mean Fields (elastic scattering corrections)
and self-energy (inelastic scattering) in terms of the Dyson equation has been generalised
in order to include the presence of the two interacting subsystems of localised spins and
itinerant electrons. A general procedure is given to obtain the quasiparticle damping
in a self-consistent way. This approach gives the complete and compact description of
quasiparticles and show the flexibility and richness of the generalised spin-fermion model
concept.

1. Introduction

The existence and properties of localised and itinerant magnetism in metals, oxides

and alloys and their interplay is an interesting and not yet fully understood prob-

lem of quantum theory of magnetism. The behaviour and the true nature of the

electronic and spin states and their quasiparticle dynamics are of central impor-

tance to the understanding of the physics of correlated systems such as magnetism

and Mott–Hubbard metal-insulator transition in metal and oxides, magnetism and

heavy fermions (HF) in rare-earths compounds, high-temperature superconductiv-

ity (HTSC) in cuprates and anomalous transport properties in perovskite mangan-

ites. This class of systems are characterized by the complex, many-branch spectra

of elementary excitations and, moreover, the correlations effects are essential.

Recently there has been considerable interest in identyfying the microscopic

origin of quasiparticle states in such systems and a number of model approaches
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have been proposed. A principle importance of these studies is concerned with a

fundamental problem of electronic solid state theory, namely with the tendency of

3d electrons in transition metal compounds and 4f electrons in rare-earth metal

compounds to exhibit both localized and delocalized behaviour. The interesting

electronic and magnetic properties of these substances are intimately related to this

dual behaviour of electrons. In spite of experimental and theoretical achievements

still it remains much to be understood concerning such systems.

Many magnetic and electronic properties of these materials may be interpreted

in terms of combined spin-fermion models (SFM), which include the interacting spin

and charge subsystems. This add the richness to physical behaviour and brings in

significant and interesting physics, e.g. the bound states and magnetic polarons,

HF and collosal negative magnetoresistance.

The problem of the adequate description of quasiparticle many-body dynam-

ics of generalised spin-fermion models has been studied intensively during the last

decades, especially in the context of magnetic and transport properies of rare-earth

and transition metals and their compounds,1–4 magnetic semiconductors,5,6 inter-

play of magnetism and HF,7,8 HTSC9–14 and magnetic and transport properties of

perovskite manganites.4,15,16 Variety of metal–insulator transitions and correlated

metals phenomena in d(f)-electron systems as well as the relevant models have

been comprehensively discussed recently in Ref. 4.

The basic theory of the physical behaviour of SFMs has been studied mainly

within mean field approximation. However many experimental investigations call

for a better understanding of the nature of solutions (especially magnetic) to the

spin-fermion and related correlated models, such as t–J , Kondo–Heisenberg model,

etc.4,12

In the previous papers we set up the formalism of the method of the Irreducible

Green’s Functions (IGF).17–25 This IGF method allows one to describe the quasi-

particle spectra with damping for the systems with compex spectra and strong

correlation in a very general and natural way. This scheme differs from the tradi-

tional method of decoupling of the infinite chain of the equations26 and permits

to construct the relevant dynamical solutions in a self-consistent way on the level

of the Dyson equation without decoupling the chain of the equation of motion for

the GFs.

In this paper we apply the formalism to consider the quasiparticle spectra for

the complex systems, consisting of a few interacting subsystems. It is the purpose

of this paper to explore more fully the notion of Generalized Mean Fields (GMF)12

which may arise in the system of interacting localized spins and lattice fermions to

justify and understand the “nature” of relevant mean-fields and damping effects.

It is worthy to emphasize that in order to understand quantitatively the elec-

trical, thermal and superconducting properties of metals and their alloys one needs

a proper description an electron–lattice interaction too.27–29 A systematic, self-

consistent simultaneous treatment of the electron–electron and electron–phonon in-

teraction plays an important role in recent studies of strongly correlated systems.24
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The natural approach for the description of electron-lattice effects in such type of

compounds is the Modified Tight-Binding Approximation (MTBA).28,29 We shall

consider here the effects of electron-lattice interaction within the spin-fermion model

approach.

The purpose of this paper is to extend the general analysis to obtain the quasi-

particle spectra and their damping of the concrete model systems consisting of

two or more interacting subsystems within various types of spin-fermion models to

extend their applicability and show the effectiveness of IGF method.

2. Irreducible Green’s Functions Method

In this paper we will use the IGF approach which allows one to describe completely

the quasi-particle spectra with damping in a very natural way. The essence of our

consideration of the dynamical properties of many-body system with complex spec-

tra and strong interaction is related closely with the field theoretical approach and

use the advantage of the Green’s functions language and the Dyson equation. It is

possible to say that our method tend to emphasize the fundamental and central role

of the Dyson equation for the single-particle dynamics of the many-body systems

at finite temperatures.

In this Section, we will discuss briefly this novel nonperturbative approach for

the description of the many-body dynamics of many branch and strongly correlated

systems. The considerable progress in studying the spectra of elementary excitations

and thermodynamic properties of many-body systems has been for most part due

to the development of the temperature dependent Green’s Functions methods. We

have developed a helpful reformulation of the two-time GFs method26 which is

especially adjusted17 for the correlated fermion systems on a lattice and systems

with complex spectra.5,6 The similar method has been proposed in Ref. 30 for Bose

systems (anharmonic phonons and spin dynamics of pure Heisenberg ferromagnet).

The very important concept of the whole method are the Generalized Mean Fields.

These GMFs have a complicated structure for the strongly correlated case and

complex spectra and do not reduce to the functional of the mean densities of the

electrons or spins, when we calculate excitations spectra at finite temperatures.

To clarify the foregoing, let us consider the retarded GF of the form26

Gr = 〈〈A(t), B(t′)〉〉 = −iθ(t− t′)〈[A(t)B(t′)]η〉, η = ±1 . (1)

As an introduction of the concept of IGFs let us describe the main ideas of this

approach in a symbolic form. To calculate the retarded GF G(t − t′) let us write

down the equation of motion for it:

ωG(ω) = 〈[A,A+]η〉+ 〈〈[A,H]−|A+〉〉ω . (2)

The essence of the method is as follows.20 It is based on the notion of the “IRRE-

DUCIBLE” parts of GFs (or the irreducible parts of the operators, out of which the

GF is constructed) in term of which it is possible, without recourse to a truncation
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of the hierarchy of equations for the GFs, to write down the exact Dyson equation

and to obtain an exact analytical representation for the self-energy operator. By

definition we introduce the irreducible part (ir) of the GF

ir〈〈[A,H]−|A+〉〉 = 〈〈[A,H]− − zA|A+〉〉 . (3)

The unknown constant z is defined by the condition (or constraint)

〈[[A,H]ir−, A
+]η〉 = 0 . (4)

From the condition (4) one can find:

z =
〈[[A,H]−, A+]η〉
〈[A,A+]η〉

=
M1

M0
. (5)

Here M0 and M1 are the zeroth and first order moments of the spectral density.

Therefore, irreducible GF are defined so that they cannot be reduced to the lower-

order ones by any kind of decoupling. It is worthy to note that the irreducible

correlation functions are well known in statistical mechanics. In the diagrammatic

approach the irreducible vertices are defined as the graphs that do not contain inner

parts connected by the G0-line. With the aid of the definition (3) these concepts

are translated into the language of retarded and advanced GFs. This procedure

extract all relevant (for the problem under consideration) mean field contributions

and puts them into the generalized mean-field GF, which here are defined as

G0(ω) =
〈[A,A+]η〉
(ω − z) . (6)

To calculate the IGF ir〈[A,H]−(t), A+(t′)〉 in (2), we have to write the equation

of motion after differentiation with respect to the second time variable t′. The

condition (4) removes the inhomogeneous term from this equation and is a very

crucial point of the whole approach. If one introduces an irreducible part for the

right-hand side operator as discussed above for the “left” operator, the equation of

motion (2) can be exactly rewritten in the following form

G = G0 +G0PG0 . (7)

The scattering operator P is given by

P = (M0)
−1 ir〈〈[A,H]−|[A+,H]−〉〉ir(M0)

−1 . (8)

The structure of the Eq. (7) enables us to determine the self-energy operator M ,

in complete analogy with the diagram technique

P = M +MG0P . (9)

From the definition (9) it follows that the self-energy operator M is defined as

a proper (in diagrammatic language “connected”) part of the scattering operator

M = (P )p. As a result, we obtain the exact Dyson equation for the thermodynamic

two-time Green’s Functions:

G = G0 +G0MG, (10)
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which has a well known formal solution of the form

G = [(G0)−1 −M ]−1 ; M = G−1
0 −G−1 . (11)

Thus, by introducing irreducible parts of GF (or the irreducible parts of the oper-

ators, out of which the GF is constructed) the equation of motion (2) for the GF

can be exactly (but using constraint (4)) transformed into Dyson equation for the

two-time thermal GF. This is very remarkable result, which deserves underlining,

because of the traditional form of the GF method did not include this point. The

projection operator technique has essentially the same philosophy, but with using

the constraint (4) in our approach we emphasize the fundamental and central role

of the Dyson equation for the calculation of the single-particle properties of the

many-body systems. It is important to note, that for the retarded and advanced

GFs the notion of the proper part is symbolic in nature.20 However, because of the

identical form of the equations for the GFs for all three types (advanced, retarded

and causal), we can convert in each stage of calculations to causal GFs and, thereby,

confirm the substantiated nature of definition (9)! We therefore should speak of an

analogue of the Dyson equation. Hereafter we will drop this stipulation, since it

will not cause any misunderstanding. It should be emphasized that the scheme pre-

sented above give just an general idea of the IGF method. The specific method of

introducing IGFs depends on the form of operator A, the type of the Hamiltonian

and the conditions of the problem. The general philosophy of the IGF method lies

in the separation and identification of elastic scattering effects and inelastic ones.

