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A complete self-consistent finite temperature theory of magnetic poiaron states with damping in a ferromagnetic semi- 
conductor is developed using the irreducible Green function (IGF) method. 

The s - f  hamiltonian is the simplest theoretical 
model to study magnetically ordered semiconductors. 
Recently a great deal of effort has been made to un- 
derstand the relationship and mutual influence of both 
magnetic and band electron subsystems [ 1 ]. A very 
interesting problem is the forming of bound polaron- 
like states due to the effective attraction of the elec- 
tron and magnon. This is possible for the case of anti- 
ferromagnetic coupling of the electron spin to the lat- 
tice (magnetic subsystem). 

The properties of the magnetic polaron states have 
been investigated at zero temperature in refs. [2 -4] .  
Recently a much more detailed theory of the magnet- 
ic polaron at T = 0 has been given in ref. [5] and the 
states of the current carriers in ferromagnetic semi- 
conductors have been considered for arbitrary values 
of the s - f  exchange parameter I in the spin wave re- 
gion by a variational procedure in ref. [6]. 

The purpose of our paper is to develop a unified 
and complete self-consistent Fmite temperature theory 
of the magnetic polaron by taking explicitly into ac- 
count the damping effects and Finite lifetime. For this 
aim we use the novel irreducible Green function method 
proposed earlier in refs. [7,8]. The IGF method com- 
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pletely describes the quasiparticle inelastic scattering 
processes in many-body systems and gives the quasi- 
particle spectra with damping in a very general way. 

The one-electron GF [9] Gko(6o) = ((akola~o)) 
can be calculated in the low-concentration limit in 
the following form 

G/co(co) = {[GOo(¢o)] -1 _ Zo(k  ' ¢o)}-1 , (1) 

where the generalized mean-field GF GOo(~o) is 

G0 (co) = [to - eko -- (I2/N) ~ko(¢O)] -1 (2) k~ 

Here ~bko(w ) means 

~Oko(o)=~a ([1-IA/to(60)] [o+Zocoq-elc+q,_o] 

+ : '  (3) 

where 

&o(oO = N  -1 ~ (¢o + Z o %  - ek+q,_.) -1 , 
q 

eko is the single-particle electron energy, ~q denotes 
the magnon energy and Z o = 1 ( -1 )  if o = ? O) or 
+ ( - ) .  Our generalized mf GF G~o(~ ) is exactly re- 
duced to the Shastry-Mattis [5] solution at T = 0: 
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8 e, 2*2SA, oC6o) ]-' 
GSoM = (6o -- ek° 1 - IAka(6o ) ] " (4) 

At the atomic limit (e k = 0) and 6oq -+ 0 we obtain 
the two-pole solution given in ref. [6] : 

S + z a s Z  + 1 
G~ ~ = (6o + I s ) -1  

28+1  

S - Z a S  z 
+ 2S+1  [ 6 o - I ( S +  1)] -1  (5) 

Moreover, at the first time in our theory we are able 
to calculate explicitly the full self-energy operator 
Zo(k , 6o) for the magnetic polaron problem (in the 
low-concentration limit) 

(k, 6o) = 
Mka(6o) ~3 (6)  

o 1 - ~k~rt6o)mkat6o)'-'" " ' "  " " 

For brevity we write down only the s - f  exchange in- 
elastic scattering contribution 

~ f(6o) = 2(I2SZ/N) 

x ~ 8,,, +~6oq) 
qP [1 - IAka(6o)] 2(6o + Zo6o q _ ek+q,_a)2 

O - - O  (sT, s_p 
X (7) 

+ Zo(6oq - Wp) - ek+ u _ p p '  

where the longitudinal spin correlations are dropped 
for simplicity. A more detailed analysis will be pub- 
lished elsewhere. 

References 

[1] w. Nolfing, Phys. Stat. Sol. 96b (1979) 11. 
[2] S. Methfessel and D.C. Mattis, Handbueh der Physik 

18/1 (1968) 389. 
[3] Yu.A. Izyumov and MN. Medvedev, Soy. Phys. JETP 

32 (1971) 302. 
[4] P. Richmond, J. Phys. C3 (1970) 2402. 
[5] B. Sriram Shastry and D.C. Mattis, Phys. Rev. B24 (1981) 

5340. 
[6] M.I. Auslender, M.I. Katsnelson and V.Uu. Irkhin, 

Physiea 119B (1983) 309. 
[7] N.M. Plakida, Phys. Lett. 43A (1973) 481. 
[8] A.L. Kuzemsky, Theor. Math. Phys. 36 (1978) 208. 
[9] D.N. Zubarev, Soy. Phys. Usp. 3 (1960) 320, 

432 


