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A qualitative analysis of the transverse neutron inelastic cross section for the Hubbard 
model with s -- d hybridization in the framework of RPA is considered. The poles of the trans- 
verse generalized spin susceptibility are studied. It is found that the acoustic spin wave pole 
exists among the set of poles of dynamical spin susceptibility and that the non-interacting 
susceptibility determines the four quasi-Stoner continuum. 

1. Introduction 

The magnetic scattering of thermal neutrons is a technique of unique value 
for establishing both the static and the dynamic properties of magnetic correlations. 
I t  has already been extensively applied to the study of the static magnetic prop- 
erties of the 3d transition metals [1]. However, only in recent years, with the 
advent of more intense slow neutron sources and recent developments in the 
experimental technique, it has become possible to measure the long-wave-length 
inelastic scattering generally. Such experiments have provided considerable in- 
formation about dynamical magnetic properties of the transition 3 d metals [1--7]. 

Spin-only neutron scattering cross section for band d-electrons in transition 
metals is expressed in terms of generalized spin susceptibility, which measures the 
response of electrons to an external perturbation that  couples to their spins, i.e., 
it describes electron spin dynamics. The poles of the generalized spin susceptibility 
functions determine the energy spectra of the excitations in the system. The ex- 
plicit expressions for the poles are strongly dependent on the model used for the 
system and the character of employing approximations. Theoretical calculations 
of the generalized spin susceptibility in transition 3d metals have been largely 
based on the single d-band Hubbard Hamiltonian and the most used approach 
to the interaction is still the Hartree-Fock or random-phase approximation. 
However, it is still unclear whether this model ever in fact exhibits ferromagnetism 
and, in particular, whether the ground state is ever ~he one of complete spin 
alinement. Also, there are certain aspects of the neutron inelastic scattering ex- 
periments in the transition 3d metals tha t  do not agree with such a simplified 
t reatment  [2--8]. 

Therefore, several calculations of the generalized spin susceptibility of the 
transition 3d metals using various extensions of the Hubbard Hamiltonian have 
been published recently. These considerations take into account the mnltiband 
structure and orbital degeneracy [8, 9] ; the electron-phonon interaction [10] ; the 
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s - -  d hybridization [11] ; the interatomie interaction [12] and combined effects [13]. 
Direct study of generalized spin susceptibility in the neutron scattering experi- 
ments should be capable of providing important tests of theoretical models of 
magnetic transition 3 d metals. 

In this paper we present within the framework of RPA a qualitative considera- 
tion of the transverse inelastic neutron cross section for the Hubbard model of 
magnetic d electrons weakly hybridized with s-like conduction electrons. For this 
model the poles of the dynamical transverse susceptibility are studied. The one- 
particle properties for various modifications of this model and its detailed founda- 
tion have been discussed in papers [14-- 16]. Recently Manochar [11] has discussed 
the spin-wave pole calculation for this model in the atomic limit for d-electrons and 
for the case of very strong s -- d hybridization. I t  seems, that  these approximations 
are not appropriate to transition 3 d metals [14--16]. Our consideration based on 
the treatment Izuyama et al. [1] and the spin-flip excitation spectra of our 
system is derived as a natural extension of their calculations. 

2. Model Hamiltonian and the Formulation of the Problem 

The transition metal is described by a narrow d-band, with intraatomic Cou- 
lomb repulsion, a broad s-like conduction band and a s -- d mixing term coupling 
the two former terms. In the reciprocal-space representation the model Hamil- 
tonian reads [14-- 16] 

H ~- Ha ~- Hs ~- Hs-a (2.1) 

where 
U/2N  d2+q, (2.2) 

k,a alc, k',q 

is the well-known Hubbard Hamfltonian [1]. 

Hs = ~. ek a+~ aka (2.3) 
k,a 

is the Hamiltonian of a broad s-like conduction band. 

Hs-a = ~ ( Vk a+, dka + V* d+o aka) (2.4) 
]r 

is the one-body operator which represents a mixture of the d-band and s-band 
electrons. The model Hamiltonian (2.1) incorporates the ideas of recent methods 
for calculating the electronic band structure for transition and noble metals and 
can be interpreted in terms of a series of Anderson "impurities" placed regularly 
in each site. 