This last point is quite often underestimated and both effects are mixed. However,

as far as the right definition of quasiparticle damping is concerned, the separation

of elastic and inelastic scattering processes is believed to be crucially important

for the many-body systems with complicated spectra and strong interaction. From

a technical point of view the elastic (GMF) renormalizations can exhibit a quite

non-trivial structure. To obtain this structure correctly, one must construct the

full GF from the complete algebra of the relevant operators and develop a special

projection procedure for higher-order GF in accordance with a given algebra.

It is necessary to emphasize that there is an intimate connection between the

adequate introduction of mean fields and internal symmetries of the Hamiltonian.

In many-body interacting systems, the symmetry is important in classifying of the

different phases and in understanding of the phase transitions between them. The

problem of finding of the ferromagnetic and antiferromagnetic “symmetry broken”

solutions of the correlated lattice fermion models within IGF method has been inves-

tigated in Ref. 25. A unified scheme for the construction of Generalised Mean Fields

(elastic scattering corrections) and self-energy (inelastic scattering) in terms of the

Dyson equation has been generalised in order to include the presence of the “source

fields”. The “symmetry broken” dynamical solutions of the Hubbard model, which

correspond to various types of itinerant antiferromagnetism has been discussed.

This approach complements previous studies of microscopic theory of Heisenberg

antiferromagnet19 and clarifies the nature of the concepts of Neel sublattices for
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localized and itinerant antiferromagnetism and “spin-aligning fields” of correlated

lattice fermions.

3. Quasiparticle Dynamics of the d f Model

3.1. Generalised d f model

The concept of the s(d)–f model play an important role in the quantum theory

of magnetism.1,27 In this section we consider the generalised d–f model, which

describe the localized 4f(5f)-spins interacting with d-like tight-binding itinerant

electrons and take into consideration the electron–electron and electron–phonon

interaction in the framework of MTBA.28,29

The total Hamiltonian of the model is given by

H = Hd +Hd–f +Hd–ph +Hph . (12)

The Hamiltonian of tight-binding electrons is given by

Hd =
∑
ij

∑
σ

tija
+
iσajσ +

1

2

∑
iσ

Uniσni−σ . (13)

This is the Hubbard model.31 The band energy of Bloch electrons ε(k) is defined

as follows

tij = N−1
∑
k

ε(k) exp[ik · (Ri −Rj)] ,

where N is the number of the lattice sites. For the tight-binding electrons in cubic

lattice we use the standard expression for the dispersion

ε(k) = 2
∑
α

t(aα) cos(k · aα) , (14)

where aα denotes the lattice vectors in a simple lattice with inversion centre.

The term Hd–f describes the interaction of the total 4f(5f)-spins with the spin

density of the itinerant electrons

Hd–f =
∑
i

Jσi · Si = −JN−1/2
∑
kq

∑
σ

[S−σ−q a
+
kσak+q−σ + zσS

z
−qa

+
kσak+qσ] , (15)

where sign factor zσ is given by

zσ = (+ or−) for σ = (↑ or ↓)

and

S−σ−q =

{
S−−q if σ = +

S+
−q if σ = −

.

In general the indirect exchange integral J strongly depends on the wave vectors

J(k;k + q) having its maximum value at k = q = 0. We omit this dependence for

the sake of brevity of notations only.
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For the electron–phonon interaction we use the following Hamiltonian28

Hd–ph =
∑
νσ

∑
kq

V ν(k,k + q)Qqνa
+
k+qσakσ , (16)

where

V ν(k,k + q) =
2iq0

(NM)1/2

∑
α

t(aα)eαν (q)[sin aα · k− sinaα · (k− q)] , (17)

here q0 is the Slater coefficient28 originated in the exponential decrease of the wave

functions of d-electrons, N is the number of unit cells in the crystall and M is the

ion mass. The eν(q) are the polarization vectors of the phonon modes.

For the ion subsystem we have

Hph =
1

2

∑
qν

(P+
qνPqν + ω2(qν)Q+

qνQqν) , (18)

where Pqν and Qqν are the normal coordinates and ω(qν) are the acoustical phonon

frequencies. Thus, as in Hubbard model,31 the d- and s(p)-bands are replaced by

one effective band in our d–f model. However, the s-electrons give rise to screening

effects and are taken into effects by choosing proper values of U and J and the

acoustical phonon frequencies.

3.2. Spin dynamics of the d f model

In this section, to make the discussion more concrete and to illustrate the nature

of spin excitations in the d–f model we consider the double-time thermal GF of

localized spins,26 which is defined as

G+−(k; t− t′) = 〈〈S+
k (t), S−−k(t

′)〉〉 = −iθ(t− t′)〈[S+
k (t), S−−k(t

′)]−〉

= 1/2π

∫ +∞

−∞
dω exp(−iωt)G+−(k;ω) . (19)

The next step is to write down the equation of motion for the GF. Our attention

will be focused on spin dynamics of the model. To describe self-consistently the spin

dynamics of the d–f model one should take into account the full algebra of relevant

operators of the suitable “spin modes”, which are appropriate when the goal is to

describe self-consistently the quasiparticle spectra of two interacting subsystems.

This relevant algebra should be described by the “spinor”
(
Si
σi

)
(“relevant degrees

of freedom”), according to IGF strategy of Sec. 2.

Once this has been done, we must introduce the generalized matrix GF of the

form ( 〈〈S+
k |S

−
−k〉〉 〈〈S

+
k |σ

−
−k〉〉

〈〈σ+
k |S−−k〉〉 〈〈σ+

k |σ−−k〉〉

)
= Ĝ(k;ω) . (20)

Here

σ+
k =

∑
q

a+
k↑ak+q↓ , σ−k =

∑
q

a+
k↓ak+q↑
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To explore the advantages of the IGF in the most full form, we shall do the calcu-

lations in the matrix form.

To demonstrate the utility of the IGF method we consider the following steps

in a more detail form. Differentiating the GF 〈S+
k (t)|B(t′)〉 with respect to the first

time, t, we find

ω〈〈S+
k |B〉〉ω =

{
2N−1/2〈Sz0 〉

0

}

+
J

N

∑
pq

〈〈2Szk−qa+
p↑ap+q↓ − S

+
k−q(a

+
p↑ap+q↑ − a

+
p↓ap+q↓)|B〉〉ω ,

(21)

where

B =

{
S−−k

σ−−k

}
.

Let us introduce by definition irreducible (ir) operators as

(Szk−q)
ir = Szk−q − 〈Sz0 〉δk,q

(a+
p↑ap+q↑)

ir = a+
p↑ap+q↑ − 〈a

+
p↑ap↑〉δq,0 . (22)

Using the definition of the irreducible parts the equation of motion (21) can be

exactly transformed to the following form

[ω − JN−1(n↑ − n↓)]〈〈S+
k |B〉〉ω + 2JN−1〈Sz0 〉〈〈σ+

k |S
−
−k〉〉ω

=

{
2N−1/2〈Sz0 〉

0

}
∓ J

N

∑
pq

×〈〈2(Szk−q)
ira+

p↑ap+q↓ − S
+
k−q(a

+
p↑ap+q↑ − a

+
p↓ap+q↓)

ir|B〉〉ω , (23)

where

nσ =
∑
q

〈a+
qσaqσ〉 =

∑
q

fqσ =
∑
q

(eβε(qσ) + 1)−1 .

To write down the equation of motion for the Fourier transform of the GF

〈〈σ+
k (t), B(t′)〉〉 we need the following auxiliary equation of motion

(ω + ε(p)− ε(p− k)− 2JN−1/2〈Sz0 〉 − UN−1(n↑ − n↓))〈〈a+
p↑ap+k↓|B〉〉ω

+UN−1(fp↑ − fp+k↓)〈σ+
k |B〉ω + JN−1/2(fp↑ − fp+k↓)〈〈S+

k |B〉〉ω

=

{
0

(fp↑ − fp+k↓)

}
− JN−1/2

∑
qr

〈〈S+
−r(a

+
p↑aq+r↑δp+k,q − a+

q↓ap+k↓δp,q+r)
ir|B〉〉ω

− JN−1/2
∑
qr

〈〈(Sz−r)ir(a+
q↑ap+k↓δp,q+r + a+

p↑aq+r↓δp+k,q)|B〉〉ω
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+UN−1
∑
qr

〈〈(a+
p↑a

+
q+r↑aq↑ap+r+k↓ − a

+
p+r↑a

+
q−r↓aq↓ap+k↓)

ir|B〉〉ω

+
∑
νq

〈〈(V ν(q, k + p− q)a+
p↑ak+p−q↓ − V ν(q, p)a

+
p+q↑ak+p↓)Qqν |B〉〉ω . (24)

Let us use now the following notations:

A =
J

N

∑
pq

[2(Szk−q)
ira+

p↑ap+q↓ − S+
k−q(a

+
p↑ap+q↑ − a+

p↓ap+q↓)
ir] ,

Bp = JN−1/2
∑
qr

[S+
−r(a

+
p↑aq+r↑δp+k,q − a+

q↓ap+k↓δp,q+r)
ir

− (Sz−r)
ir(a+

q↑ap+k↓δp,q+r + a+
p↑aq+r↓δp+k,q)]

+UN−1
∑
qr

(a+
p↑a

+
q+r↑aq↑ap+r+k↓ − a

+
p+r↑a

+
q−r↓aq↓ap+k↓)

ir

+
∑
νq

(V ν(q, k + p− q)a+
p↑ak+p−q↓ − V ν(q, p)a

+
p+q↑ak+p↓) , (25)

Ω1 = ω − JN−1(n↑ − n↓) ; Ω2 = 2JN−1〈Sz0 〉 ,

ωp,k = (ω + ε(p)− ε(p+ k)−∆) ,

∆ = 2JN−1/2〈Sz0 〉 − UN−1(n↑ − n↓) ,

χdf0 (k, ω) = N−1
∑
p

(fp+k↓ − fp↑)
ωp,k

.

