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Electrical Conductivity of a Metallic System ‘

with a Nonspherical Fermi Surface
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Investigating the electrical resistivity of transition metallic systems some pe-
culiarities have been found, which are caused by the fairly complicated disper-
sion relations for the quasi-particles (electrons, phonons, etc.) involved in the
transport process and the existence of nearly localized electrons (d-electrons).
In particular, for transition metals it is difficult to attribute the observed tem-
perature dependence to definite scattering mechanisms. Partially, this has
been explained by the fact that the calculated temperature dependence of the
resistivity depends to some extent on the assumptions used for the spectra of
the quasi-particles and the interaction matrix elements, To investigate the in-
fluence of the electron dispersion on the electrical resistivity, we consider an
effective single band model with tight-binding dispersion relations of the electrons
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where t(é"a) is the hopping integral between nearest neighbours and 3{1 (= x,y,
z) denotes the lattice vectors in a simple lattice with an inversion centre, Fur-
thermore we restrict our considerations to electron-phonon and electron-elec-
tron interactions, where the electron-electron interaction is described in the .
framework of the Hubbard model ,
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The electron-phonon interaction is usually represented by the Frohlich Hamil-
tonian. However, for transition metals it is difficult to estimate the interaction
matrix element of this model. Therefore, a model Hamiltonian proposed by
Bari%ié et al. /1/ will be used,
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Here M is the ion mass, 31/6;) are the polarization vectors of the phonons
(v=1,2,3), and q, is the Slater coefficient originated in the exponential radial
decrease of the tight-binding electron wave functions.

For the vibrating ion system we have as usually

Zw(?iv)(t» AT | ®

where w) (ﬁ',v are the acoustic phonon frequencies. For the calculation of the
conductivity we use generalized kinetic equations which can be derived by the
quasi-equilibrium statistical operator method /2, 3/. The quasi-equilibrium

statistical operator is given by
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where the operators Prn include all important observables which describe the

reaction of the system on the external electrical field and the Fm are conjugat—

ed parameters to be determined from the kinetic equations (cf. /2/)
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where
=1 [, p.], (9)
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A(t) = exp (i Ht) A exp(-i Ht) ek exp (-pH) .
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In (8) 'ﬁe is the total momentum of the electrons and ﬁ the external electrical

field. The current density is given by (see /2, 3/)
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where the proportionality of the Fm to the external electrical field has been
taken into account,

In the present note we consider one non-spherical Fermi body shifted in the
k-space and deformed by the external electrical field, Hence, the Fermi sur-

face E{ﬁ) = £, is transformed into ﬁ(ﬁ) =tps where
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The term proportional to ?1 describes a homogeneous shift of the Fermi body

in the ﬁ-space and the last terms allow for deformations of the Fermi body. The
polynomials @i(ﬁ) have to be chosen corresponding to the symmetry of the
crystal /4, 5/, and in consequence of ﬁ(-l'c + 6}} = ﬁ(ﬁ) they should satisfy the
relation

3.(k + C) = 3,(K). (13)

Due to (12) the proper set of operators Pm in (2) is given by
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and the parameters Fm are replaced by generalized drift velocities. In the
weak scattering limit we replace the Hamiltonian H in the operators (10) by
(H +H h) and then the correlation functions in (8) can be calculated straight-

forwardly. Using Wick’s theorem we find
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Restricting ourselves for simplicity to a cubic system, the correlation func-

tions of the generalized forces are given by
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fr=f (E(K)) and N(d,v)= N( (ﬁ v)) are the Fermi ancl Bose distribution func-

tions, respectively. The correlauon functions < Pl’ P > vanish in the weak

Scattering limit, and the generalized electron numbers in (7) become
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Because of 5fk> 1- f+) =+ S(E( k) - af) at low temperatures the generalized elec-
tron numbers Nj (20) do not depend on temperature, and the temperature depend-
ence of R (11) is given by the correlation functions (16) and (17). For the elec-
tron-electron scattering we find
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fd S1 denotes an integration on the surface E (R') = El’ In (17) at.low tempera-

tures only phonons with small q are excited and we find with w (§,v) = v’ q
o bt o

:D -+ 5 BV q 5
SRy B Rys e mg’ L
) (2%) v (v f exp (x) - 1
xfsins de fdcp F. .8, ¢)= A%PT® (23)
qa q q jitq Tq jic



K6 physica status solidi (b) 111

5 [(ﬁi)ai(ﬁ, fc')|+, ]fa(l-f—o) 5(3_13 #¥T N (24)

Hence at low temperatures the electmn electron and the electron -phonon con-
tributions are proportional to T and T5 , respectively, for any polynomlal
@i(k).li is worth noting that for open Fermi surfaces these proportionalities
follow for normal and UmKlapp processes either. For a closed Fermi surface
the electron-phonon Umklapp processes freeze out at sufficiently low tempera-
tures and only the electron-phonon normal processes contribute to the electri-
cal resistivity., With (21) and (23) the generalized kinetic equations (8) become
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For simplicity we restrict our consideration to two parameters ?1 and \?2
describing the homogeneous shift and one type of deformation of the Fermi
body. Taking into consideration more parameters is straightforward but does
not yield any qualitatively new results, With (25) and (11) the electrical resistiv-

ity becomes
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and in general a simple dependence R ~ T can be expected only if one of the
scattering mechanisms is much more effective than the other. Expressions
R(T) =~ AT2 + BT5 frequently used to fit the experimental R(T) dependences

can be justified for nearly spherical Fermi surfaces only where the deformation
of the Fermi body is negligible.
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