The magnetic scattering of unpolarized neutrons by an electronic system 
contains both spin and orbital terms. The spin-only part  of the transverse neutron 
scattering cross section by the d-electronic system of the transition metal is given 
by the expression [1] 

(  2l_F(q)l  2' d9  dE' ]tr. =- \ me c 2 } ~ -  (1 -[- ~z 2) • 

( 1 )  e noa (imG+(w)+imG__q(~O)) (2.5) 
• -- ~ e ~ a -  1 
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where 
G~(t) = - -  i 0 (t) <[5v (q, t), 5-~ (q, 0)]_>, v = :j: (2.6) 

is the  two- t ime the rmal  re ta rded  Green functions. I t  is convenient  to express G 
in t e rms  of the  generalized susceptibi l i ty:  

(g/~)~ X(q, co) = - Gq(co) = -- dtd'tGq(t). (2.7) 

Here  s (q) is the Fourier  t r ans form of the spin opera tor  s (r). Wi th  the  aid of  the  
definition n (co) = [exp (fib co) -- 1] -~, the  t ransverse  scat ter ing cross section (2.5) 
ean be shown to  reduce to 

• - ~ {(n(co) + 1) ImG:q(co) + n ( - -  co) I m G ~  (-- co)}. (2.8) 

The remainder  of  this paper  will be devoted  to a calculation of  this t ransverse  
scat ter ing cross section within  a Green funct ion formalism. 

3. Approximate  Calculation of the Reduced Susceptibility 

As is shown b y  I z u y a m a  et al., provided tha t  overlap integrals be tween Wan-  
nier functions on different sites are neglected, X-(q,  co) may,  in the t ight-binding 
approx ima t ion  for a single band  H u b b a r d - H a m i l t o n i a n  model, be calculated in 
t e rms  of the  Ha r t r ee -Fock  magnet ic  response funct ion X HF (q, ~o) [1]. Now let us 
calculate X- (q ,  co) for the  Hami l ton i an  (2.1). Thus  the object  now is to calculate 
the  Green funct ion ~ Ok (q) = d++q, d~t] B>) ,,~. I n  the  r andom phase approximat ion ,  
the  equat ions of  mot ion  for  the  Green functions are reduced to the  closed simple 
fo rm 

h 
1) (h co + Et (~ + q) --  ~?~ (~)) ~ 0~ (q)[ B>> ~ = ~ (n~+q~ - -  n~t ) A (q, co) - -  

--Vk+q~ak++q~dk~l B>~m @ * + V k ~dk+q~akt I B>~o~. (3.1) 

h 
2) (h co - -  ~ (k) + e~+q) ~a2+q;d~t  I B y  ~ = 2 ~  (a{+q;d~+q~) A (q, co) - -  

--V*+~<O~(~)IB>~+ V~* ~ + + ~ + ~ 1  B >  ~ .  (3.2) 

h 
3) (h co - -  $? (k + q) - -  e~) < d++ q~ akt [ B >~ o) = - -  2 ~ (d~akt)  A (q, co) -- 

- -  Vk+q~ak++q$alctl B ~ e )  @ V~d++e+dkr B>>~. (3.3) 

4)  O~ 09 -t- ek+q - -  ek) ~ ak++q$ ak~l B>~ o) = 
�9 .~ + = --Vk+q~dk+q~akT I B>~o~ + Vk4al~+q~dk~ [ B>~(.o. (3 .4)  

Here  the  following definitions were in t roduced 

B =  ~d~d~+~ , ,  
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la 
A (q, o~)= 1 --(2~/~) rJ(l/N)G~ (~), (3.5) 

A = U(ll;V) ~ ( ~ -  n~t). 
P 

To truncate the infinite hierarchy of Green function equations the RPA decoupling 
scheme (due to Izuyama et al.) is employed [1] 

[0k(q), H d ] -  ~, (E(]c) - -  E ( k  § q)) Ok(q) § A Ok(q) - -  U / N  ~ (nk+q~ - -  nkt ) 01~(q ) . 
P 

(3.6) 