In the matrix notations the full equation of motion can be summarized now in the

following form

Ω̂Ĝ(k;ω) = Î +
∑
p

Φ̂(p)

( 〈〈A|S−−k〉〉 〈〈A|σ−−k〉〉
〈〈Bp|S−−k〉〉 〈〈Bp|σ

−
−k〉〉

)
(26)

where

Ω̂ =

(
Ω1 Ω2

−JN−1/2χdf0 (1− Uχdf0 )

)
; Î =

(
J−1N1/2Ω2 0

0 −Nχdf0

)
;

Φ̂(p) =

(
N−1 0

0 ω−1
p,k

)
. (27)

To calculate the higher-order GFs in (26), we will differentiate the r.h.s. of it with

respect to the second-time variable (t′). Combining both (the first- and second-time

differentiated) equations of motion we get the “exact” (no approximation have been

made till now) “scattering” equation

Ω̂Ĝ(k;ω) = Î +
∑
pq

Φ̂(p)P̂ (p, q)Φ̂(q)(Ω̂+)−1 . (28)
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This equation can be identically transformed to the standard form (7)

Ĝ = Ĝ0 + Ĝ0P̂ Ĝ0 . (29)

Here we have introduced the generalized mean-field (GMF) GF G0 according to

the following definition

Ĝ0 = Ω̂−1Î . (30)

The scattering operator P has the form

P̂ = Î−1
∑
pq

Φ̂(p)P̂ (p, q)Φ̂(q)Î−1 . (31)

Here we have used the obvious notation

P̂ (k, q;ω) =

(
〈〈Air|Ãir〉〉 〈〈Air|B̃ir

q 〉〉
〈〈Bir

p |Ãir〉〉 〈〈Bir
p |B̃ir

q 〉〉

)
. (32)

The operators Ã and B̃q follow from A and Bq by interchange ↑→↓, k→ −k and

S+ → −S−.

As shown in Sec. 2, Eq. (29) can be transformed exactly into a Dyson Eq. (10)

by means of the definition (9). Hence, the determination of the full GF Ĝ has been

reduced to the determination of Ĝ0 and M̂ .

3.3. Generalized mean-field GF

From the definition (30) the GF matrix in generalized mean-field approximation

reads

Ĝ0 = R−1

(
(1− Uχdf0 )J−1N1/2Ω2 Ω2Nχ

df
0

Ω2Nχ
df
0 −Ω1Nχ

df
0

)
(33)

where

R = (1− Uχdf0 )Ω1 + Ω2JN
1/2χdf0 .

The spectrum of quasiparticle excitations without damping follows from the poles

of the generalized mean-field GF (33).

Let us write down explicitly the first matrix element G11
0

〈〈S+
k |S

−
−k〉〉0 =

2JN−1/2〈Sz0 〉
ω − JN−1(n↑ − n↓) + 2J2N−1/2〈Sz0 〉(1− Uχ

df
0 )−1χdf0

. (34)

This result can be considered as reasonable approximation for description of the

dynamics of localized spins in heavy rare-earth metals like Gd. (c.f. Refs. 1 and 27).

The magnetic excitation spectrum following from the GF (34) consists of

three branches — the acoustical spin wave, the optical spin wave and the Stoner

continuum.27 In the hydrodynamic limit, k → 0, ω → 0 the GF (34) can be written

as

〈〈S+
k |S

−
−k〉〉0 =

2N−1/2〈S̃z0 〉
ω −E(k)

, (35)
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where the acoustical spin wave energies are given by

E(k) = Dk2 =
1/2

∑
q(fq↑ + fq↓)(k

∂
∂q )2ε(q) + (2∆)−1

∑
q(fq↑ − fq↓)(k ∂

∂qε(q))2

2N1/2〈Sz0 〉+ (n↑ − n↓)
(36)

and

〈S̃z0 〉 = 〈Sz0 〉
[
1 +

(n↑ − n↓)
2N3/2〈Sz0 〉

]−1

(37)

For s.c. lattice the spin wave dispersion relation (36) becomes

E(k) = (2N1/2〈Sz0 〉+ (n↑ − n↓))−1

×
[

2t2a2

∆

∑
q

(fq↑ − fq↓)(kx sin(qxa) + ky sin(qya) + kz sin(qza))
2

− ta2
∑
q

(fq↑ + fq↓)(k
2
x cos(qxa) + k2

y cos(qya) + k2
z cos(qza))

]
. (38)

In GMF approximation the density of itinerant electrons (and the band splitting

∆) can be evaluated by solving the equation

nσ =
∑
k

〈a+
kσakσ〉

=
∑
k

{exp[β(ε(k) + UN−1n−σ − JN−1/2〈Sz0 〉 − εF)] + 1}−1 . (39)

Hence, the stiffness constant D can be expressed by the parameters of the Hamil-

tonian (12).

The spectrum of the Stoner excitations is given by27

ωk = ε(k + q)− ε(q) + ∆ . (40)

If we consider the optical spin wave branch then by direct calculation one can easily

show that

Eopt(k) = E0
opt +D

(
UEopt

J∆− 1

)
k2 ,

(41)

E0
opt = J(n↑ − n↓) + 2J〈Sz0 〉 .

From the Eq. (33) one also finds the GF of itinerant spin density in the generalized

mean-field approximation

〈〈σ+
k |σ−−k〉〉0ω =

χdf0 (k, ω)

1− [U − 2J2〈Sz0 〉/[ω − J(n↑ − n↓)]]χdf0 (k, ω)
. (42)
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3.4. Dyson equation for d f model

The Dyson Eq. (10) for the generalized d–f model has the following form

Ĝ(k;ω) = Ĝ0(k;ω) +
∑
pq

Ĝ0(p;ω)M̂(pq;ω)Ĝ(q;ω) . (43)

The mass operator

M̂(pq;ω) = P̂ (p)(pq;ω)

describes the inelastic (retarded) part of the electron–phonon, electron–spin and

electron–electron interactions. To obtain workable expressions for matrix elements

of the mass operator one should use the spectral theorem, inverse Fourier trans-

formation and make relevant approximation in the time correlation functions. The

elements of the mass operator matrix M̂ are proportional to the higher-order GF

of the following (conditional) form

((ir)〈〈(S+)ak+pσ1a
+
p+qσ2

aqσ2 |(S−)a+
k+sσ3

a+
rσ4
ar+sσ4〉〉(ir),p) .

For the explicit approximate calculation of the elements of the mass operator it is

convenient to write down the GFs in (44) in terms of correlation functions by using

the well-known spectral theorem26:

((ir)〈〈(S+)ak+pσ1a
+
p+qσ2

aqσ2 |(S−)a+
k+sσ3

a+
rσ4
ar+sσ4〉〉(ir),p)

=
1

2π

∫ +∞

−∞

dω′

ω − ω′ (exp(βω′) + 1)

∫ +∞

−∞
exp(−iω′t)dt

× (〈(S−(t))a+
k+sσ3

(t)a+
rσ4

(t)ar+sσ4(t)|(S+)ak+pσ1a
+
p+qσ2

aqσ2〉(ir),p) . (44)

Let us first consider the GF 〈〈A|Ã〉〉 appearing in M11. Further insight is gained

if we select the suitable relevant “trial” approximation for the correlation function

on the r.h.s. of (44). In this paper we show that the earlier formulations, based

on the decoupling or/and on diagrammatic methods can be arrived at from our

technique but in a self-consistent way. Clearly the choice of the relevant trial ap-

proximation for the correlation function in (44) can be done in a few ways. The

suitable or relevant approximations follow from the concrete physical conditions of

the problem under consideration. We consider here for illustration the contributions

from charge and spin degrees of freedom by neglecting higher order contributions

between the magnetic excitations and charge density fluctuations as we did in the

theory of ferromagnetic5 and antiferromagnetic32,33 semiconductors. For example, a

reasonable and workable one may be the following approximation of two interacting

modes3
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〈〈A|Ã〉〉ir,p ≈ J2

N2π2

∑
kk1k2k3k4σ

∫
dω1dω2

ω − ω1 − ω2
F (ω1, ω2, ) (45)

Im〈〈S+
k−k4 |S

−
−k−k2〉〉ω1Im〈〈a+

k3σ
ak3+k4σ|a+

k1σ
ak1+k2σ〉〉ω2 ;

F (ω1, ω2, ) =
(exp(β(ω1 + ω2)) + 1

(exp(βω1)− 1)(exp(βω2)− 1)
.

On the diagrammatic language this approximate expression results from the ne-

glecting of the vertex corrections.

The system of Eqs. (43) and (45) form a closed self-consistent system of equa-

tions. In principle, one may use on the r.h.s. of (45) any workable first iteration-step

forms of the GFs and find a solution by repeated iterations. It is most convenient

to choose as the first iteration step the following approximations:

Im〈〈S+
k−k4 |S

−
−k−k2〉〉ω1 ≈ 2πN−1/2〈Sz0 〉δ(ω1 −E(k + k2))δk4,−k2 ; (46)

Im〈〈a+
k3σ

ak3+k4σ|a+
k1σ

ak1+k2σ〉〉ω2

≈ π(fk3σ − fk1σ)δ(ω2 + ε(k3σ)− ε(k3 + k4σ))δk3,k1+k2δk1,k3+k4 .

Then, using (46) in (45), one can get an explicit expression for the M11

〈〈A|Ã〉〉ir,p

≈ 2J2

N2

∑
pqσ

[1 +N(E(k + q))− fpσ]fp+qσ +N(E(k + q))fpσ(1− 2fp+qσ)

ω −E(k + q)− ε(pσ) + ε(p+ qσ)
, (47)

where

ε(kσ) = ε(k) + U〈n−σ〉 ; N(E(k)) = [exp(βE(k)) − 1]−1 . (48)

The calculations of the matrix elements M12, M21 and M22 can be done in the same

manner, but with additional initial approximation for phonon GF

〈〈Qkν |Q+
kν〉〉 ≈ (ω2 − ω2(kν))−1 . (49)

It is transparent that the construction of the GF 〈〈Bp|B̃q〉〉 will consist of con-

tributions of the electron–phonon, electron–magnon and electron–electron inelastic

scattering.

〈〈Bp|B̃q〉〉 = 〈〈Bp|B̃q〉〉ph−e + 〈〈Bp|B̃q〉〉m−e + 〈〈Bp|B̃q〉〉e−e .

As a result we find the explicit expressions for the GFs in mass operator

〈〈Bp|B̃q〉〉ph−e =
1

2

∑
rν

∑
α=±

ω−1(rν)

×
{

[1 +N(αω(rν)) − fp+q+r↓]fp↑ +N(αω(rν))fp+q+r↓(1− 2fp↑)

ω − [αω(rν) − ε(p↑) + ε(p+ k + r↓)]
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× [(V ν(r, p+ k))2δq,p+k − V ν(r, p)V ν(r, p+ k)δq,p+k+r ]

+
[1 +N(αω(rν)) − fp+k↓]fp+r↑ +N(αω(rν))fp+k↓(1− 2fp+r↑)

ω − [αω(rν) − ε(p+ r↑) + ε(p+ k↓)]

× [(V ν(r, p))2δq,p+k − V ν(r, p)V ν(r, p+ k)δq,p+k+r ]

}
. (50)

The contribution from inelastic electron–magnon scattering is given by

〈〈Bp|B̃q〉〉m−e = −2J2

N2
〈Sz0 〉

∑
r

×
{

[1 +N(E(r)) − fp+k+r↑]fp↑ +N(E(r))fp+k+r↑(1− 2fp↑)

ω − [E(r) − ε(p↑) + ε(p+ k + r↑)]

+
[1 +N(E(r)) − fp+k↓]fp+r↓ +N(E(r))fp+k↓(1− 2fp+k↓)

ω − [E(r) − ε(p+ r↓) + ε(p+ k↓)]

}
δq,p+k . (51)

The term due to the electron–electron inelastic scattering processes becomes

〈〈Bp|B̃q〉〉e−e =
U2

N2

×
{∑

rs

[
(1− fp+k↓)(1− fr+s↓)fr↓fp+k↑ + fp+k↓fr+s↓(1− fr↓)(1− fp+s↑)

ω − [ε(p+ k↓)− ε(p+ s↑) + ε(r + s↓)− ε(r↓)]

+
(1− fp+k+s↓)(1− fr−s↑)fr↑fp↑ + fp+k+s↓fr−s↑(1− fr↑)(1− fp↑)

ω − [ε(p+ k + n↓)− ε(p↑) + ε(r − s↑)− ε(r↑)]

]

−
∑
r

{
(1− fq↓)(1− fp+k↓)fr↓fp+q−r↑ + fq↓fp+k↓(1− fr↓)(1− fp+q−m↑)

ω − [ε(p+ k↓) + ε(q↓)− ε(r↓)− ε(p+ q − r↑)]

}

+
(1− fq+r↓)(1− fp−r↑)fp↑fq−k↑ + fq+r↓fp−r↑(1− fp↑)(1− fq−k↑)

ω − [ε(q + r↓) + ε(p− r↑)− ε(p↑)− ε(q − k↑)]

]}
δq,p+k .

(52)

In the same way for off-diagonal contributions we find

〈〈A|B̃q〉〉 = −
2J2

N2
〈Sz0 〉

∑
r

×
{

[1 +N(E(r)) − fq+r↑]fq−k↑ +N(E(r))fq+r↑(1− 2fq−k↑)

ω − (E(r) + ε(q + r↑)− ε(q − k↑))

+
[1 +N(E(r)) − fq↓]fq+r−k↓ +N(E(r))fq↓(1− 2fq+r−k↓)

ω − (E(r) − ε(q + r − k↓) + ε(q↓))

}
. (53)

In
t. 

J.
 M

od
. P

hy
s.

 B
 1

99
9.

13
:2

57
3-

26
05

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
D

r.
 A

.L
. K

uz
em

sk
y 

on
 1

0/
01

/1
3.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



August 3, 1999 15:30 WSPC/140-IJMPB 0184

Spectral Properties of the . . . 2587

And we have 〈〈Bp|Ã〉〉 = 〈〈A|B̃p+k〉〉.

3.5. Self-energy and damping

Finally we turn to the calculation of the damping. To find the damping of the

quasiparticle states in the general case, one needs to find the matrix elements of

the mass-operator in (43). Thus we have(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
=

[(
Ĝ011 Ĝ012

Ĝ021 Ĝ022

)−1

−
(
M̂11 M̂12

M̂21 M̂22

)]−1

. (54)

From this matrix equation we have

M11 =
J2

NΩ2
2

〈〈A|Ã〉〉 ;

M21 =
J

Ω2N3/2χdf0

∑
p

(ωp,k)
−1〈〈Bp|Ã〉〉 ;

(55)

M12 =
J

Ω2N3/2χdf0

∑
q

(ωq,p)
−1〈〈A|B̃q〉〉 ;

M22 =
1

N2(χdf0 )2

∑
pq

(ωp,kωq,k)
−1〈〈Bp|B̃q〉〉 .

With (54) and (55) the GF Ĝ becomes

Ĝ =
1

det(Ĝ−1
0 − M̂)

(
−[(1− Uχdf0 )/Nχdf0 ]−M22 −[(J/N1/2)−M12]

−[(J/N1/2)−M21] [(J/N1/2)(Ω1/Ω2)−M11]

)
.

(56)

Let us estimate the damping of magnetic excitations. From (56) we find

〈S+
k |S

−
−k〉ω =

1

(G11
0 )−1 − Σ(k, ω)

. (57)

Here the self-energy Σ is given by

Σ(k, ω) = M11 +
J2χdf0

1− Uχdf0

− (JN−1/2 −M12)(JN
−1/2 −M21)Nχ

df
0 ((1− Uχdf0 ) +M22Nχ

df
0 )−1 .

(58)

Let us consider the damping of the acoustical magnons. Considering only the linear

terms in the matrix elements of the mass operator in (58), we find for small k

and ω

〈〈S+
k |S

−
−k〉〉ω ≈

2N−1/2〈S̃z0 〉
ω −E(k)− 2N−1/2〈S̃z0 〉Σ(k, ω)

, (59)
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where

Σ(k, ω) ≈M11 + (M12 +M21)
JN1/2χdf0

1− Uχdf0
+

J2N(χdf0 )2

(1− Uχdf0 )2
M22 . (60)

Then the spectral density of the spin-wave excitations will be given as

− 1

π
Im G11(k, ω + iε) = − 1

π
Im〈〈S+

k |S
−
−k〉〉ω

=
2N−1/2〈S̃z0 〉Γ(k, ω)

(ω −E(k)−∆(k, ω))2 + Γ2(k, ω)
(61)

where

∆(k, ω) = 2N−1/2〈S̃z0 〉 Re Σ(k, ω)

(62)

Γ(k, ω) = 2N−1/2〈S̃z0 〉 Im Σ(k, ω + iε)

describes the shift and the damping of the magnons, respectively.