+ a -- + a [dk+q~ kt, tta] ~ E(]c § q)d++q~akt - U /N  ~nptdk+q~ kt § 
P 

+ 
§ GIN {d~ akt } ~d~+q~ d~t. (3.7) 

30 

The mixing correlation functions are included in Eqs. (3.2), (3.3), (3.7) because in 
the region where the conduction band crosses the d-band the quasi-particle band 
structure will be critically dependent on the amount of s - - d  mixing and the 
quantities mentioned will not be negligible [16]. t tence these terms must be re- 
tained. Now, we will use Eqs. (2.7) and (3.1) --  (3.7) to determine the reduced 
transverse spin susceptibility in the RPA. I t  can be shown that  

X-(q ,  to) = X~IF(q, to) {1 - UI(g I~B) 2. XEF(q, ~)}-~ ,  (3.8) 

where 

x - ~  (q, o) = - (e~,)~pv ~ { (~+~ , -  ~,t) [ -  I v~l 2 ((n ~ + ~(k)  + ~+~) + 

+ (~to + ~t(l~ + q) - e~)) + (h~o + ek+q - s~) (~ro + ~t(l~ + q) - e~) x 

X ( ~  --  B~,(k) + e~+q)] -- (?~co + elc,+q - -  elc,) [V*(hco - -  .~,(Ic,) - -  eli+q) X 

+ d ( ~  /? t (k+q)  e~) ]}x  X (d~  akt } § Vk(alc+q~ k+q~ § 
x { - I V ~ [ 2 [ ( n o ~ + ~ t ( ~ + q ) - N , ( ~ ) ) ( n o ~ + ~ t ( ~ + q ) - e ~ ) +  (3.9) 
+ (~to - 8,(le) - e~+q) (~ro + s~+q - e~) + (l~ro + ~t (k  + q) - ~,(k)) x 

x (/~to - ~,~.(/~) + sz~+q) + (h~ + $t(/~ + q) - e~) (t~o~ + s~+q - e~)] + 
+ ( ~  + ~ ( ~  + q) - ~(~)) (~o) - ~,(~) + t~+~) ( ~  + ~t(~ + q) - ~)  x 
x (;~o,, + e ~ + q -  e~)}-" 

is the tIartree-Foek susceptibility. Note, tha t  if V~ = 0 then, X ~ ( q ,  o))is  re- 
duced to 

n~t - -  n~+q~ (3.10) 
X ~ ( q ,  o~) = (g~)~l~V ~, I~o~ + E(I~ + q) E(~,) A " 

To evaluate X ~ (q, co) appearing in Eq. (3.8) we used the following additional 
approximation 

V~+q ~ V~: (3.11) 

which is valid in Che long-wavelength limit q -+ 0. The poles of the full suscepti- 
bility (3.8) corresponds to individual modes or the Stoner excitations and the 
spin-wave modes. The solutions corresponding to the individual spin-flip modes 
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we shall consider in the next  chapter. Now let us discuss the question about the 
existence of a spin-wave pole among the set of poles of the susceptibility (3.8). 
I f  we set q = 0 in Eq. (3.8) the secular equation for poles becomes 

k 
• (~co - t?,(~) + ~k)] - ~co[v*(hco - ~,(k)  + ~ )  <d~ ~k~) + 

-t- V~<a~ d},> (hco @ E,(k) -- e~)]} {-- I V~[ 2 (2hco -}-/I) 2 @ (3.12) 

+ h co(t~co + ~t(~) -g',(,~))(hco -.g',(k) + s~) x (~co + ~t(~) - e,~)}-l, 

which is satisfied if hco0 = 0. I t  follows from general considerations that  when the 
wave length of a spin wave is long, its energy/~ coq must be related to the wave 
number q by h o) = D qZ [17]. The exact formula for D valid for any metallic or 
non-metallic ferromagnet, or for a non-ferromagnetic material in a static magnetic 
field is [17]. 

1 
D q 2 -  2 (S  z} {hq([J~-, S+q]} -- h2 q2 lim+_+0 q-+01im Xj~ . j  (3.13) 

(For the definitions see Ref. 17.) Thus the solution for the equation 

1 = U/(g/~B) 2 XH~(q, co) (3.14) 

exists which has the property lira hcoq = 0 and this solution corresponds to a 
q-+0 

spin-wave excitation in the model with s -  d hybridization (2.1). 