Finally we estimate the temperature dependence of Γ(k, ω) due to the mass

operator terms in (58). Considering the first contribution in (58) we get

Im M11 = Im〈〈A|Ã〉〉ω

≈ J2〈Sz0 〉
∑
pqσ

((1 +N(E(k + q))− fpσ)fp+qσ

+N(E(k + q))fpσ(1− 2fp+qσ))δ(ω −E(k + p) + ε(p+ q)− ε(p)) . (63)

Using the standard relations∑
pq

→ V 2

(2π)6

∫
d3p

∫
d3qN(E(q))|q→0 = (exp(βDq2)− 1)−1 (64)

we find

Im M11 ∼ J2〈Sz0 〉
V 2

(2π)6
2π

∫
d3p

∫ qmax

0

q2dq

∫
d(cos Θ)

× F̃ (fpσ, N(E(k + p))
δ(cosΘ− cosΘ0)

|∂ε/∂p|q

∼ 1

2βD

∫ βEmax

0

dx
1

ex − 1
∼ T . (65)

The other contributions to Γ(k, ω) can be treated in the same way, where M12,

M21 and electron–magnon contribution to M22 are proportional to T , too. For the

electron–phonon contribution to M22 we find

Im Mph
22 = Im〈〈Bp|B̃q〉〉ph

ω ∼
1

β3

∫
x2dx

1

ex − 1
∼ T 3 . (66)
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Hence, the damping of the acoustical magnons at low temperatures can be written

as

Γ(k, ω)|k,ω→0 ∼ Γ1 + Γ2T + Γ3T
3 , (67)

where the coefficients Γi, (i = 1, 2, 3) vanish for k = ω = 0 and furthermore for

J = 0.

3.6. Charge dynamics of d f model

To describe the quasiparticle charge dynamics or dynamics of carriers of the d–f

model (12) we should consider the equation of motion for the GF of the form

Gkσ = 〈〈akσ|a+
kσ〉〉 . (68)

Performing the first time differentiation of (68) we find

(ω − ε(k))Gkσ = 1 +
U

N

∑
pq

〈〈a+
p+q−σap−σak+qσ |a+

kσ〉〉

− J

N1/2

∑
q

(〈〈S−σ−q ak+q−σ |a+
kσ〉〉+ zσ〈〈Sz−qak+qσ |a+

kσ〉〉)

+
∑
qνα

V α(k − q, k)〈〈ak−qσQqν |a+
kσ〉〉 . (69)

Following the previous consideration we should introduce the irreducible GFs and

perform the differentiation of the higher-order GFs on second time. Using this

approach the the equation of motion (69) can be exactly transformed into the

Dyson equation

Gkσ(ω) = G0
kσ(ω) +G0

kσ(ω)Mkσ(ω)Gkσ(ω) (70)

where

G0
kσ = (ω − ε0(kσ))−1 ,

(71)

ε0(kσ) = ε(k)− zσ
1

N1/2
〈Sz0 〉+

U

N
n−σ .

Here the mass operator has the following exact representation

Mkσ(ω) = M e−e
kσ (ω) +M e−m

kσ (ω) +M e−ph
kσ (ω) (72)

where

M e−e
kσ (ω) =

U2

N2

∑
pqrs

((ir)〈a+
p+q−σap−σap+qσ|a+

r+s−σar−σa
+
k−sσ〉(ir),p) (73)
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M e−m
kσ (ω) =

J2

N

∑
qs

[((ir)〈〈S−σ−q ak+q−σ |Sσs a+
k+s−σ〉〉(ir),p)

+ ((ir)〈〈Sz−qak+qσ |Szsa+
k+sσ〉〉(ir),p)] (74)

M e−ph
kσ (ω) =

∑
qνα

∑
sµα′

V αqν(p− q, p)V α
′

sµ (p, p+ q)((ir)〈〈Qqνap−qσ |Q+
sµa

+
p+qσ〉〉(ir),p) .

(75)

As previously, we express the GF in terms of the correlation functions. In or-

der to calculate the mass operator self-consistently we shall use the “pair”

approximation17,22 for the M e−e and approximation of two interacting modes for

M e−m and M e−ph.5,28 Then the corresponding expressions can be written as

M e−e
kσ (ω) =

U2

N2

∑
pq

∫
dω1dω2dω3

ω + ω1 − ω2 − ω3
F e–e(ω1, ω2, ω3)

× gp+q,−σ(ω1)gk+p,σ(ω2)gp,−σ(ω3) , (76)

where

gkσ(ω) = − 1

π
Im〈〈akσ |a+

kσ〉〉ω+ε

and

F e–e(ω1, ω2, ω3) = [f(ω1)(1− f(ω2)− f(ω3) + f(ω2)f(ω3)] .

Let us consider now the spin-electron inelastic scattering. As previously, we shall

neglect of the vertex corrections, i.e. correlation between the propagations of the

charge and spin excitations. Then we obtain from (74)

M e−m
kσ (ω) =

J2

N

∑
q

∫
dω1dω2

ω − ω1 − ω2
F e–m(ω1, ω2)

×
(
gk+p,−σ(ω2)

(
− 1

π
Im〈〈Sσ−q|S−σq 〉〉ω1

)

+ gk+p,σ(ω2)

(
− 1

π
Im〈〈Szq |Sz−q〉〉ω1

))
(77)

where

F e−m(ω1, ω2) = (1 +N(ω1)− f(ω2)) .

And finally we shall find the similar expression for electron–phonon inelastic scat-

tering contribution (75)
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M e–ph
kσ (ω) =

∑
qν

|Vν(p− q,p)2
∫

dω1dω2

ω − ω1 − ω2
F e−ph(ω1, ω2)

× gp−q,σ(ω1)

(
− 1

π
Im〈〈Qqν |Q+

qν〉〉ω2

)
, (78)

where

F e−ph(ω1, ω2) = 1 +N(ω2)− f(ω1) .

Equations (70) and (76)–(78) form a closed self-consistent system of equations for

one-fermion GF of the carriers for a generalized spin-fermion model. To find explicit

expressions for the mass operator (72) we choose for the first iteration step in (76)–

(78) the following trial approximation

gkσ(ω) = δ(ω − ε0(kσ)) . (79)

Then we find

M e−e
kσ (ω) =

U2

N2

∑
pq

fp+qσ(1− fk+pσ − fq−σ) + fk+pσfq−σ
ω + ε0(q,−σ)− ε0(p+ q, σ)− ε0(k + pσ)

. (80)

For the initial trial approximation for the spin GF we take the expression (46) in

the following form

− 1

π
Im〈〈Sσq |S−σ−q 〉〉 ≈ zσ(2N−1/2〈Sz0 〉)δ(ω − zσE(q)) . (81)

We obtain5

M e−m
k↑ (ω) =

2J2〈Sz0 〉
N3/2

∑
q

fk+q,↓ +N(E(q))

ω − ε0(k + q, ↓)−E(q)
;

(82)

M e−m
k↓ (ω) =

2J2〈Sz0 〉
N3/2

∑
q

1− fk−q,↑ +N(E(q))

ω − ε0(k − q, ↑)−E(q)
.

This result is written for the low temperature region, when one can drop the con-

tributions from the dymamics of longitudinal (zz) GF which is essential at high

temperatures and in some special cases.

In order to calculate the electron–phonon term (78) we need to take as initial

approximation the expressions (49) and (79). We then get

M e−ph
kσ (ω) =

∑
qν

|Vν(p− q,p)|2
2ω(qν)

(
1− fk−q,σ +N(ω(qν))

ω − ε0(k − q, ↑)− ω(qν)

+
fk−q,σ +N(ω(qν))

ω − ε0(k − q, ↑) + ω(qν)

)
(83)

where

|Vν(p− q,p)|2 =
∑
α

4q0t2

NM
(sinaα · p− sinaα · (p− q))2|eαν (q)|2 . (84)
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Then analysis of the electron–phonon term can be done as in Ref. 28.

For the fully self-consistent solution of the problem the phonon GF can be easily

calculated too. The final result is

〈〈Qkν |Q+
kν〉〉 = (ω2 − ω2(kν)−Πkν(ω))−1 , (85)

where the polarization operator Π has the form

Πkν(ω) =
∑
qσ

|Vν(q− k,q)|2 fq−k,σ − fqσ
ω + ε0(q − k, σ)− ε0(qσ)

. (86)

The above expressions were derived in the self-consistent way for the generalized

spin-fermion model and for finite temperatures.

It is important to note that to investigate the spin and charge dynamics in

doped manganite perovskites the scheme described above should be modified to

take into account the strong Hund rule coupling in these systems but it deserve

of separate consideration. In the present paper to show clearly the advantage of

the IGF approach we shall consider another interesting example, the dynamics of

carriers for the Kondo–Heisenberg model.

4. Dynamics of Carriers in the Spin-Fermion Model

4.1. Hole dynamics in cuprates

To show the specific behaviour of the carriers in the framework of spin-fermion

model we shall consider a dynamics of holes in HTSC cuprates. A vast amount of

theoretical searches for the relevant mechanism of high temperature superconduc-

tivity deals with the strongly correlated electron models.12 Much attention has been

devoted to the formulation of successful theory of the electrons (or holes) propa-

gation in the CuO2 planes in copper oxides. In particular, much efforts have been

done to describe self-consistently the hole propagation in the doped two-dimensional

quantum antiferromagnet.34–47 The understanding of the true nature of the elec-

tronic states in HTSC are one of the central topics of the current experimental and

theoretical efforts in the field.12,40 Theoretical description of strongly correlated

fermions on two-dimensional lattices and the hole propagation in the antiferromag-

netic background still remains controversial. The role of quantum spin fluctuations

was found to be quite crucial for the hole propagation. The essence of the problem

is in the inherent interaction (and coexistence) between charge and spin degrees

of freedom which are coupled in a self-consistent way. The propagating hole per-

turbs the antiferromagnetic background and move then together with the distorted

underlying region. There were many attempts to describe adequately this motion.

However, a definite proof of the fully adequate mechanism for the coherent propaga-

tion of the hole is still lacking. In this paper we will analyse the physics of the doped

systems and the true nature of carriers in the two-dimensional antiferromagnetic

background from the many-body theory point of view. The dynamics of the charge

degrees of freedom for the CuO2 planes in copper oxides will be described in the
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framework of the spin-fermion (Kondo–Heisenberg) model,9,38 using the approach

described in Sec. 3.