Thus, we have derived a formula (3.8) for the dynamical susceptibility X-(q, co) 
in RPA and have shown, that  it can be calculated in terms of the Hartree-Fock 
response function X ~I~ (q, co) analogous to the Izuyama et al. [1] expression. 

4. The Hartree-Foek Susceptibility 

To calculate the Stoner-mode cross section, we need the poles of the Hartree- 
Fock susceptibility XHF(q, CO) of Eq. (3.9). I f  we note that  the susceptibility 
X IIF (q, co) corresponds to the susceptibility of the system which is described by 
the following gamil tonian 

k,a k,a ka 

that  the poles of X HF (q, CO) may be simply calculated. The Hamiltonian (4.1) may 
be diagonalized by the canonical (u, v)-transformation. The result is [11, 16] 

U2a [1 (COt2k~--J~a(~))2 ] -1 

where 

(4.2) 

(4.3) 

(4.4) 

13 * 
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The  susceptibi l i ty  can be eva lua ted  r be 

X•F (q, a)) = (g ttj3)2/N . u~ +q~ u~t h (9 + a)tk+q~ - -  a)t~t 

- -  v ~ 2 n ~ t -  n~+q~ 2 2 n ~ t -  n~+q~ 

2 ~ nkt--  nA + q_~ ~ (4.5) 
+ v~+q~u~t h(9 § a)~k+q~ - -  a)lktJ " 

F r o m  Eq.  (4.5) one can obta in  the  usual  fo rm of the  S toner- type  condit ion for 
fe r romagne t i sm [18] a t  T = 0 ~ 

1 = ~ l ( g t ~ ) ~ ( o ,  o ) =  Y . e o . ( ~ ) .  

Turning  now to  the  calculat ion of  the  cross section (2.8), we obta in  f rom 
Eq.  (3.8) the  imag ina ry  p a r t  of  X -  (q, a)) namely ,  

I m X - ( q ,  a)) ---- I m  X ~ F  (q, a)) {[1 - -  U/(g / ~ )  ~ R e  X ~  (q, co)] ~" -t- 

~- [Ul(gt t~)  ~" I m  X " ~  (q, (9)]~}-~. (4.6) 

F r o m  (4.5) we obta in  for I m X ~ ( q ,  w)  the  resul~ 

k 

+ ~ + ~ ' ~ t ( ~ t  - ~ + ~ )  ~ (~ (9 + (9~+~ - ~ t )  + (4.7) 
2 2 ~ 

@ u k + q t v k ~ ( n k ~ - - n l r  @ a ) l k + q ~ -  c02k~) -}- 

2 2 ~ __ 

Now it follows f rom Eq.  (4.7) t h a t  I m X  ~ (q, co) is non-zero only for vMues of ha) 
equal  to  the  energies of  the  S toner - type  exci tat ions 

h (9~ = a)~-~t- c%~+q;, (4.8) 

h (93 = (92kt - -  (91k+qJr, 

~t (94 ~ a)tkI  - -  ~ § �9 

The spin wave  pole occurs where ImXI~J~(q, (9) tends  to zero. I n  this case, we 
can in (4.6) t ake  the  l imit  I m X J ~ ( q ,  co) -~  0 so t h a t  

U/(g#ja) ~ I m X - ( q ,  (9) = - -  ~ (3 {1 - -  U/(g#~)  2 R e X  ~ (q, (9)}. (4.9) 

:But 

and thus  

1 - -  U/(glt•) 2 Re X Er  (q -~ 0, (9 -~ 0) ~ b-1 (h a) - -  ~ tPq) (4.10) 

I m X - ( q - - > O ,  a)--->O) ,~ - -  ~ ( g t t ~ ) 2 b / U  d ( h o ) - - h f 2 q ) .  (4.11) 