4.2. Hubbard model and t J model

Before investigating the Kondo–Heisenberg model it is instructive to consider the

t–J model very briefly. The t–J model is a special development of the spin-fermion

model approach which reflect the specific of strongly correlated systems. To remind

this let us consider first the Hubbard model.31

The model Hamiltonian which is usually refered as to Hubbard Hamiltonian is

given by

H =
∑
ijσ

tija
+
iσajσ +

U

2

∑
iσ

niσni−σ . (87)

For the strong coupling limit, when Coulomb integral U〉W , whereW is the effective

bandwidth, the Hubbard Hamiltonian is reduced in the low-energy sector to t–J

model Hamiltonian of the form

H =
∑
ijσ

(tij(1− ni−σ)a+
iσajσ(1− nj−σ) + H.c.) + J

∑
ij

SiSj . (88)

This Hamiltonian play an important role in the theory of HTSC. Let us consider the

carrier motion. The hopping at half-filling is impossible and this model describe the

planar Heisenberg antiferromagnet. The most interesting problem is the behaviour

of this system when the doped holes are added. In the t–J model (U →∞) doped

holes can move only in the projected space, without producing doubly occupied

configurations (〈n↑〉 + 〈n↓〉 ≤ 1). There is then a strong competition between the

kinetic energy of the doped carriers and the magnetic order present in the system.

According to Ref. 37, it is possible to rewrite first term in (88) in the following form

Ht = t
∑
〈ij〉

(a+
i↑S
−
i S

+
j aj↑ + a+

i↓S
+
i S
−
j aj↓ + H.c.) . (89)

This form show clearly the nature hole-spin correlated motion over antiferromag-

netic background. It is follows from (89) that to describe in a self-consistent way a

correlated motion of a carrier one need to consider the following matrix GF:

G(i, j) =


〈〈ai↑|a+

i↑〉〉 〈〈ai↑|a+
j↓〉〉 〈〈ai↑|S+

j 〉〉 〈〈ai↑|S−j 〉〉
〈〈ai↓|a+

j↑〉〉 〈〈ai↓|a
+
j↓〉〉 〈〈ai↓|S

+
j 〉〉 〈〈ai↓|S−j 〉〉

〈〈S−i |a+
j↑〉〉 〈〈S

−
i |a+

j↓〉〉 〈〈S
−
i |S+

j 〉〉 〈〈S−i |S−j 〉〉
〈〈S+

i |a+
j↑〉〉 〈〈S

+
i |a+

j↓〉〉 〈〈S
+
i |S+

j 〉〉 〈〈S+
i |S−j 〉〉

 . (90)

It may be shown after straightforward but tediuos manipulations by using IGF

method of Sec. 2 that the equation of motion (2) for the GF (90) can be rewritten

as a Dyson Eq. (10)
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G(i, j;ω) = G0(i, j;ω) +
∑
mn

G0(i,m;ω)M(m,n;ω)G(n, j;ω) . (91)

The algebraic structure of the full GF in (91) which follows from (11) is rather

complicated. For clarity, we illustrate some features by means of simplified problem.

4.3. Hole spectrum of t J model

It is well known40,47 how to write down the special ansatz for fermionic operator

as a composite operator of dressed hole operator and spin operator for the case

J〉t. The hole operator hi corresponding to fermion operator a+
iσ on the spin-up

sublattice using the ansatz a+
i↑ = hiS

−
i and similarly for spin-down sublattice have

been introduced (for a recent discussion see e.g. Ref. 47). Then the Hamiltonian

(89) obtain the form

Ht = t
∑
ij

Iijh
+
j hi(b

+
i + bj) . (92)

Here bi and b+j are the boson operators, which results from the Holstein–Primakoff

transformation of spins into bosons. Equation (92) is not convenient form because

of its non-diagonal structure. Caution should be exercised because the new vacuum

is a distorted Neel vacuum.

The equation of motion (2) and (3) for the hole GF can be written in the

following form

ω〈〈hj |h+
k 〉〉 − t

∑
n

Ijn〈Bnj〉〈〈hn|h+
k 〉〉 = δjk + t

∑
n

Ijn(ir〈〈hnBnj |h+
k 〉〉) . (93)

Here Bnj = (b+n + bj). The “mean-field” GF (6) is defined by∑
i

(ωδij − tIij〈Bji〉)G0(i, k;ω) = δjk . (94)

Note, that “spin distortion” 〈Bmn〉 does not depend on (Rm−Rn). Then the Dyson

Eq. (91) becomes

G(g, k) = G0(g, k) +
∑
jl

G0(g, j)M(j, l)G(l, k) , (95)

where self-energy operator is given by

M(j, l) = t2
∑
mn

Ijn(ir〈〈hnBnj |h+
mBlm〉〉ir)Iml . (96)

The standard IGF-method’s prescriptions for the approximate calculation of the

self-energy (c.f. Sec. 3.4), can be written in the form
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M(j, l;ω) = t2
∑
mn

IjnIml

∫ +∞

−∞
dω1dω2

1 +N(ω1)− f(ω2)

ω − ω1 − ω2

×
(

1

π
Im〈〈Bnj |Blm〉〉ω1

)(
1

π
Im G(n,m;ω2)

)
. (97)

It is worthy to note that the “mass” operator (97) is proportional to t2. The stan-

dard iterative self-consistent procedure of IGF approach for the calculation of mass

operator encounter the need of choosing as a first iteration “trial” solution the

non-diagonal initial spectral function Im G0; in another words, there are no rea-

sonable “zero-order” approximation for dynamical behaviour. The initial hole GF

in paper36 was defined as

G0(j, k;ω) =
δjk

ω + iε
, (98)

which corresponds to static hole, without dispersion. In contrast, the approxima-

tion for the magnon GF yield the momentum distribution of a free magnon gas.

After integration in (97), the mass operator is given by an expression quite sim-

ilar to the one encountered in Ref. 35 where the Bogolubov-de Gennes equations

has been derived. It can be checked that the present set of Eqs. (95)–(97) gives

the finite temperature generalisation of the results.36 As we just mentioned, one

of its main merits is that it enables one to see clearly the “composite” nature of

the hole states in an antiferromagnetic background, but in the quasi-static limit.

The recent analysis45,47 show that the difficulties of the consistent description of

the coherent hole motion within t–J model are rather intrinsic properties of the

model and of the very complicated many-body effects. From this point of view it

will be instructive to reanalyse the less complicated model Hamiltonian, in spite of

the fact that its applicability has been determined as the less reliable.

4.4. Kondo Heisenberg Model

As far as the CuO2-planes in the copper oxides are concerned, it was argued9,38 that

a relatively reasonable workable model with which one can discuss the dynamical

properties of charge and spin subsystems is the spin-fermion (or Kondo–Heisenberg)

model.9 This model allows for motion of doped holes and results from d–p model

Hamiltonian. We consider the interacting hole-spin model for a copper-oxide planar

system described by the Hamiltonian

H = Ht +HK +HJ , (99)

where Ht is the doped hole Hamiltonian

Ht = −
∑
〈ij〉σ

(ta+
iσajσ + H.c.) =

∑
kσ

ε(k)a+
kσakσ (100)
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where a+
iσ and aiσ are the creation and annihilation second quantized fermion op-

erators, respectively for itinerant carriers with energy spectrum

ε(q) = −4t cos

(
1

2qx

)
cos

(
1

2qy

)
= tγ1(q) . (101)

The term HJ in (99) denotes Heisenberg superexchange Hamiltonian

HJ =
∑
〈mn〉

JSm · Sn =
1

2N

∑
q

J(q)Sq · S−q . (102)

Here Sn is the operator for a spin at copper site rn and J is the n.n. superexchange

interaction

J(q) = 2J [cos(qx) + cos(qy)] = Jγ2(q) . (103)

Finally, the hole-spin (Kondo type) interaction HK may be written as (for one

doped hole)

HK =
∑
i

Kσi · Si = N−1/2
∑
kq

∑
σ

K(q)[S−σ−q a
+
kσak+q−σ + zσS

z
−qa

+
kσak+qσ] . (104)

This part of the Hamiltonian was written as the sum of a dynamic (or spin-flip)

part and a static one. Here K is hole-spin interaction energy

K(q) = K

[
cos

(
1

2
qx

)
+ cos

(
1

2
qy

)]
= Kγ3(q) . (105)

We start in this paper with the one doped hole model (99), which is considered to

have captured the essential physics of the multi-band strongly correlated Hubbard

model in the most interesting parameters regime t > J , |K|. We apply the IGF

method to this two-dimensional variant of the spin-fermion model. It will be shown

that we are able to give a much more detailed and self-consistent description of the

fermion and spin excitation spectra than in papers Refs. 10 and 11, including the

damping effects and finite lifetimes.

For a recent discussion of the one-dimensional Kondo–Heisenberg model and the

classification of the ground-state phases of this model in the context of a fixed-point

strategy see Ref. 48.

4.5. Hole dynamics in the Kondo Heisenberg model

The two-time thermodynamic GFs to be studied here are given by

G(kσ, t − t′) = 〈akσ(t), a+
kσ(t

′)〉 = −iθ(t− t′)〈[akσ(t), a+
kσ(t

′)]+〉 , (106)

χ+−(mn, t− t′) = 〈S+
m(t), S−n (t′)〉 = −iθ(t− t′)〈[S+

m(t), S−n (t′)]−〉 . (107)

In order to evaluate the GFs (106) and (107) we need to use the suitable information

about a ground state of the system. For the two-dimensional spin-1/2 quantum

antiferromagnet in a square lattice the calculation of the exact ground state is a very
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difficult problem. In this paper we assume the two-sublattice Neel ground state. To

justify this choice one can suppose that there are well developed short-range order

(c.f. Ref. 49) or there are weak interlayer exchange interaction which stabilize this

antiferromagnetic order. According to Neel model, the spin Hamiltonian (102) may

be expressed as19,32

HJ =
∑
〈mn〉

∑
α,β

JαβSmα · Snβ . (108)

Here (α, β) = (a, b) are the sublattice indices.

To calculate the electronic states induced by hole-doping in the spin-fermion

model approach we need to calculate the energies of a hole introduced in the Neel

antiferromagnet. To be consistent with (108) and (90) we define the single-particle

fermion GF as

G(kσ, ω) =

( 〈〈aa(kσ)|a+
a (kσ)〉〉 〈〈aa(kσ)|a+

b (kσ)〉〉
〈〈ab(kσ)|a+

a (kσ)〉〉 〈〈ab(kσ)|a+
b (kσ)〉〉

)
. (109)

Note, that the same fermion operators aα(iσ), annihilates a fermion with spin σ on

the (α)-sublattice in the ith unit cell has been used in paper Ref. 10. The equation

of motion for the elements of GF (109) are written as∑
γ

(ωδαγ − εαβ(k))〈〈aγ(kσ)|a+
β (kσ)〉〉 = δαβ − 〈〈A(kσ, α)|a+

β 〉〉 , (110)

where

A(kσ, α) = N−1/2
∑
p

K(p)(S−σ−pαaα(k + p− σ) + zσS
z
−pαaα(k + pσ)) . (111)

We make use of the IGF approach (see Sec. 2) to threat the equation of motion

(110). It may be shown that Eq. (110) can be rewritten as the Dyson Eq. (10)

G(kσ, ω) = G0(kσ, ω) +G0(kσ, ω)M(kσ, ω)G(kσ, ω) . (112)

Here G0(kσ, ω) = Ω−1 describes the behaviour of the electronic subsystem in the

Generalized Mean-Field (GMF) approximation. The Ω matrix have the form

Ω(kσ, ω) =

(
ω − εa(kσ) −εab(k)
−εba(k) ω − εb(kσ)

)
, (113)

where

εα(kσ) = εαα(k)− zσN−1/2
∑
p

K(p)〈Szpα〉δp,0 = εαα(k)− zσKSz ,

(114)

Sz = N−1/2〈Sz0α〉 ,

is the renormalized band energy of the holes.
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The elements of the matrix GF G0(kσ, ω) are found to be

Gaa0 (kσ, ω) =
u2(kσ)

ω − ε+(kσ)
+

v2(kσ)

ω − ε−(kσ)
, (115)

Gab0 (kσ, ω) =
u(kσ)v(kσ)

ω − ε+(kσ)
− u(kσ)v(kσ)

ω − ε−(kσ)
= Gba0 (kσ, ω) , (116)

Gbb0 (kσ, ω) =
v2(kσ)

ω − ε+(kσ)
+

u2(kσ)

ω − ε−(kσ)
, (117)

where

u2(kσ) =
1

2

[
1− zσ

KSz

R(k)

]
; v2(kσ) =

1

2

[
1 + zσ

KSz

R(k)

]
; (118)

ε±(kσ) = ±R(k) = (εab(k)2 +K2S2
z )

1/2 , (119)

the simplest assumption is that each sublattice is s.c. and εαα(k) = 0(α = a, b). In

spite that we have worked in the GFs formalism, our expressions (115)–(117) are

in accordance with the results of the Bogolubov (u, v)-transformation for fermions,

but, of course, the present derivation is more general.

The mass operatorM in Dyson Eq. (112), which describes hole-magnon scatter-

ing processes, is given by as a “proper” part of the irreducible matrix GF of higher

order

M(kσ, ω)

=

( (ir)〈〈A(kσ, a)|A+(kσ, a)〉〉(ir) (ir)〈〈A(kσ, a)|A+(kσ, b)〉〉(ir)
(ir)〈〈A(kσ, b)|A+(kσ, a)〉〉(ir) (ir)〈〈A(kσ, b)|A+(kσ, b)〉〉(ir)

)
. (120)

To find the renormalization of the spectra ε±(kσ) and the damping of the quasi-

particles it is necessary to determine the self-energy for each type of excitations.

From the formal solution (11) one immediately obtain

G±(kσ) = (ω − ε±(kσ) − Σ±(kσ, ω))−1 . (121)

Here the self-energy operator is given by

Σ±(kσ, ω) = A±Maa ±A1(M
ab +M ba) +A∓M bb , (122)

where

A± =

(
u2(kσ)

v2(kσ)

)
,

A1 = u(kσ)v(kσ) .

Equations (121) determines the quasiparticle spectrum with damping (ω = E− iΓ)

for the hole in the AFM background. Contrary to the calculations of the hole GF
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in Sec. 4.3, the self-energy (122) is proportional to K2 but not t2 (c.f. Eq. (97))

Mαβ(kσ, ω) = N−1K2
∑
q

∫ +∞

−∞
dω1dω2

1 +N(ω1)− f(ω2)

ω − ω1 − ω2

× (Fσ,−σαβ (q, ω1)gαβ(k + q − σ, ω2) + F zzαβ(q, ω1)gαβ(k + q, ω2)) .

(123)

Here functions N(ω) and f(ω) are Bose and Fermi distributions, respectively and

the following notations have been used for spectral intensities

F ijαβ(q, ω) = − 1

π
Im〈〈Siqα|S

j
−qβ〉〉ω

(124)

gαβ(kσ, ω) = − 1

π
Im〈〈aα(kσ)|a+

β (kσ)〉〉ω ; i, j = (+,−, z) .

The Eqs. (123) and (112) forms the self-consistent set of equations for the deter-

mining of the GF (109). Coupled Eqs. (123) and (112) can be solved analytically

by suitable iteration procedure. In principle, we can use, in the right-hand side of

(123) any workable first iteration step for of the relevant GFs and find a solution

by repeated iteration.

4.6. Dynamics of spin subsystem

It will be useful to discuss briefly the dynamics of spin subsystem of the Kondo–

Heisenberg model. When calculating the spin wave spectrum of this model we shall

use the approach of Ref. 19 where the quasiparticle dynamics of the two-sublattice

Heisenberg antiferromagnet has been studied within IGF method. The contribution

of the conduction electrons to the energy and damping of the acoustic magnons in

the antiferromagnetic semiconductors within IGF scheme have been considered in

Refs. 32 and 33. The main advantage of the approach of paper19 was the using of

concept of “anomalous averages” (c.f. Ref. 25) fixing the relevant (Neel) vacuum

and providing a possibility to determine properly the generalized mean fields. The

functional structure of required GF has the following matrix form( 〈〈S+
ka|S

−
−ka〉〉 〈〈S

+
ka|S

−
−kb〉〉

〈〈S+
kb|S

−
−ka〉〉 〈〈S

+
kb|S

−
−kb〉〉

)
= χ̂(k;ω) . (125)

Here the spin operators S±
ka(b) refer to the two sublattices (a, b).

The equation of motion for GF (125) after introducing the irreducible parts has

the form33 ∑
γ

((ω + ωα0 )δαγ − ωγαk (1− δαγ))〈〈S+
kγ |B〉〉ω

+
K

N1/2
〈Szα〉〈〈σ+

k |B〉〉ω = 〈[S+
kα, B]〉+ 〈〈Cir

kα|B〉〉ω , (126)
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where the following notations have been used

B =

{
S−−ka
S−−kb

}
, α = (a, b) ,

ωa0 = 2

(
〈Szb 〉J0 +N−1/2

∑
q

JqA
ab
q

)
= −ωb0 ;

(127)

ωbak = 2

(
〈Szb 〉Jk +N−1/2

∑
q

Jk−qA
ba
q

)
= −ωabk ;

Aabq =
2〈(Sz−qa)ir(Szqb)ir〉

2N1/2〈Sza〉
.

The construction of the irreducible GF 〈〈Cir
kα|B〉〉 is related with the operators

Cir
kα = Air

kα +Bir
kα ,

Air
ka =

2

N1/2

∑
q

Jq[S
+
qb(S

z
k−qa)

ir − S+
k−qa(S

z
qb)

ir]ir , (128)

Bir
ka = − K

N1/2

∑
pq

(Szk−qa)
ira+

p↑ap+q↓ +
K

2N

∑
pqσ

zσS
+
k−qa(a

+
pσap+qσ)

ir .

With the aid of (24) and (25) the equation of motion for the mixed GF can be

written as

〈〈σ+
k |B〉〉 =

KN1/2

2
χdf0 (k, ω)

∑
γ

〈〈S+
kγ |B〉〉+

K

2N1/2

∑
p

1

ωp,k
〈〈(Dγ

pk)
ir|B〉〉 . (129)

Combining the equations of motion (126) and (129) we find

Ω̂sχ̂(kω) = Î + D̂1 , (130)

where

Ω̂s =

(
ω + ω0 + (K2Sz/2)χdf0 γ2(k)ω0 + (K2Sz/2)χdf0

−(γ2(k)ω0 + (K2Sz/2χ
df
0 ) ω − ω0 − (K2Sz/2)χdf0 )

)
,

(131)

Î =

(
2Sz 0

0 −2Sz

)
.