I:Iere b is a certain constant ,  which can be numerical ly  calculated and t/t~q is 
the  acoustical  spin wave  pole h ~ q - ~ 0 = 0 .  Using (2.8) wi~h (4.11) leads to the  
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expression 

b 
d.QdE']tr.=\ mec 21 4 ] F ( q ) ] 2 k ( 1 - 4 - ~ z S ) N ~ x  

• ~[n(Q~)  0(hw -4- h ~ )  d- (1 d- n(Q~)) ~(ho~ -- hg~) ] .  (4.12) 
v 

The cross section (4.12) does not include the contribution arising from the scatter- 
ing by Stoner excitation; i.e. that  determined by X nF(q, co). I t  was shown by 
Thompson [19] that  in a single-band Hubbard-Hamiltonian model of transition 
metal in the limit when the wave vector of the elementary excitations goes to zero, 
the acoustic spin-wave mode dominates the inelastic neutron scattering, and the 
contribution to the cross section due to the Stoner-mode scattering goes to zero. 
Thompson showed that  the Stoner-mode scattering intensity does not become 
comparable to the spin-wave scattering intensity until q = 0.9 qmax (the value of 
q when the spin wave enters the continuum). For large values of q and co the energy 
gap for spin flipping Stoner excitations may be overcome. 

In this case 
ImX-(q ,  ~o) ~ ImXHF(q, CO). (4.13) 

With (2.8) and (4.13) we obtain 

d ~  ~ / 7e2 \ 2 1  k' N 

• {(n(co) + 1) Im X~F (-- q, co) + n ( - - w ) I m X ~ F ( q ,  co)}. (4.14) 

Although in Thompson's model the Stoner-mode scattering cross section remains 
small until q is fairly close to qmax, it will be shown by Sokoloff [9] that  in the 
system of two degenerate parabolic bands the Stoner-mode cross section may 
become large for much smaller scattering vector. The region of the intersection 
of the spin wave spectrum with a continuum band of Stoner excitations was 
achieved in a recent work [7] by a high flux reactor. 

5. Conclusion 

The essential result of the present paper is the extension of Izuyama et al. [1] 
t reatment  for the model with s - - d  hybridization which is more realistic for 3d 
transition metals than the single-band Hubbard-Hamiltonian model. The present 
qualitative consideration shows that  a two-band picture of low-temperature in- 
elastic neutron scattering is modified in comparison with the single-band Hubbard- 
Hamiltonian model. We have found that  the long-wave-length acoustic spin wave 
excitations should exist in this model and that  in the limit q -+  0, the acoustic 
spin-wave mode dominates the inelastic neutron scattering. The spin-wave part  
of the cross section is renormalized only quantitatively. The cross section due to 
Stoner-mode scattering is qualitatively modified because of occurring of the four 
Stoner-type bands which may lead to the modification of the spin wave intensity 
fall off with increasing energy [19]. The intersection point qm~x must be strongly 
renormalized. The concrete neutron inelastic scattering picture is strongly energy- 
band-structure dependent and must be numerically investigated. 
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I n  our t r ea tmen t  of  the correlation problem we have used the r andom phase 
approximation.  This approximat ion is well applied for a weakly correlated system, 
whilst in the derivation of  the cross section (2.5) it is essentially assumed tha t  the 
overlap of  the Wannier  functions is negligible. Thus  in this scheme 

8 ~  (q, t) = F (q) g• (q, t) 
where 

F (q) = .~ dSr eiqr t cf~ [~ 

is the geometrical  distributions or the form factor.  Also, when U is large the  
theory  becomes in m a n y  respects similar to t h a t  of  a hard  sphere Fermi  gas, in 
which the effective interaction is measured by  the  scattering length ra ther  t han  
the  potential  scattering [20]. Because of  this the R P A  encounters serious diffi- 
culties when the interaction U becomes strong. These difficulties have been dis- 
cussed within the t -matr ix approximat ion [20], which reduces, in the  appropriate  
limit, to  the R P A  result. A more interesting method  has recently been proposed 
by  Sakurai  [21] and has been used by  Kikoin [9] for the Hubba rd  model with 
orbital  degeneracy. This me thod  does no t  reduce to  the R P A  results. 

Therefore, it seems interesting to investigate our model  Hamil tonian (2.1) by  
the Sakurai  method  so as to  be able to calculate the transverse and longitudinal 
neut ron  inelastic cross sections in a s trongly correlated problem. We hope to be 
able to  do this in the near future.  
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