Then Eq. (130) can be transformed exactly into the Dyson equation for the spin

subsystem

χ̂(kω) = χ̂0(kω) + χ̂0(kω)M̂s(kω)χ̂(kω) . (132)

Here

χ̂0(kω) = Ω̂−1
s Î . (133)
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The mass operator of the spin excitations is given by the expression

M̂ s(kω) =
1

4S2
z

( 〈〈Cir
ka|(C+

ka)
ir〉〉 〈〈Cir

ka|(C+
kb)

ir〉〉
〈〈Cir

kb|(C+
ka)

ir〉〉 〈〈Cir
kb|(C+

kb)
ir〉〉

)
. (134)

We are interesting here in the calculation of the spin excitation spectrum in the

generalized mean field approximation. This spectrum is given by the poles of the

GF χ̂0

detΩs(kω) = 0 . (135)

Depending of the interrelation of the parameters this spectra have different forms.

For the standard condition 2t〉KSz we obtain for the magnon energy33

ω±k = ±ωk = ±
[
ω0

√
1− γ2(k)2 ∓

K2Sz

2
χdf0 (k, ωk)

√
1− γ2(k)

1 + γ2(k)

]
. (136)

The acoustic magnon dispersion law for the k → 0 is given by

ω±k = ±D̃(T )|k| , (137)

where the stiffness constant33

D̃(T ) = zJSz

[
1− 1√

NSz

∑
q

γ2(q)Aabq

]
− K2Sz

4N
lim
k→0

χdf0 (k, ωk) . (138)

The detailed consideration of the spin quasiparticle damping will be done in sep-

arate publication. Here we now proceed with calculating the damping of the hole

quasiparticles.

4.7. Damping of hole quasiparticles

It is most convenient to choose as the first iteration step in (123) the simplest

two-pole expressions, corresponding to the GF structure for a mean field, in the

following form

gαβ(kσ, ω) = Z+δ(ω − t+(kσ)) + Z−δ(ω − t−(kσ)) , (139)

where Z± are the certain coefficients depending on u(kσ) and v(kσ). The magnetic

excitation spectrum corresponds to the frequency poles of the GFs (107). Using the

results of Sec. 4.5 on spin dynamics of the present model, we shall content ourselves

here with the simplest initial approximation for the spin GF occuring in (123)

1

2zσSz
Fσ−σαβ (q, ω) = L+δ(ω − zσωq)− L−δ(ω + zσωq) . (140)

Here ωq is the energy of the antiferromagnetic magnons (136) and L± are the certain

coefficients (see Ref. 19). We are now in a position to find an explicit solution of

coupled equations obtained so far. This is achieved by using (139) and (140) in the
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right- hand-side of (123). Then the hole self-energy in two-dimensional quantum

antiferromagnet for the low-energy quasiparticle band t−(kσ) is

Σ−(kσ, ω)

=
K2Sz

2N

∑
q

Y 2
1

[
1 +N(ωq)− f(t−(k − q))

ω − ωq − t−(k − q) +
N(ω) + f(t−(k + q))

ω + ωq − t−(k + q)

]

+
2K2S2

z

N

∑
qp

Y 2
2

N(ωq+p)[1 +N(ωq)] + f(t−(k + p))[N(ωq)−N(ωq+p)]

ω + ωq+p − ωq − t−(k + p)
.

(141)

Here we have used the notations

Y 2
1 = (Uq + Vq)

2 ; Y 2
2 = (UqUq+p − VqVq+p)2 ,

where the coefficients Uq and Vq appears as a results of explicit calculation of the

mean-field magnon GF.19,33

A remarkable feature of this result is that our expression (141) accounts for

the hole-magnon inelastic scattering processes with the participation of one or two

magnons.

The self-energy representation in a self-consistent form (123) provide a pos-

sibility to model the relevant spin dynamics by selecting spin-diagonal or spin-

off-diagonal coupling as a dominating or having different characteristic frequency

scales. As a workable pattern, we consider now the static trial approximation for

the correlation functions of the magnon subsystem19 in the expression (123). Then

the following expression is readily obtained

M s
αβ(kσ, ω) =

K2

N

∑
q

∫ +∞

−∞

dω′

ω − ω′ [〈S
−σ
−qβS

σ
qα〉gαβ(k + q − σ, ω′)

+ 〈(Sz−qβ)ir(Szqα)ir〉gαβ(k + qσ, ω′)] . (142)

Taking into account (141) we find the following approximative form

Σ−(kσ, ω) ≈ K2

2N

∑
q

χ−+(q) + χz,z(q)

ω − t−(k + q)
(1− γ3(q)) . (143)

It should be noted, however, that in order to make this kind of study valuable as one

of the directions to studying the mechanism of HTSC the binding of quasiparticles

must be taking into account. This very important problem deserves the separate

consideration. In spite of formal analogy of the our model (99) with that of a Kondo

lattice, the physics are different. There is a dense system of spins interacting with

a smaller concentration of holes. This question is in close relation with the right

definition of the magnon vacuum for the case when K 6= 0.

In this Section we has considered the simplest possibility, assuming that disper-

sion relation εαα(k) = 0 (α = a, b). In paper Ref. 41 a model of hole carriers in
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an antiferromagnetic background has been discussed, which explains many specific

properties of cuprates. The effect of strong correlations is contained in the dispersion

relation of the holes. The main assumption is that the influence of antiferromag-

netism and strong correlations is contained in the special dispersion relation, ε(k),

which was obtained using a numerical method. The best fit corresponds to41

ε(k) = −1.255 + 0.34 coskx cosky + 0.13(cos 2kx + cos 2ky) . (144)

As a result, the main effective contribution to ε(k) arises from hole hopping between

sites belonging to the same sublattice, to avoid distorting the antiferromagnetic

background.

Our IGF method is essentially self-consistent, i.e. do not depends on the special

initial form for the hole propagator. For the self-consistent calculation by iteration

of the self-energy (123) we can take as the fist iteration step the expression (139)

with the dispersion relation (144) or another suitable form. This must be done for

the calculation mean-field GF (113) and dispersion relation (119) too.

To summarize, in Sec. 4 we have presented calculations for normal phase of

HTSC, which are describable in terms of the spin-fermion model. We have char-

acterized the true quasiparticle nature of the carriers and the role of magnetic

correlations. It was shown that the physics of spin-fermion model can be under-

stood in terms of competition between antiferromagnetic order on the CuO2-plane

preferred by superexchange J and the itinerant motion of carriers. In the light of

this situation it is clearly of interest to explore in details how the hole motion influ-

ence the antiferromagnetic background. Considering that the carrier-doping results

in the HTSC for the realistic parameters range t〉J , K, corresponding the situation

in oxide superconductors, the careful examination of the collective behaviour of

the carriers for a moderately doped system must be performed. It seems that this

behaviour can be very different from that of single hole case. The problem of the co-

existence of the suitable Fermi-surface of mobile fermions and the antiferromagnetic

long range or short range order has to be clarified.

5. Conclusions

We have been concerned in this paper with establishing the essence of quasiparticle

excitations of charge and spin degrees of freedom within a generalized spin-fermion

model, rather than with their detailed properties. We have considered the gener-

alized d–f model and Kondo–Heisenberg model as the most typical examples but

the similar calculation can be performed for other analogous models. To summa-

rize, we therefore reanalyzed within IGF approach the quasiparticle many body

dynamics of the generalized spin-fermion model in a way which provides us with

an effective and workable scheme for consideration of the quasiparticle spectra and

their damping for the correlated systems with complex spectra. The calculated

temperature behaviour of the damping of acoustical magnons (67) can be useful

for analysis of the experimental results for heavy rare-earth metals like Gd.1 The
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present analysis of the two-dimensional Kondo–Heisenberg model complements the

previous analytical13 and numerical38 studies, showing clearly the important role

of the damping effects.

We have considered from a general point of view the family of solutions for

itinerant lattice fermions and localized spins on a lattice, identifing the type of

ordered states and then derived explicitly the functional of generalized mean fields

and the self-consistent set of equations which describe the quasiparticle spectra and

their damping in the most general way. While such generality is not so obvious in

all applications, it is highly desirable in treatments of such complicated problems as

the competition and interplay of antiferromagnetism and superconductivity, heavy

fermions and antiferromagnetism etc., because of the nontrivial character of coupled

equations which occur there. The problem of the coexistence of HF and magnetism

is extremely nontrivial7,8 many-body problem and have no appropriate solution in

spite that there are many experimental evidences of the competition and interplay

of HF and antiferromagnetism.8 Both these problems are subject of current but

independent research.

Another development of the present approach is the consideration of the compe-

tition and interplay of itinerant and localized magnetism and antiferromagnetism of

the doped manganite perovskites where the interrelation between parameters of the

spin-fermion model is quite different and the new scheme of approximation should

be invented. Especially, the situation, when Hund rule interaction is very large

but finite should be carefully analysed. It would be interesting to understand on a

deeper level the relationship between different possible phase states in manganites

and various ordered magnetic states within the generalized spin-fermion model.

In conclusion, we have demonstrated that the Irreducible Green’s Functions

approach is a workable and efficient scheme for the consistent description of the

quasiparticle dynamics of compicated many body models.
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